
activity by ANP. A role for this domain in 
signal transduction is consistent with its 
high degree of conservation in all membrane 
guanylate cyclases sequenced thus far from 
sea urchins and mammals (3, 4, 12, 13). 

We have noted the similarity in overall 
topology between the guanylate cyclase- 
ANP receptor and protein tyrosine kinase- 
growth factor receptors (3). Like the ANP 
receptor, these receptors contain an extracel- 
lular binding domain, a single transmem- 
brane domain, a protein kinase domain adja- 
cent to the membrane, and a COOH-termi- 
nal domain. A model has been proposed in 
which the protein kinase activity of the 
epidermal growth factor (EGF) receptor is 
sterically inhibited by interaction of the ki- 
nase domain with the COOH-terminal do- 
main; this interaction is disrupted after EGF 
binding and the subsequent autophospho- 
rylation of the COOH-terminal domain 
(14). In the case of the ANP receptor, the 
situation could be reversed: the kinase-like 
domain may be a negative regulator of the 
COOH-terminal, guanylate cyclase domain. 
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Ocular Responses to Linear Motion Are Inversely 
Proportional to Viewing Distance 

Eye movements exist to improve vision, in part by preventing excessive retinal image 
slip. A major threat to the stability of the retinal image comes from the observer's own 
movement, and there are visual and vestibular reflexes that operate to meet this 
challenge by generating compensatory eye movements. The ocular responses to 
translational disturbances of the observer and of the scene were recorded from 
monkeys. The associated vestibular and visual responses were both linearly dependent 
on the inverse of the viewing distance. Such dependence on proximity is appropriate 
for the vestibular reflex, which must transform signals from Cartesian to polar 
coordinates, but not for the visual reflex, which operates entirely in polar coordinates. 
However, such shared proximity effects in the visual reflex could compensate for 
known intrinsic limitations that would otherwise compromise performance at near 
viewing. 

'HEN LOOKING OUT FROM A 

speeding train or bus, nearby ob- 
. . jects are seen to rush by while 

more distant ones seem relatively stable. The 
motion of an image across the retina is 
determined by the angular velocity of the 
object with respect to the observer, and 
when the observer's motion is purely trans- 
lational, as in the case of the passenger, 
simple geometry indicates that this velocity 
must depend on the proximity of the object 
(1). In order to scrutinize any given object 
in this passing scene, the observer must track 
it with his eyes, thereby compensating for 
his own bodily motion and, the nearer the 
object, the more vigorously the observer 
must track. Visual tracking, mediated by the 
ocular following reflex (OFR), is important 
in this (2), but during many natural activi- 
ties such as walking some of the ocular 
compensaton is provided by the translation- 
al vestibule-ocular reflex (TVOR), which 
senses linear accelerations of the head 
through the otolith organs embedded in the 
base of the skull (3). To be optimally effec- 
tive, the output of the TVOR should accord 
with the proximity of the object of interest. 
Earlier reports did not specify proximal 
viewing and suggested that the TVOR was 
rather weak in humans (4). However, better 
responses are obtained if the subject at- 

Laboraton, of Sensorimotor Research, National Eve 
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tempts to fixate an imagined nearby target 
( 5 ) ,  and TVOR responses have been linked 
to the vergence angle of the two eyes (6 ) .  
We now describe experiments on monkeys 
which indicate that the TVOR responses to 
lateral translation are linearly related to the 
inverse of the viewing distance (1). We also 
report that this dependence on proximity is 
shared by the OFR, which we suggest pro- 
vides a visual back-up to the TVOR. 

The TVOR was investigated in four rhe- 
sus monkeys seated on a sled that moved on 
a linear track and that accelerated the ani- 
mals along the interaural axis ( 7 ) .  The move- 
ments of the sled were gentle and brief, 
consisting of one cycle of sinusoidal jerk in 
either direction (period, 200 ms; amplitude, 
630 cm/s2 per second), after which the sled 
cruised at the acquired speed for 200 ms 
before gradually slowing to a halt. Sled 
acceleration commenced only after the ani- 
mal had satisfactorily fixated one of five 
randomly selected targets (light-emitting di- 
odes at viewing distances of 16,25, 50, 100, 
150 cm) for randomly varied time periods 
ranging from 250 to 500 ms. The target was 
extinguished immediately before the onset 
of acceleration, leaving the room dark 
throughout the period of sled motion. A 
total of 60 responses was obtained for each 
stimulus at each viewing distance. To pre- 
clude learning, animals never experienced 
sled motion in the light. 

Sled motion evoked consistent compensa- 
tory eye movements and, as Fig. 1A shows 
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for one animal, the response varied inversely 
with the viewing distance of the previously 
fixated target. When the maximum compen- 
satory eye speed achieved within 250 ms of 
the onset of sled motion was used as the 
response measure and plotted against the 
prior viewing distance in reciprocal meters 
(diopters), it was evident that the relation- 
ship was linear (Fig. 1B). Similar data were 
obtained from all four animals, and regres- 
sion lines had a mean slope of 1.4 degreesls 

I . . ' .  1 . ' "  I "  

0 100 200 

Time (ms) 

llviewing distance (diopter) 

Fig. 1. Dependence of  TVOR responses on 
viewing distance. (A) E, averaged eye speed pro- 
files (n = 60 for each trace) for monkey Pu in 
response to lefnvard sled motion; numbers at side 
of each trace indicate prior viewing distance in 
diopters. S,  sled speed (maximum, 40 rnds ) .  
Calibration bar applies to eye speed only. Upward 
deflections represent rightward motion. (8 )  Plot 
of maximum eye speed (achieved within 250 ms 
of onset of sled motion) against the reciprocal of 
the viewing distance [for data shown in (A)]. 
Dashed line is the linear regression (slope, 1.6 
degreesis per diopter; intercept, 1.8 degreesis). 
Error bars, +SD. 

per diopter (range, 1.0 to 2.1 degreesis per 
diopter) with a mean intercept of 1.4 de- 
grees/~ (range, 0.1 to 3.6 degreesis). Full 
compensation for the sled motion would 
require a slope of 2.3 degreesis per diopter 
with an intercept of zero. Based on this, the 
gain of the TVOR (measured responseire- 
quired response) always exceeded unity with 
the most distant target (mean, 1.5) and fell 
short of unity with the nearest (mean, 0.7). 
Thus, TVOR responses were robust and 
showed the desired dependence on proximi- 
ty but compensated appropriately only at 
one particular viewing distance. 

In a separate series of experiments with 
the same four monkeys, we studied the effect 
of viewing distance on the OFR responses 
elicited by brief linear motion of the visual 
scene (2). Visual stimuli were random dot 

patterns subtending 40 degrees and back- 
projected onto a tangent screen facing the 
animal. The pattern was moved either left- 
ward or rightward at 80 degreesis for 100 
ms. Six viewing distances were used (20,25, 
33, 50, 100, and 150 cm), the visual stimu- 
lus being adjusted for each so as to have 
constant size and speed for the animal; that 
is, the retinal stimulus was the same at all 
viewing distances. Data were collected in 
blocks of trials at each distance, each block 
involving six presentations of each stimulus 
in a randomized order. The sequence of 
distances was varied randomly and a total of 
60 responses was obtained for each stimulus 
at each distance. Animals were neither 
trained to track the moving scene nor rein- 
forced for doing so (8). 

Brief linear motion of the visual scene 

. I /  IIViewing distance (diopter) 
S I 4- - - - - - - Flg. 2. Dependence of OFR responses on view- 

I ing distance. (A) E, averaged eye speed profiles 
r 4 1 1 1 ~ - 1 8 1 ~ r 1 1  (n = 60 for each trace) for monkey Pu in response 
0 50 100 to rightward visual motion. S ,  stimulus speed (80 

Time (ms) degreesis). Other conventions as in Fig. 1A. (8 )  
Plot of maximum eye speed (achieved within 100 

ms of onset of stimulus motion) against the reciprocal of the viewing distance [for data shown in (A)]. 
Dashed line is the linear regression (slope, 3.20 degreesis per diopter; intercept, 6.47 degreesis). Error 
bars, ?SD. 

Fig. 3. A block diagram 
I------------------+ 

showing the proposed rela- I I I 

tion between the TVOR and 
I I TVOR I 

the OFR. Translational head I I - I t 

movements affect gaze (posi- I 

tion of the eyes with respect 
to the surroundings) in in- 
verse proportion to the view- 
ing distance, and the TVOR 
generates compensatory eye 
movements to cancel this ef- 
fect. The OFR operates as a 
negative feedback system, re- 
ducing any retinal slip due to 
residual shifts of naze. The " 
variable gain element, k,id, 
gives the TVOR its depen- Retina 
dence on proximity and tends 
to offset velocity saturation in the OFR, represented here by ,the nonlinearity,, f(s). Dashed lines 
represent physical links: kT, head velocity in linear coordinates; HR, ER, CR, and WR, velocity of head, 
eyes (in head), gaze, and visual surroundings, respectively, in angular coordinates. OTO, otolith organs. 
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evoked consistent ocular following and, as 
Fig. 2A shows for one animal, once again 
the response varied inversely with the view- 
ing distance. The maximum compensatory 
eye speeds achieved within 100 i s  of thk 
onset of stimulus motion are plotted in Fig. 
2B, from which it is evident that OFR 
resDonses were a linear function of the in- 
verse of the viewing distance. Similar data 
were obtained from all four animals. When 
the data from each animal were expressed as 
a percentage of that same animal's highest 
mean response and plotted against the in- 
verse of the viewing distance, there was 
surprisingly little variation: the range of 
slopes was only 14% to 16% per diopter 
(mean, 15% per diopter), and the range of 
intercepts was 22% to 34% (mean, 28%). 

That the OFR shares the TVOR's depen- 
dence on proximity leads us to suggest that 
the two reflexes share a ~athwav whose 
efficacy is modulated by absolute distance 
cues (9). Further, we suggest that these two 
systems are synergistic, fhctioning to com- 
pensate selectivelv for translational distur- 
bances of the observer (10). In our proposed 
scheme (see Fig. 3), the TVOR and OFR 
share two gain elements: a variable one ., 
(kl/d, where k l  is a constant and d is the 
target distance), which gives the dependence 
on proximity, and a fixed one (k2), which 
accounts for the offset in our data. The 
variable gain element allows the TVOR to 
receive i n ~ u t s  encoded in Cartesian coordi- 
nates [translational velocity of the head 
(H, ) ]  and to respond with outputs coded in 
polar coordinates [rotational velocity of the 
eyes ( E ~ ) ] .  That the visual contribution 
enters the system upstream of the variable 
gain element might seem less than optimal 
since negative feedback systems such as this 
h c t i o n  best when their gain is fixed at 
some maximum limited only by stability 
considerations. However, we suggest that 
the variable element h e l ~ s  to offsz velocity 
saturation, which is known to be present in 
the OFR (2) and has been incorporated into 
Fig. 3. Retinal slip speeds experienced by 
the moving observer will tend to vary in- 
versely with viewing distance; hence ocular 
following will tend ;o show increasing satu- 
ration with near viewing, an effect that the 
gain element, klld, will counteract. Thus, the 
observed dependence on proximity meets 
the geometric needs of the TVOR and 
offsets the intrinsic limitations of the OFR. 
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Sequence-Specific Isotope Effects on the 
Cleavage of DNA by Bleomycin 

Bleomycin is a metal- and oxygen-dependent DNA cleaver. The chemistry of DNA 
damage has been proposed to involve rate-limiting abstraction of the 4'-hydrogen. A 
DNA fragment has been prepared that contains [4'-2H]thymidine residues of high 
isotopic content. Primary kinetic isotope effects have been directly observed at 
individual thymidine residues with DNA sequencing technology. 

T HE ELUCIDATION OF THE MECHA- 
nisms of DNA cleavage by bleomy- 
cin (BLM) ( I ) ,  the neocarzinostatin 

cofactor (2), calicheamicin (3) ,  esperamicin 
(4),  and related compounds (5 )  -has been 
extensively investigated. High sensitivity 
and precision are required to evaluate the 
mechanistic changes tha t  may accompany 
alterations in local DNA conformation or 
modifications in drug structure or both. We 
report a new technique that makes use of 
specifically deuteriated 3 2 ~  end-labeled 
DNAs in combination with gel electro- 
phoresis to detect and quantitate potential- 
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ly rate-limiting carbon-hydrogen bond 
cleavages by DNA-cleaving drugs at indi- 
vidual sequence sites. We use BLM as an 
example. 

The activity of BLM in vitro depends on 
Fe(I1) and 0 2  or Fe(II1) and H 2 0 2  (6). The 
initial BLM.Fe(II).02 complex (Fig. 1) un- 
dergoes one-electron reduction to ultimately 
yield "activated BLM," which can initiate 
DNA damage ( 7 ) .  Two types of DNA dam- 
age are observed with "activated BLLW' 
(Fig. 2, A and B). Pathway A results in the 
formation of nucleic acid base propenal and 
a DNA strand scission that yields 3'-phos- 
phoglpcolate and 5'-phosphate termini. 
Pathway B results in the liberation of nucleic 
acid base plus an alkali-labile site that cleaves 
at pH 12 with piperidine to afford a 3'- 
phosphate and a 5'-phosphate terminus. On 
the basis of the identification of the pro- 
penal (?, X), Giloni et al. (8) inferred that 
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