
A Near-Optimum Parallel Planarization Algorithm 

A near-optimum parallel planarization algorithm is presented. The planarization 
algorithm, which is designed to embed a graph on a plane, uses a large number of 
simple processing elements called neurons. The proposed system, composed of an 
N x W neural network array (where N is the number of vertices), not only generates a 
near-maximal planar subgraph from a nonplanar graph or a planar graph but also 
embeds the subgraph on a single plane within O(1) time. The algorithm can be used in 
multiple-layer problems such as designing printed circuit boards and routing very- 
large-scale integration circuits. 

M AXIMAL PLANARIZATION OF A 

planar or nonplanar graph is an 
important problem in designing 

printed circuit boards and routing very- 
large-scale integration (VLSI) circuits. A 
graph is planar if it can be drawn on a single 
plane with no two edges crossing each other 
except at their end vertices. If a given circuit 
is planar, it can be wired on a single layer. If 
a circuit is nonplanar, it would be desirable 
to maximize the number of edges to be 
planarized and minimize the number of 
edges to be removed from a nonplanar 
graph. To yield a maximal planar subgraph 
from a nonplanar graph is an NP-complete 
problem (NP, nondeterministic polyno- 
mial) (1) .  

Two tasks must be accomplished in solv- 
ing the planarization problem. One is to 
veri5 whether the circuit is planar or not 
and then to extract a planar subgraph from 
the nonplanar graph in order to embed it on 
a plane, called planarity testing. In 1989 
Jayakumar et al.  proposed a o ( N ~ )  near- 
optimum planarity testing algorithm (Z ) ,  
where N is the number of vertices. The 
other task is to embed the planar subgraph 
on a plane, called plane embedding, so as to 
maximize the number of edges in the graph. 
A plane-embedding algorithm was reported 
by Tarjan in 1971 (3). Unfortunately, few 
parallel algorithms have been reported to 
solve the planarization problem. 

This paper introduces a parallel planariza- 
tion algorithm. The algorithm not only 
yields a near-maximal planar subgraph from 
a nonplanar graph or a planar graph but also 
embeds the subgraph on a single layer with- 
in O ( 1 )  time. In other words, the algorithm 
provides the necessary and sufficient routing 
information for embedding a planar sub- 
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graph from the given nonplanar or planar 
graph. In the algorithm the single-row neu- 
ral representation is introduced. Our simula- 
tor found the new maximal planar subgraph 
in the graph with 10 vertices and 22 edges. 

The algorithm uses a massive number of 
simple processing elements. The processing 
element is called a neuron, because it per- 
forms the function of a simplified biological 
neuron or a binary neuron (4). The first 
neural network representation for solving 
optimization problems was introduced by 
Hopfield and Tank (5 ) .  Szu used the binary 
neural network for the traveling salesman 
problem (4). Takefuji proved that the state 
of the binary neural network is always able 
to converge to the local minimum (6). 

Consider the simple undirected graph 
composed of four vertices and six edges as 
shown in Fig. la. The graph is planar as 
long as two edges, (1,3) and (2,4), do not 
cross each other. Figure l b  shows a planar 
graph. In the single-row routing representa- 
tion used here, connection is established by 
either an upper edge or a lower edge. Two 
neurons (Vup, and Vdown,) express the 
upper and lower line connection between 
the ith and jth vertices, respectively. For 
example, the state of two neurons (Vup, 
= 1, Vdownij = 0) indicates that the edge 
( i j )  is established by embedding the up- 
per line connection. The following states 
(Vupij = Vdown, = 0), (Vupii = 0, 
Vdownii = l), and (Vup, = Vdownii = 1) 
express no connection, lower line connec- 
tion, and double-line connection violation, 
respectively. Figure 1, c and d, shows possi- 
ble planar graphs based on the single-row 
routing representation. The number of 
edges in a given graph determines the num- 
ber of neurons required. Actually the system 
requires 2M neurons, where M is the num- 
ber of edges in a graph. For example, the 
graphs shown in Fig. 1, c and d, can be 

Flg. 1. (a) A graph with four vertices and six 
edges. (b) A planar graph. (C and d) Possible 
planar graphs based on the single-row routing 
representation. 
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Fig. 2. Violation conditions in the single-row 
representation (see text). 

Table 1. The simulation result: the relation be- 
tween the coefficients, the number of iteration 
steps, and the number of embedded edges. 

Coefficients Number Number 
of of 

A B iteration embedded 
steps edges 

represented by a 2 x 6 two-dimensional 
neural network array. The graph in Fig. l c  
is expressed by (Vup12 = 1, Vdownl2 = 0, 
Vup13 = 0, Vdown13 = 1, Vup14 = 0, 
Vdown14 = 1, VupZ3 = 1, VdownZ3 = 0, 

= 1, VdownZ4 = 0, Vup34 = 0, 
V d ~ w n ~ ~  = 1). The graph in Fig. I d  is 
given by (Vup12 = 1, Vdown12 = 0, 
Vup13 = 1, Vdown13 = 0, Vup14 = 0, 
Vdown14 = 1, Vupz3 = 1, Vdownz3 = 0, 
VdownZ4 = 0, Vd0wn2~ = 1, = 0, 
V d o ~ n ~ ~  = 1). 

Two kinds of forces perform in the neural 
network, excitatory and inhibitory forces. In 
the planarization problem, if an edge ( i j )  
exists in a given graph, then the ijth neuron 
to represent embedding the connection line 
in a plane is encouraged to fire as the 
excitatory force. The inhibitory force means 
that the neurons that violate the two-edge- 
crossing condition are discouraged from fir- 
ing. The two-edge-crossing violation condi- 
tion is expressed by the following: 
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If Vupem = 1 and (t<i<m<j or 
i<e<j<m), then the ijth up-neuron should 
not be fired. In other words, Vup, should 
not be 1. 

If Vdowne, = 1 and ( t < i < m < j  or 
i<C<j<m), then Vdown, should not be 1. 
Figure 2 describes the violation conditions 
for Vup, and Vdown,, which are given by 
the following hct ions .  For Vup,: 

P c m  

Condition 1 
and 

1 Cf(i,e,jlf (e,j,m) Vupem 
e m 

P<m 

Condition 2 
For Vdown,: 

P<m 

Condition 3 
and 

1 C f (i,t,j)f (e,j,m) Vdownem 
P m 

Condition 4 

where the function f(L,M,R) is 1 if 
L<M<R, 0 otherwise. 

Therefore, the motion equation of the ijth 
up-neuron is given by: 

The first term in Eq. 1 performs the excit- 
atory force as long as no two-neuron ( Vup" 
and Vdown,) is fired ( Vup, = Vdown, = 
0). If ( Vup, = 1 and Vdown, = 0) or ( Vup, 
= 0 and Vdown, = l ) ,  then the first term 
will not change its output. If (Vup, = 

Vdown, =I),  then it will act as the inhibi- 
tory force. The second term and the last 
term in Eq. 1 are always inhibitory forces. 

The motion equation of the ijth down- 
neuron is as follows: 

dudown, 
dt 

= -A( Vup, + Vdown, - 1) 

In general, the planarization problem for a 
graph with N vertices and M edges can be 
solved by an N x N neural network. The 

motion equation of the ijth X neuron, where 
X is either up or down, is: 

dux,, where C, is 1 if the edge (i,j) exists in the dt = -A( Vupo + Vdown, - C,) given graph, 0 otherwise. 
The following procedure describes the 

- B 2 1 f(e,i,m)f(i,mi) Vxem proposed algorithm based on the first-order 
e m 

e<m Euler method. It generates a near-maximal 

a 

Amax = 0.00002 

U,,,,, = 0.00031 

Connection = 6 

lo'  " 1 subgraph. 

Output U Input U AU 

A,,, = 0.00005 

U,,, = 0.00043 

Connection = 20 

Output U 

Fig. 4. Convergence of the planarization neural network to a solution. Squares in the upper ( i  < j)and 
lower ( i  > j) triangle indicate VupU and VdownU, respectively. The linear dimension of each rectangle is 
proportional to the value of AL7upU, AL'downU, L'upU, LTdownU, Vup,., and lidowno. Black and white 
rectangles indicate positive and negative values, respectively. (a) Intermediate state of 44 neurons after 
the first iteration. (b) Final state of 44 neurons after the 14th iteration. A,,, indicates the maximum 
value in AL'LIP~ and AL'down,; L',,, indicates the maximum value in L1upii and LTdown,. Connection 
indicates the number of embedded edges. 
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planar subgraph from the nonplanar or pla- 
nar graph and embeds it on a plane. 

0) Set t = 0. 
1) Randomize the initial values of 

Uupo(t) and Udown"(t), where i = 1, ..., N 
andj  = 1, ..., N, in the range - w  to 0; w is a 
real number. 

2) Evaluate values of Vupij(t) and 
Vdown"(t) on the basis of the binary func- 
tion, where i = 1 ,..., N and j = 1 ,..., N. 

Vupu(t) = f[ Uupu(t)] = 

1 if Uupii(t) > 0 
0 otherwise (4) 

Vdownij(t) = f[ UdownU(t)] = 

1 if UdownV(t) > 0 
O otherwise ( 5 )  

3) Use the motion equation (Eq. 3) to 
compute A Uupij(t) and A UdownU(t). 

4) Compute Uupi(t + 1) and Udownij(t) 
+ 1) on the basis of the first-order Euler 
method: 
Uup"(t + 1) = 

Uupij(t) + AUupij(t)At (8) 

where i = 1 ,..., N a n d j  = 1 ,..., N. 
5) Increment t by 1. If t = T, then 

terminate this procedure, otherwise go to 
step 2. 

Consider the nonplanar graph of Jayaku- 
mar et al.  (2) in Fig. 3a. The graph has 10 
vertices and 22 edges. The latest experiment 
by Jayakumar et a l ,  showed that 19 edges 
were chosen by their 0(fV2) algorithm to 
construct the maximal planar subgraph as 
shown in Fig. 3b. Remember that their 
algorithm does not embed the generated 
subgraph on a plane but chooses edges for 
construction of the maximal planar sub- 
graph. 

We have developed a simulator based on 

the proposed algorithm on a Macintosh and 
on an Apollo 3500 computer. When the 
coefficients A = 2 and B = 1 and the unit 
time At = were used for Eqs. 6 
through 9, and the initial values of Uup"(t) 
and Udownij(t) were randomized in the 
range of -1/10,000 to 0, the state of our 
system converged to the global minimum in 
the 14th iteration. Figure 4, a and b, de- 
scribes the state of the svstem at the first and 
14th iterations. Our simulator found that 
the new maximal planar subgraph contains 
20 edges instead of 19 edges, which contra- 
dicts the result of Jayakumar et al.  (2). Table 
1 shows the simulation results where several 
sets of the coefficients were used. I t  indicates 
that either 20 edges or 19 out of 22 edges 
can be consistently embedded in a single 
plane. 

Within O(1) time the algorithm not only 
generates a near-maximal-planar subgraph 
from the nonplanar or planar graph but also 
embeds the subgraph on a plane. O n  the 
basis of our observations of the behavior of 
the simulator, the state of the system always 
converges to a good solution within 20 or 
30 iteration steps. Another simulation result 

of a graph with 48 vertices and 105 edges 
also showed the consistency of our algo- 
rithm. The algorithm can be implemented 
by an N x N two-dimensional neural net- 
work array. Among N' neurons, only 2M 
neurons are used to obtain the solution. The 
detailed design of the parallel hardware is 
given in ( 7). 
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Shear Forces in Molecularly Thin Films 

Monte Carlo and molecular dynamics methods have been used to study the shearing 
behavior of an atomic fluid between two plane-parallel solid surfaces having the face- 
centered cubic (100) structure. A distorted, face-centered cubic solid can form 
epitaxially between surfaces that are separated by distances of one to five atomic 
diameters. Under these conditions a critical stress must be overcome to initiate sliding 
of the surfaces over one another at fixed separation, temperature, and chemical 
potential. As sliding begins, a layer of solid exits the space between the surfaces and the 
remaining layers become fluid. 

I N THE LAST DECADE IT HAS BECOME 

feasible, if not routine, to measure di- 
rectly on a molecular scale the forces 

between two solid surfaces separated by a 
film of fluid (1-3). When the distance h 
between the surfaces is in the range from 
one to ten "diameters" of the fluid molecule. 
the component of the force normal to the 
surfaces oscillates as a function of h, alter- 
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nating between attraction and repulsion 
with a period approximately equal to the 
molecular diameter. This oscillatory charac- 
ter suggests that the fluid near the surfaces 
arranges itself in layers parallel with the 
surfaces and that entire layers of fluid are 
successively forced from the space between 
the surfaces as h is decreased. Statistical 
mechanics calculations confirm this notion. 

Both Monte Carlo (4-9) and molecular 
dynamics (10-12) studies of model slit pores 
(that is, fluid confined between two plane- 
parallel solid walls) show that an atomic 
pore fluid does indeed pile up in layers 
parallel with the walls, whether the walls are 
structured or not. This "normal" ordering of 
the fluid is analogous to the ordering offluid 
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