
planar subgraph from the nonplanar or pla- 
nar graph and embeds it on a plane. 

0) Set t = 0. 
1) Randomize the initial values of 

Uupo(t) and Udown"(t), where i = 1, ..., N 
andj  = 1, ..., N, in the range - w  to 0; w is a 
real number. 

2) Evaluate values of Vupij(t) and 
Vdown"(t) on the basis of the binary func- 
tion, where i = 1 ,..., N and j = 1 ,..., N. 

Vupu(t) = f[ Uupu(t)] = 

1 if Uupii(t) > 0 
0 otherwise (4) 

Vdownij(t) = f[ UdownU(t)] = 

1 if UdownV(t) > 0 
O otherwise ( 5 )  

3) Use the motion equation (Eq. 3) to 
compute A Uupij(t) and A UdownU(t). 

4) Compute Uupi(t + 1) and Udownij(t) 
+ 1) on the basis of the first-order Euler 
method: 
Uup"(t + 1) = 

Uupij(t) + AUupij(t)At (8) 

where i = 1 ,..., N a n d j  = 1 ,..., N. 
5) Increment t by 1. If t = T, then 

terminate this procedure, otherwise go to 
step 2. 

Consider the nonplanar graph of Jayaku- 
mar et al.  (2) in Fig. 3a. The graph has 10 
vertices and 22 edges. The latest experiment 
by Jayakumar et a l ,  showed that 19 edges 
were chosen by their 0(fV2) algorithm to 
construct the maximal planar subgraph as 
shown in Fig. 3b. Remember that their 
algorithm does not embed the generated 
subgraph on a plane but chooses edges for 
construction of the maximal planar sub- 
graph. 

We have developed a simulator based on 

the proposed algorithm on a Macintosh and 
on an Apollo 3500 computer. When the 
coefficients A = 2 and B = 1 and the unit 
time At = were used for Eqs. 6 
through 9, and the initial values of Uup"(t) 
and Udownij(t) were randomized in the 
range of -1/10,000 to 0, the state of our 
system converged to the global minimum in 
the 14th iteration. Figure 4, a and b, de- 
scribes the state of the svstem at the first and 
14th iterations. Our simulator found that 
the new maximal planar subgraph contains 
20 edges instead of 19 edges, which contra- 
dicts the result of Jayakumar et al.  (2). Table 
1 shows the simulation results where several 
sets of the coefficients were used. I t  indicates 
that either 20 edges or 19 out of 22 edges 
can be consistently embedded in a single 
plane. 

Within O(1) time the algorithm not only 
generates a near-maximal-planar subgraph 
from the nonplanar or planar graph but also 
embeds the subgraph on a plane. O n  the 
basis of our observations of the behavior of 
the simulator, the state of the system always 
converges to a good solution within 20 or 
30 iteration steps. Another simulation result 

of a graph with 48 vertices and 105 edges 
also showed the consistency of our algo- 
rithm. The algorithm can be implemented 
by an N x N two-dimensional neural net- 
work array. Among N' neurons, only 2M 
neurons are used to obtain the solution. The 
detailed design of the parallel hardware is 
given in ( 7). 
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Shear Forces in Molecularly Thin Films 

Monte Carlo and molecular dynamics methods have been used to study the shearing 
behavior of an atomic fluid between two plane-parallel solid surfaces having the face- 
centered cubic (100) structure. A distorted, face-centered cubic solid can form 
epitaxially between surfaces that are separated by distances of one to five atomic 
diameters. Under these conditions a critical stress must be overcome to initiate sliding 
of the surfaces over one another at fixed separation, temperature, and chemical 
potential. As sliding begins, a layer of solid exits the space between the surfaces and the 
remaining layers become fluid. 

I N THE LAST DECADE IT HAS BECOME 

feasible, if not routine, to measure di- 
rectly on a molecular scale the forces 

between two solid surfaces separated by a 
film of fluid (1-3). When the distance h 
between the surfaces is in the range from 
one to ten "diameters" of the fluid molecule. 
the component of the force normal to the 
surfaces oscillates as a function of h, alter- 
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47907. 
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nating between attraction and repulsion 
with a period approximately equal to the 
molecular diameter. This oscillatory charac- 
ter suggests that the fluid near the surfaces 
arranges itself in layers parallel with the 
surfaces and that entire layers of fluid are 
successively forced from the space between 
the surfaces as h is decreased. Statistical 
mechanics calculations confirm this notion. 

Both Monte Carlo (4-9) and molecular 
dynamics (10-12) studies of model slit pores 
(that is, fluid confined between two plane- 
parallel solid walls) show that an atomic 
pore fluid does indeed pile up in layers 
parallel with the walls, whether the walls are 
structured or not. This "normal" ordering of 
the fluid is analogous to the ordering offluid 
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Flg. 1. Top view of the unit simulation cell. Filled 
circles represent atoms in lower wall 1 (z  = O), 
open circles represent atoms in upper wall 2 
(z = h) .  Walls are shown fully out of registry 
(strain a = 0.5). 

molecules about a reference molecule in the 
bulk. The walls behave essentially as refer- 
ence molecules of infinite radius. 

Until our grand-canonical Monte Carlo 
studies (8, 9) of the prototypal structured 
slit pore [atomic fluid confined by face- 
centered cubic (fcc) (100) planes of like 
atoms], no clear evidence of order within 
the fluid layers in directions parallel with the 
walls, that is "transverse" order, had been 
reported. We discovered that, over a range 
of h from one to about six atomic diameters, 
the pore "fluid" alternately freezes and thaws 
as a h c t i o n  of h, other thermodynamic 
state variables (specified later) being held 
constant. The pore solid forms epitaxially; 
the successive layers are distorted fcc (100) 
structures. Thus, the structured walls induce 
freezing, even when the corresponding bulk 
phase is fluid. This epitaxial effect decreases 
with increasing h but persists indefinitely in 
the contact layer. 

Experimental examination of the behavior 
of thin fluid films that are undergoing trans- 
verse movement (that is, shearing) of the 
solid surfaces has only begun. Dynamic 
shear-response measurements (13, 14), per- 
formed on organic liquids between atomi- 
cally smooth mica sheets, show that the 
apparent viscosity of the fluid in molecularly 
thin films can be greater by up to seven 
orders of magnitude than that in the bulk. 
These measurements indicate that the solid 
surfaces slide past one another while separat- 
ed by discrete numbers of fluid layers and 
that under appropriate conditions a critical 
shear stress S ,  is required to initiate sliding. 
Moreover, S ,  is "quantized" with the num- 
ber of fluid layers, that is, S,  changes as the 
number of layers changes. The fact that a 
critical stress is required to initiate sliding 
suggests that the pore "fluid" has assumed a 
solid-like structure that must be broken 
down in order for sliding to occur. 

We present here the results of Monte 

Carlo and molecular dvnamics calculations 
that support the above interpretation of the 
shear measurements (13, 14). For simplicity, - .  
we have restricted our study to the proto- 
typal slit pore. Each wall is composed of N, 
atoms rigidly fixed in the configuration of 
(100) planes of the fcc lattice (see Fig. 1). 
The relative location of the walls in the x 
direction is specified by a parameter a ,  
which relates the x coordinate of an atom in 
wall 2 to that of the corresponding atom in 
wall 1 by 

where b is defined in Fig. 1. Thus, the 
quantity a permits us to slide the upper wall 
(position x2) in the x direction while keep- 
ing the lower wall (position xl) fixed. We 
shall refer to a. as the registry or strain. The 
space between the walls is occupied by N 
fluid atoms identical with the wall atoms. 
The total potential energy of the system is 
taken as a sum of Lennard-Jones (12, 6 )  
painvise interactions 

where r is the distance between the atoms of 
a pair, -E is the minimum of the interaction, 
and cr is the atomic "diameter." 

In the actual measurements (13, 14), the 
walls slide by one another at a rate on the 
order of lo-' bps. It is computationally 
impossible to follow the motion of our 
model system for a real time longer than 
about lo3 ps. Therefore, on the molecular 
scale of the computer "experiment" the walls 
are practically stationary. In the real experi- 
ments, the slit pore has a finite extent and 
the pore fluid is presumably in contact, if 
not in equilibrium, with the surrounding 
bulk fluid. In the computations we treat the 
pore as if it were of infinite extent by 

imposing periodic boundary conditions on 
the unit simulation cell in the x and y 
directions (Fig. 1). The model pore fluid is 
not in direct contact with the bulk fluid but 
is taken to be in thermodynamic equilibrium 
with the bulk fluid, whose thermodynamic 
state is specified by the chemical potential p 
and absolute temperature T. Thus, p and T 
for the pore fluid must equal the respective 
values for the bulk fluid. We must also 
specify the registry a and the distance h 
between the walls in order to determine 
uniquely the thermodynamic state of the 
pore fluid. 

In certain regions of the pore's thermody- 
namic state space (p, T, h, a )  where the bulk 
phase is fluid, a solid exists in the pore. 
When the walls are either in registry 
( a  = 0.0) or out of registry (a. = 0.5), re- 
spectively, odd or even numbers of distorted 
fcc (100) layers of pore solid form, depend- 
ing on h (9). We surmise that under these 
conditions the pore is in stable mechanical 
equilibrium with no shear stress on the 
walls. [For the present purposes we define 
the shear stress, more precisely the (z,x) 
element of the stress tensor, rm, as the x 
component of the force exerted by the pore 
fluid on a unit area of wall 2, whose outward 
normal points in the positive z direction.] 
Now, if h is held fixed while wall 2 is slid 
in the x direction (by changing a), then 
a transverse force should arise, tending 
to restore wall 2 to its equilibrium posi- 
tion. 

To investigate this hypothesis, we have 
computed 7, as a fbnction of a for several 
values of h, all at fixed p and T. Because p is 
fixed, it is convenient to compute the num- 
ber of atoms N by means of the grand- 
canonical ensemble Monte Carlo method 
and then to use N in a microcanonical 

Flg. 2. Shear stress T, as a function of strain a for walls separated by h = 2.20 a (O), 3.10 a (V), and 
4.90 a (0); pic = -9.26;  TIE = 1.0, where k is the Boltzmann constant. Plots correspond to argon, 
for which (T = 3.405 A and c = 119.8 K. 
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molecular dynamics (MD) calculation at 
fixed N, h, a, and E, where the total energy 
E is fixed by adjusting the expected value of 
the kinetic energy per atom to be consistent 
with the given temperature according to the 
equipartition theorem. The advantage of 
MD is that it allows us to compute dynamic 
as well as equilibrium properties. In particu- 
lar, the shear stress is given by 

where s is the side of the unit simulation cell. 
the brackets signify an average over configu- 
rations sampled along the M D  trajectory 
(12), and FL2) is the total force on wall 2. 
Because the net force on the walls must 
vanish, T, is also given in terms of the x 
component of the force on wall 1: 

We take the mean of these expressions for 
T,, which differ from one another by less 
than I% in all cases. The structure of the 
pore fluid is characterized in terms of the 
local density p(') and the in-plane pair cor- 
relation function g(2), the computation of 
which has been described in detail (8, 9, 
12). 

Figure 2 displays plots of 7, versus a 
(that is, "stress curves") for three values of h 
at fixed p and T; s is fixed at 7.9925 a and 
N, is 50. Because 7, (and all other proper- 
ties) must be periodic in the registry a, with 
a period of unity, we show plots only in the 
range -0.5 a 5 0.5. By virtue of the 
symmetry of the walls, T, is antisymmetric 
in a. The shapes of the stress curves are 
similar, but the curve for h = 2.20 u differs 
in phase by Aa = 0.5 from those for h = 
3.10 a and 4.9 u. 

For h = 2.20 u the linear portion of the 
stress curve is centered on a = 0.5, where 
the walls are fully out of registry and T, 

vanishes exactly. This registry is such that 
the pore can accommodate just two solid- 
like layers, each layer containing about 50 
atoms (9). As the walls are sheared so that a 
decreases from 0.5, the stress rises approxi- 
mately linearly with a down to a = 0.33, 
tending to restore the walls to a = 0.5. The 
number of atoms in the pore remains essen- 
tially constant; plots of p(') and g(2) indicate 
two distorted fcc (100) layers sharply local- 
ized in the z direction over this range of a. 
The stress attains a maximum value at about 
a = 0.33. This is the critical stress (S, 
above) required to initiate sliding. If the 
walls are strained beyond this point, the 
stress abruptly decreases. Simultaneously N 
decreases by about 44 as a goes from 0.33 
to 0.31. Almost an entire layer of fluid 
suddenly exits the pore over this range of a. 

Plots of p(') and g(2) now indicate the pres- 
ence of a single broad layer of fluid. As a 
decreases further, N gradually decreases to 
about 50 at a = 0, but throughout the 
range from 0.33 to 0 the stress acts to push 
the walls back toward a = 0.5. The point 
a = 0 is metastable; any slight displacement 
tends to return wall 2 to  the equilibrium 
registry a = 0.5. 

For both h = 3.10 a and h = 4.90 u. the 
linear portion of the stress curve is centered 
on a = 0, where the walls are precisely in 
registry and the stress vanishes. With the 
walls in registry the pore contains three 
(h = 3.10 a) or five (h = 4.90 a) distorted 
fcc (100) solid layers, each comprising 
about 50 atoms. As wall 2 is forced out of 
registry, the shear stress increases linearly 
with a ;  N does not change and the solid 
layers remain intact according to  plots of pf') 
and g(2). When wall 2 is strained beyond the 
critical values of a, N drops sharply. For 
h = 3.10 a ,  about 41  atoms leave the pore 
over the range a = 0.25 to 0.27; two broad 
layers of fluid replace the three solid layers. 
For h = 4.90 a, only about 35 atoms exit the 
pore over the transition region a = 0.33 to 
0.34 just beyond the critical strain. At 
a = 0.34 there are still five layers in the pore. 
The contact layer remains a distorted fcc 
(100) plane; the first inner layer retains a trace 
of fcc character; the innermost layer, which is 
sparsely populated, is strictly fluidal. 

The stress curves have the following fea- 
tures. Both the slope of the linear region 
(the "force constant") and the critical stress 
decrease as the number of solid layers in- 
creases. However, the range of a over which 
solid-like behavior persists increases with 
the number of layers; that is, the critical 
strain increases with the number of lavers. 
The critical strain per layer is constant at 
about 0.08. With increasing h, the stress 
curve becomes flatter. At sufficiently large h, 
the pore should become mechanically stable 
at all registries. 

The decrease of critical stress with increas- 
ing number of layers is also observed experi- 
mentally (13) and can be rationalized as 
follows. As the number of layers in the pore 
increases, the solid-like character of the-lay- 
ers decreases toward the center of the pore 
and it takes less force to break down the less 
ordered structure of the inner lavers. 

In conclusion, the results of our Monte 
Carlo-MD study support a mechanism, 
namely, solid-liquid transitions, that may 
account for the experimentally observed crit- 
ical stress required to initiate the sliding of 
solid surfaces separated by a molecularly 
thin film. It should be borne in mind, 
however, that our idealized model differs in 
several respects from the actual experiments. 
First, and perhaps most important, the walls 

of the prototype are held a fixed distance 
apart as they &e slid at constant T and p. 
This leads to a loss offluid from the pore. In 
the experiments (13, 14) the normal force on 
the mica sheets is maintained constant while 
they are slid. The temperature is also con- 
stant. No fluid is lost on sliding, which 
implies that the number of fluid iavers re- 
mains fixed, even though the separation of 
the sheets may vary. Second, for the conve- 
nience of periodic boundaw conditions. the 
walls of the prototype are taken to be crys- 
tallographically aligned. Although control 
of relative crystallographic orientation (0) 
was lacking in the -firit shear experiments 
(13, I#), recent modifications of the force- 
balance apparatus by McGuiggan and Israe- 
lachvili (15, 16) permit 0 to be fixed. Third, 
the structure of the prototypal walls is com- 
mensurate with that of the bulk rare-gas 
solid, thus promoting epitaxial growth of 
the pore solid, whereas the structure of the 
mici sheets usid in the experiments bears no 
particular relation to that of the bulk organic 
solid. X-ray investigations (17) demonstrate 
the formation of solid-like aqueous layers 
between the silicate layers of tetrahedrally 
substituted 2 : 1 phyllosilicates. However, 
whether the structuiallv related mica sur- 
faces used in the shear-response measure- 
ments can induce "freezing" of organic liq- 
uids remains to be seen. 
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