
Say It Again in 
Plain Algebra 
The growing use of computer algebm systems has driven 
mathematicians to jnd ways of simpltjj&zg the horrendously 
complex expressions number crunchers sometimes spit out 

LAWYERS AND GOVERNMENT AGENCIES are 
well known for writing in a variant of 
English known as gobbledygook: long, tor- 
tuous, impersonal sentences that mask a 
simple-and sometimes vacuous-state- 
ment offact or opinion. It is an easy habit to 
fall into and a surpassingly difficult one to 
break. 

Oddly enough, mathematicians run a sim- 
ilar risk when they solve problems in alge- 
bra. It is easy to wind up writing down a 
convoluted algebraic expression f& what, in 
fact, is a very simple number. In particular, 
numbers such as v's + 2- that are written 
with roots within roots-what mathemati- 

cians call nested radicals-frequently turn 
out to represent much similer expres- 
sions. For kstance, vG?%% i8 just a tancy 
way of saying fi t fi. Similarly, 
v~V5 t 2 - - 2 is a erotesauelv " 1 ,  

complicated way of writing the number 1. 
The problem is, it's nearly impossible to tell 
the difference between a nested radical that's 
hiding something simple and one that is 
honestly complicated. 

Mathematicians have long sought some 
way of reducing algebraic -expressions to 
their simplest, least nested form. The grow- 
ing use of computer algebra systems has 
made the search more pressing than ever. It 

Algebra: A Hotbed of Radicalism 
How is it possible to create a complicated algebraic expression without intentionally 
setting out to do so? Afier all, if nested radicals that disguise simple numbers arise 
only in the fiendish imagination of mathematicians, then computer algebra systems 
would have little to be concerned over. But, in fact, such radicals are easy to come by, 
and computer algebra systems, if left to themselves, could be the biggest producers of 
unnecessarily complicated numbers. 

One way that -nested radicals arise is through routine application of general 
formulas to find roots of polynomials. For example, the number V 5 T E Z  can arise by 
solving the polynomial equation x4 - lox2 + 1 = 0: applying the familiar quadratic 
formula gives x2 = 5 + z f i ,  and the nested radical comes by takmg the square root. 

computer algebra systems not only know the quadratic formula, they idso know a 
formula for solving cubic e uations. It turns out that one root of any cubic 4 polynomial having the form x + px  - q can be written as d q @ / 3 ) '  + + (q12) - 
d d ( p / 3 ) '  + (q12)~ - (912). Applying this mindlessly to the polynomial x3 + 3x - 4 
produces the root m- m. But 1 is an obvious root of this polynomial, 
so the two must be equal (since this particular polynomial has only one real root). (In 
the main story, an extra square root was added for dramatic effect.) 

Not many people know it, but there is also a formula for solving fourth-degree 
polynomials. However, at that point the well runs dry: there is no general formula for 
solving fifth- or higher degree polynomials. Some polynomials-3x5 - 15x + 5 is an 
examplwannot be solved at all, meaning that it is impossiblc to express any of their 
roots using radicals, no matter how deeply nested you allow them to be. (It is, of 
course, always possible to find numerical approximations to the roots of a polynomial, 
but that's a diffcrc~it matter.) 

Galois theory and much of group theory were developed in the early 19th century 
to understand why some polynomials can't be solved. Both theories by now have 
outgrown their ~ r i ~ i n - ~ i o u h  theory is a staple not only in mathematics, but in 
theoretical physics and chemistry as well-but both haw their "roots" in an age-old 
fascination with algebraic equations. m B.A.C. 

might seem that a computer algebra system, 
which deals with mathematical formulas in 
an exact, formal manner, would simplify 
algebraic expression as a matter of course. 
Not so. A typical system "knows," for exam- 
p l e , t h a t f i L 2 a n d f i x  v 5 = 4 , a n d i t c a n  
simplify the expression (x + - x2 down 
to 2x + 1 (which puts it ahead of your 
average high school graduate). But it can 
only do these things because there are algo- 
rithms for doing them-an explicit set of 
instructions that guide the computer from 
input to output. In the case of nested radi- 
cals, no such algorithm was known. 

Until now. 
Susan Landau, a computer scientist at 

Wesleyan University (now at the University 
of Massachusetts at Arnherst), has found a 
way to cut through the mathematical gob- 
bledygook of algebraic expressions. Based 
on a key observation which she at first 
considered "much too nice to be true," 
Landau proved a theorem about algebraic 
number systems, which led directly to an 
algorithm for denesting radicals. 

Earlier researchers had found algorithms 
that work in special cases. In 1984, Allan 
Borodin at the University of Toronto, Ron 
Fagin at the IBM Alrnaden Research Cen- 
ter, John Hopcroft at Cornell University, 
and Martin Tompa at the University of 
Washington found an efficient way of de- 
nesting certain expressions involving square 
roots, and Richard Zippel at Cornell Uni- 
versity gave other conditions that make de- 
nesting possible. However, Landau's algo- 
rithm is the only one that works in general. 

Landau's theorem says that a radical ex- 
pression can be denested if and only if the 
denesting occurs within a structure known 
as the splitting field of the original expres- 

"I didn't think I would 
get this theorem; I 
thought I would get 
something much less 
good." 

-Susan Landau 

sion. Consequently, the algorithm needs 
only to search for denestings within the 
splitting field. "It's the natural place for an 
algebraist to go," Landau explains. Even so, 
Landau looked at lots of examples before 
attempting to prove the theorem. "I didn't 
think I would get this theorem; I thought I 
would get something much less good." 

The splitting field is a familiar concept in 
abstract algebra. It is built in two steps. 
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First, you find the simplest polynomial 
(with integer coefficients) that has your 
radical expression as a root. (A root of a 
polynomial is a number that makes the 
polynomial equal to 0.) For example, the 
simplest polynomial for $3 is x3 - 2. Sec- 
ond, you extend the set of rational num- 
bers by tossing in all the roots of this 
polynomial, not just the original root, and 
then taking all possible sums and products, 
so that the extension is closed under addi- 
tion and multiplication; this extension is 
called the splitting field because the polyno- 
mial "splits" into linear factors. For example, 
the splitting field of fi is formed not just 
by tossing fi in with the rational numbers, 
but by including v '3  as well, since f i ( 1  + 
-12 are the other two roots of the p l y -  
nomial x3 - 2. 

Landau's algorithm requires the construc- 
tion of a second algebraic structure, called 
the Galois group, associated to the splitting 
field. This is still familiar territory to alge- 
braists-Galois theory was created for the 
purpose of understanding how and when 
the roots of a polynomial can be written 
using radicals. Unlike the field, which has 
infinitely many members, the Galois group 
is finite, and this makes the computer very 
happy. 

The algorithm searches the Galois group 
for a sequence of nested subgroups satisfy- 
ing certain technical conditions. (The sub- 
groups sit inside each other like tightly 
fitting Russian dolls.) Once the shortest 
such sequence is found, the algorithm trans- 
lates the subgroup nesting into a nested 
radical expression for the original number. 
The theory behind the algorithm guarantees 
that this translation produces the least nest- 
ed version of the number. 

Although it solves the problem, Landau's 
algorithm is not necessarily the last word in 
denesting radicals. One drawback is that the 
algorithm requires a potentially huge 
amount of computation-the splitting field 
and its associated Galois group can be ex- 
tremely large. Inserting an extra radical sign 
in the initial expression can more than dou- 
ble the algorithm's work load. 

It may be that inefficiency is the price to 
be paid for an all-purpose denesting algo- 
rithm. However, at the same time, Landau 
notes that "what is theoretically slow may be 
practically fast, and vice versa." In any event, 
it's nice to know that something can be done 
with those awkward algebraic expressions. 
Now if only the linguists could come up 
with some way of untangling bureaucratic 
officialese. w BARRY A. CIPRA 

Barry Cipra is a mathematician and writer 
based in Northfield, Minnesota. 

Cleaning up the atmosphere's 
act. T h e  imacpe on the I$, a veryfast 
exposlrre of the bright star Sigma Her- 
clrli taken through the 5-meter Hale 

telescope, shouts how the atmosphere breaks up a single shaft ofstarlight into a myriad ofspeckles. 
T h e  image orr the right shou)s the Calterh computer's recotzstnrction qf the Sigma Herculi. 

Computer-Age Stargazing 
When astronomers use the 5-meter Hale telescope at the Palomar Observatory to look 
at a star-in this case, the binary system Sigma Herculis-what they actually see is the 
image on the left: a shimmering, boiling blur caused by the incessant motion of the 
atmosphere. What they would like to see is the image on the right: a pair of crisp, 
well-defined spots blurred only by the unavoidable diffraction of light being focused 
by the huge mirror. 

Now they can. Palomar director Gerry Neugebauer and seven other California 
Institute of Technology astronomers have developed and implemented two tech- 
niques that virtually eliminate the distorting effects of the atmosphere, thus allowing 
this telescope or any other telescope to approach its theoretical maximum resolution. 
The improvement in this case is a factor of 20, from roughly 1 arc second to about 50 
milliarc seconds. 

Both techniques rely on the fact that the granulated mess on the left contains 
precisely as much information about the source as the original starlight did-just 
scrambled. The trick is to use massive computer processing to unscramble it. 

In Non-Redundant Masking, the method used to make the Sigma Herculis image, 
the Palomar team places an opaque screen pierced with five to seven tiny holes at the 
prime focus of the telescope. They then take the separate beams of starlight coming 
through the screen and recombine them into an undistorted image using mathemati- 
cal algorithms developed for radio observations at the Very Large Array near Socorro, 
New Mexico. 

In the Fully Filled Aperture technique, the group simply turns the computer loose 
on the whole blur, with nothing interrupting the light. The computer then recovers 
the image using a refinement of a long-established method known as speckle 
interferometry. 

Neither method is easy. In both, the computational demands are horrendous, 
requiring the full parallel processing power of Caltech's 512-node "hypercube" 
supercomputer. Moreover, the techniques are cumbersome for the observers, de- 
manding lots of 5- to 30-millisecond exposures to keep the motion of the atmosphere 
from smearing the image irretrievably. And they are limited to reconstructing 
relatively bright objects-in the case of nonredundant masking, no fainter than what 
can be seen with the naked eye. 

Nonetheless, these techniques do show just how far ground-based astronomers 
have come: leaving aside such issues as faint-object sensitivity and wavelength 
coverage, where orbital observatories still have a decided advantage, the angular 
resolution demonstrated here is about as good as that expected from the Hubble 
Space Telescope. 8 M. MITCHELL WALDROP 
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