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Ocular Dominance Column Development: 
Analvsis and Simulation 

The visual cortex of many adult mammals has patches of 
cells that receive inputs driven by the right eye alternating 
with patches that receive inputs driven by the left eye. 
These ocular dominance patches (or c'columns") form 
during early life as a consequence of competition between 
the activity patterns of the two eyes. A mathematical 
model of several biological mechanisms that can account 
for this development is presented. Analysis of this model 
reveals the conditions under which ocular dominance 
segregation will occur and determines the resulting patch 
width. Simulations of the model also exhibit other phe- 
nomena associated with early visual development, such as 
topographic refinement of cortical receptive fields, the 
confinement of input cell connections to patches, monoc- 
ular deprivation plasticity including a critical period, and 
the effect of artificially induced strabismus. The model 
can be used to predict the results of proposed experiments 
and to discriminate among various mechanisms of plastic- 
ity. 

I N THE VISUAL SYSTEMS OF MANY MAMMALS, INCLUDING CATS, 
monkeys, and humans, the optic nerves from the two eyes 
project to separate layers of a relay nucleus, the lateral geniculate 

nucleus (LGN) of the thalamus. Fibers from the LGN in turn 
project to cortical layer 4, the input layer of the primary visual 
cortex. There they terminate in alternate patches called "ocular 
dominance columns" serving the left eye and right eye, respectively 
(Fig. 1). The nonoverlapping pattern of connections evolves during 
development. Initially the connections representing the two eyes are 
distributed throughout layer 4, overlapping completely. Subse- 
quently, they become segregated into two sets of patches, one for 
each eye. 

Ocular dominance patch formation appears to depend on compe- 
tition between the activity patterns originating within the two eyes 
(1). The patches do not develop when neural activity is blocked in 
the eyes or in the cortex or when a pattern of neural activity is given 
synchronously to the nerves from both eyes. They do develop when 
the activity patterns in the nerves from the two eyes are asynchro- 

nous. Closing one eye during a critical period early in development 
(monocular deprivation) results in larger patches for the open eye 
and smaller patches for the closed eye. Closing of both eyes during 
the same period causes no abnormal effect. Thus, both development 
of ocular dominance patches and the effects of monocular depriva- 
tion involve competition between activity patterns; they do not 
result simply from the presence or absence of activity. 

This competition provides a model system for understanding 
activity-dependent synaptic plasticity. We presume that the 
strengthening of some synapses and the weakening of others are 
governed by cellular-level rules involving the patterns of neural 
activity onto and by each cortical cell. These small-scale changes, 
occurring on many individual cells during development, result in the 
large-scale structure of ocular dominance. " 

Various cellular-level mechanisms for plasticity have been pro- 
posed (2). Simulations by von der Malsburg and others (3) have 
demonstrated that some of these mechanisms can ~ roduce  ocular 
dominance patches. We have developed a mathematical model that 
describes several such mechanisms. From it, we can determine the 
ocular dominance structure that would result from each mechanism. 
given experimental values for biological parameters (4). 

Our analysis focuses on four biological features that are thought 
to play a role in organizing ocular dominance patches (Fig. 2): 

1) The patterns of initial connectivity of the geniculocortical 
afferents (inputs from geniculate to visual cortex) onto the cortical 
cells. These patterns involve the spread of afferent arbors and of 
cortical dendrites and are described bv an "arbor hc t ion ."  A. 

2) The patterns of activity in the afferents. These patterns are 
described by a set of four "correlation functions," cLL, cRR,  
cLR. and cRL. Thev describe correlations in activitv between 
afferents serving the same eye, left or right (cLL and c R R )  or serving 
different eyes (cLR and cRL).  

3) Influences acting laterally within the cortex, whereby synapses 
on one cell can influence the competition occurring on nearby cells. 
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These influences, described by a "cortical interaction function," I, 
may occur through corticocomcal synaptic connections or diffusion 
of modulatory substances. 

4) Constraints limiting the total synaptic strength supported by 
an afferent or cortical cell. 

The sizcs of some of these features have been measured in the 
visual cortex of adult cats. The h a l  patches have periodicity of 
about 850 (5,6). Initial arbors may fill a region with diameter 1 
to 1.5 mm (X cells) or larger than 2 mm (Y cells) (7). Merents from 
a single eye appear positively correlated in darkness over distances of 
from 112 (for X cells) to 312 (for Y cells) of a geniculocortical arbor 
radius (8). Corticocortical synaptic interactions may be excitatory at 
short range and are inhibitory at further distances to about 400 km; 
longer range, periodic comcal connections also exist (9). Most of 
these features have not yet been measured in kittens, when columns 
are developing. 

The purpose of this analysis is to demonstrate the role of each of 
these four features in ocular dominance segregation. The model 
shows that ocular dominance patches emerge from an initially 
uniform state when the state is unstable to small perturbations. The 
model also describes the development of structure within individual 
cortical receptive fields and geniculate axon terminal arborizations 
("arbors"). We shall characterize the general conditions on the fbur 
features under which a pattern-forming instabiity exists and deter- 
mine the width of the ocular dominance patches that emerge. The 
results predict the patterns of ocular dominance organization that 
should resuit under various experimental conditions and thereby 
permit dimhination among proposed mechanisms of plasticity. 

Formulation of the Equations 
We model layer 4 of the cortex and two geniculate laminae, each 

scrving one eye, as three two-dimensional sheets. Consider afferents 
serving the left eye with cell body at position a in the LGN (Fig. 2) 
(10). Suppose the terminal arborizations of these cells make synaptic 
contact with cortical cells at the position x. We denote the number 
of such synapses by the arbor function A(x - a )  and their total 
synaptic strength at time t by sL(x,a,t). Similarly, sR(x,a,t) denotes 
the corresponding strength for the right eye. A(x - a)  is taken to 
be a decreasing function of the retinotopic distance between genicu- 
late and cortical cells and is the same for both eyes. 

We begin by formulating an equation for Hebbian synapses, 
which are strengthened when presynaptic activity is sufticiently 
correlated with activation of the postsynaptic cell and weakened 
otherwise (1 1). This equation can be written for individual synapses 
as As = [(post)(pre) - (decay)]&, where As is the change in the 
synaptic strength in a small time interval At, and post and pre are 
functions of postsynaptic and presynaptic activities, mpectively. 

We assume that cortical activity is determined by the combined 
activity of all the afferents from the LGN to the cortex. Then post can 
be replaced by a function of presynaptic activities and of synaptic 
strengths. We then obtain the following equation governing 
sL(x,a,t) (12-1.5): 

Interchanging L and R yields the equation for sR. Similic equations 
have been derived by a number of investigators (16-21). 

In Eq. 1, cLL(a - p) is a measure of the correlation between the 
activities of the left-eye afferents from points a and p in the LGN. 
p ( a  - p) is the corresponding correlation measure fbr left-eye 

afferents from a and right-eye afferents from $. The cortical 
interaaion function I(x - y) describes the total influence on the 
cortical cell at x of geniculate excitation of the cortical cell at y. This 
includes direct excitation, if y = x, and indirect effects via excitation 
of intermediate cortical cells that may excite or inhibit the cell at x. 

Equation 1 for sL and the corresponding equation for sR 
constitute our basic mathematical model of synaptic strength devel- 
opment. The data used in the model are the arbor function 
A(x - a), the cortical interaction function I(x - y), and the correla- 
tion functions such as cLL(a - $). When the initial values of sL and 
sR ace given at time t = 0, the equations determine sL and sR at any 
later time t. 

This basic model must be modified to prevent synaptic strength 
from becoming negative or from becoming too large. Nonlinearities 
must be included in the equation to enforce these conditions. In 
addition, the model may be modified to limit the total synaptic 
strength supported by a cortical or afferent cell (22). Terms must be 
added to the equations to enforce such limits. 

We have investigated Eq. 1, subject to these conditions, by using 
computer simulations and analytical methods to determine the 
conditions on the functions A, I, and C under which column 
development and other features of visual cortical development 
occur. We choose a particular model for the conditions limiting 
synaptic strength in the simulations and explore the role of these 
conditions more generally in the analysis. 

Simulations 
We represent layer 4 of the cortex and two LGN laminae, one 

representing each eye, as three 25 x 25 grids of cells. Periodic 
boundary conditions are used, so that the topmost and bottommost 

A Visual cortex 

Left eye 

Fig. 1. (A) Schematic of thc visual 
system after development of ocular 
dominance patches. The left lateral 
geniculatc nucleus (LGN) and visu- 
al cortex are pictured. Rctinal gan- 
plion cells from thc nt.0 c\'cs pro- 
ject to  separatc laminae of the 
LGN. The right (contralateral) eye 
projects to lamina A, and the left 
(ipsilateral) eye projects to  lamina 
A l .  Neurons from these nvo layers 
in mm project to  separate patchcs 
or smpcs within laver 4 of the 

visual cortex:~he cones is dcpicted in cross section, so that l a y s  1 
through 3 are above and laycrs 5 and 6 are belo\v the layer 4 projection 
region. Binocular rcgions are pictured at the borders bcnvcen patchcs in 
layer 4. (B) Ocular dnminancc patches in layer 4 of thc cat visual cortex. 
Phoromontagc was constructed from tangential sections taken through laycr 
4 of flattenecl cortex. Geniculocortical afferent terminals rcprcscnting the 
ipsilateral eye were labelcd and appear white. [From f ip rc  61) of (63, with 
permission of the -[olorrnial ~f ' .Ye~irosc ia tcc~  

SCIENCE, VOL. 245 



rows within each grid are regarded as neighbors, as are the leftmost 
and rightmost columns within each grid. Each LGN cell arborizes to 
contact a 7 x 7 square of cortical cells centered on its retinotopic 
position in the cortex. Thus there are 2 X (25 x 25) x (7  x 7) = 
61,250 synapses. Initially the strength of each synapse is assigned a 
value chosen randomly from a distribution uniform between 0.8 and 
1.2. We limit synaptic strengths to a range between 0 and 8.0 and 
impose constraints h i n g  the total synaptic strength supported by a 
cortical cell and limiting or fixing the total synaptic strength over an 
&rent arbor. We solve Eq. 1 beginning from the random initial 
conditions and subject to these limits and constraints (23). 

Figure 3 shows typical development under the model. Initially the 
cortex is binocular everywhere with approximately equal input from 
the two eyes, indicated by the color blue in Fig. 3A. Gradually, 
synapses driven by the right and left eyes segregate, indicated by red 
and green, respectively, dividing the cortical territory into ocular 
dominance patches. Biologically, the development of ocular domi- 
nance patches is accompanied by (i) development of monocular 
receptive fields of cortical neurons, (ii) topographic refinement of 
receptive fields, and (iii) the progressive confinement of individual 
LGN axon arbors to patches. We examine the set of LGN inputs to a 
cortical cell as representative of the cell's receptive field. Figure 3B 
shows the development of eight such sets. Initially, each cortical cell 
has synapses of uniform strength from both eyes throughout the 
field. The inputs from each eye become concentrated in the centers 
of each receptive field, producing topographic refinement. Subse- 
quently, the cells become monocular, that is, one eye gives strong 
input (red) and the other eye's input is lost (gray). Geniculate 
afferent arbors (Fig. 3C) also are initially uniform and then concen- 
trate their strength centrally. Subsequently, the two axonal arbors 
from the two eyes stemming from a single retinotopic position in 
the LGN segregate into complementary regions. These regions 
correspond to the cortical patches. 

These results are completely robust, because qualitatively identical 
results were obtained for every set of random initial conditions tried. 
Figure 4 shows the final cortical layer 4 patterns of ocular domi- 
nance resulting from four different random initial conditions. 
Although the precise locations of the patches vary from trial to trial, 
the qualitative and essential quantitative nature of the patches 
remains invariant. 

The precise afferent correlations, cortical interactions, and spread 
of afferent connections in kittens are not yet known. Furthermore, 
these functions will vary among species and under experimental 
perturbations. Therefore, it is important to determine how the 
developmental outcome depends on these functions. To do so, we 
simulated development with each of various correlation functions, 
cortical interaction functions, and arbor functions. In the results 
presented below, the initial conditions and all functions except the 
one being studied remain identical to those used in Fig. 3. These 
results confirm and supplement more general results obtained 
analytically, which will be discussed subsequently. 

We studied development with correlation functions varied in 
several systematic ways (Fig. 5A). First, we considered a broader or 
narrower Gaussian correlation function within each eye, with zero 
correlation between the two eyes (labeled "same-eye correlations" in 
Fig. 5A). As shown in Fig. 6A, the broader the range of correla- 
tions, the more purely monocular the resulting cortex. The cortex 
resulting from broader correlations resembles that of the monkey in 
having few binocular cells at the borders of patches (24), whereas 
that resulting from narrower correlations resembles that of the cat in 
having many binocular cells at the patch borders (25, 26). On the 
basis of these results and results obtained with correlation functions 
that are constant over some finite range, we conclude that correla- 
tion among nearest neighbors (adjacent grid points) is sufficient to 

give a periodic pattern of ocular dominance, whereas positive 
correlation over an arbor radius (k 3 grid points) seems sufficient to 
achieve a fully monocular cortical layer 4. 

Second, anticorrelations were added to such a function, either 
between afferents of the two different eyes (labeled "+opp-eye anti- 
corr") or between distantly spaced afferents within a single eye 
(labeled "+same-eye anticorr"). Addition of opposite-eye anticorre- 
lations can be taken to model strabismus or alternating monocular 
deprivation, treatments that increase the monocularity of cortex, or 
to reflect a possible feature of normal LGN circuitry (27). Addition 
of opposite-eye anticorrelations increases the monocularity of the 
simulated layer 4, as in experiments. In contrast, addition of 
anticorrelations within each eye decreases monocularity. If present 
within an arbor radius, such anticorrelation largely destroys monoc- 
ularity (same-eye anticorr 1.4, Fig. 6A). 

An alternative type of cortical interaction function that is purely 
excitatory is shown in Fig. 5B. With this interaction, one eye tends 
to dominate most or all of cortex. However, if the total synaptic 
strength supported by each arbor is fixed, the two eyes must remain 
equal in their total synaptic strength. The result is that a pattern of 
ocular dominance patches forms, with the width of left-eye plus 
right-eye patches slightly larger than before and approximately equal 
to an arbor diameter (Fig. 6B). Thus, periodic segregation of ocular 
dominance can occur in the absence of lateral inhibition. 

The arbor function was modified to decrease with distance over 
the 7 x 7 range of connection. This represents decreasing connec- 
tivity. The result (not shown) is to decrease the period of the ocular 
dominance patches and to reduce the sizes of the final receptive 
fields and arbors. 

The model thus reproduces many features of normal development 
for a wide range of correlations, cortical interactions, and arbors. 
The degree of monocularity of the final cortex depends on afferent 
correlations, whereas the widths of the patches can be altered by 
varying the intracortical interactions or the arbor function. 

We studied monocular deprivation, modeling it as a reduction in 
the amount of activity in the deprivied eye without alteration of the 
correlational structure of that activity. This corresponds to a reduc- 
tion in the amplitude of the correlation function within that eye. 
Disruption of the correlations would only increase the effects of 
deprivation. The result of deprivation, both in the model and 
experimentally, is that the normal eye takes over more than its 
normal share of the cortex (Fig. 7). There is a critical period for this 
effect in the model, as is seen biologically; that is, the effect of 
deprivation is progressively weaker for later onset. 

The critical period in the model has two causes. One cause is 
strictly dynamical, requiring neither changes in plasticity rules nor 
stabilization of synapses. Once the cortex has a sufficient degree of 
ocular dominance organization, the deprived eye's greater synaptic 
strength, within its dominance domains, more than compensates for 
its weaker activity. In these domains the deprived eye therefore 
remains stable against competition from the normal eye. However, 
cells that remain binocular remain susceptible to domination by the 
more active eye. Binocular cells will become resistant to such 
domination if individual synapses are stabilized (rendered no longer 
modifiable) when they reach a saturating strength. Hence, stabiliza- 
tion of saturated synapses is the second cause of the critical period in 
the model. The dynamical mechanism is sufficient to completely 
account for the critical period when, as in Fig. 7, cells in layer 4 
become Mly monocular in the absence of deprivation. If, as in the 
cat, many cells in layer 4 normally remain binocular, the dynamical 
mechanism can nonetheless contribute to the critical period by 
ensuring that regions that become sufficiently dominated by one eye 
are no longer subject to an ocular dominance shift. 

When cortical cells, but not afferents, are pharmacologically 
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inhibited during monocular deprivation, the experimental result is a 
shift in responsiveness in favor of the closed eye (28). To model this, 
we note that post in the Hebbian equation As = [(post)(pre) - (de- 
c a y ) ] A t  becomes equal to a negative constant, because all cortical 
cells are inhibited [see Eq. 3 in ( I S ) ] .  Then there is no coupling 
between synapses; each synapse decays in proportion to pre, which is 
a measure of its presynaptic activity. This "punishes" the more active 
synapses and, given constraints to preserve total synaptic strength 
over a cell, favors the afferents from the less active eye as in 
experiment. 

Analysis 
The simulations demonstrate that both normal and experimental- 

ly perturbed development of ocular dominance columns are repro- 
duced by the model. These results can largely be explained by the 
following intuitive analysis. First, consider geniculate synapses onto 
a single cortical cell in the absence of interactions with synapses on 
other cortical cells. Each synapse then grows in proportion to the 
sum of its correlations with all other synapses on the cell, weighted 
by the strengths of those synapses. Receptive fields refine topo- 
graphically, because synapses representing the center of the receptive 
field are strongly correlated with larger numbers of synapses than are 
synapses representing the periphery. This causes the central synapses 
to grow more rapidly than the peripheral ones. Similarly, receptive 
fields become monocular, because synapses serving each eye are 
better correlated with other synapses serving the same eye. This 
causes synapses of the eye with an initial advantage in overall 
synaptic strength to grow faster. Because this initial advantage is 
very slight compared to the advantage of central over peripheral 
synapses, monocularity develops more slowly than receptive field 
refinement. 

Broader correlations within each eye enhance the growth of a 
monocular pattern of inputs compared to that of a binocular pattern 
and thus enhance monocularity. Broader correlations also reduce the 
advantage of central synapses over peripheral ones. Anticorrelations 
between the two eyes enhance the difference in growth rate between 
synapses of the two eyes and hence also enhance development of 
monocularity. Same-eye anticorrelations within an arbor radius 
cause a synapse's growth to be reduced by the presence of synapses 
of the same eye in an adjacent part of the receptive field. This causes 
binocular cells to develop, because a binocular pattern of inputs then 
grows more quickly than a monocular one. Thus, the development 
of monocularity and of receptive field refinement can be understood 
from the correlation functions. 

Now consider the effects of intracortical interactions on the 
growth of a monocular set of inputs to one cortical cell. The set's 
growth is most enhanced if inputs to surrounding cortical cells fire 
in correlation over distances at which intracortical interactions are 
excitatory, and fire without correlation over distances at which 
intracortical interactions are inhibitory. Hence, the monocular 
inputs grow fastest if surrounded by a "bull's eye" of inputs from the 
same eye at excitatory distances and of inputs from the opposite eye 
at inhibitory distances. Although each monocularly driven cortical 
cell cannot be at the center of its own bull's eye, a compromise can 
be reached through a periodic organization such as patches or 
stripes. The period of this organization is like that of the bull's eye 
and is determined by the intracortical interactions. 

To gain a more precise understanding of the roles played by 
afferent correlations, arbors, and cortical interactions in causing 
ocular dominance segregation and in determining patch widths, we 
analyze the equations mathematically. To do so, we assume that the 
two eyes are equivalent in their activities and their initial projections. 

Thus we ignore the effects of slight (5 to 10%) overall bias toward 
the contralateral eye in the cat (26) and we restrict our analysis to 
exclude monocular de rivation. Equivalence of the eyes implies 
CLL = cRR, cLR = CL. Subtracting Eq. 3 for sL from Eq. 3 for 
sR yields an equation for the time evolution of the difference, 
sD e sR - sL, between the synaptic strengths of the two eyes at a 
given location in the cortex: 

Here (?' r cLL - CLR. The function c D ( a  - P) measures the 
extent to which afferents at geniculate locations cw and P are more 
correlated if they are from the same eye than if they are from 
opposite eyes. 

Initially the difference in synaptic strengths, sD, is very close to 
zero. We examine the stability of the state sD r 0 by examining 
whether a small initial perturbation of this state will grow or decay. 
Growth will result in a pattern of ocular dominance, whereas decay 
will yield a state of complete equality of the two eyes. If sD - 0 is 
unstable, many geniculocortical patterns of sD may grow from the 
initial perturbation. The fastest growing such pattern will quickly 
dominate. Its characteristic periodicity will determine the width of 
the patches or stripes. The initial pattern-forming instability occurs 
when sD is small, so only linear terms in an equation for sD are 
relevant to this analysis. Thus the results will be robust to nonlinear- 
ities such as those inherent in biological development (29). 

The Characteristic Patterns of Ocular 
Dominance 

We refer to the patterns that grow exponentially, from a perturba- 
tion of sDz 0, as characteristic patterns of ocular dominance. 
Technically, these are the eigenfunctions of the operator in Eq. 2. 

Visual 
cortex 

x+- 

- -I 
x '  

LGN 

a - a') --+ 

Fig. 2. Notation. Merents from left-eye (white) and right-eye (black) layers 
of the LGN innervate layer 4 of the visual cortex. a and a' label positions in 
the LGN, and x and xi label the retinotopically corresponding points in the 
cortex; y labels an additional position in the cortex. The afferent correlation 
functions cLL (correlation in activity between two left-eye aerents) and 
CLR (correlation in activity between a left-eye and a right-eye afferent) are 
functions of separation across the LGN. The arbor function A measures 
anatomical connectivity (number of synapses) from a geniculate point to a 
cortical point, as a function of the retinotopic distance between them. The 
cortical interaction function I depends on a distance across cortex. The left- 
eye and right-eye synaptic strengths, SL and SR, from a geniculate location to 
a cortical location, depend upon both locations. 
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Each characteristic pattern of ocular dominance is of a form similar 
to sD(x,a) = cos k x R(x - a)  (30). Figure 8 shows the fastcst 
growing such pattern for the functions used in the simulation of 
Fig. 3. The factor R(x - a)  represents a characteristic receptive 
field. This is the pattern of differences between left- and right-eye 
synaptic samgths in the input to a cortical cdl. Where it is positive 
one eye is dominant, and whcrc it is negative the opposite eye is 
dominant. A monocular characteristic receptive field, like that of 
Fig. 8, is one dominated by a single eye throughout, so that R can be 
taken positive everywhere. Characteristic receptive fields n d  not be 
m o d  they may show division of the receptive field into 
domains dominated by opposite eyes. 
The factor cos k .x  represults an d t i o n  in the degree of 

dominance of receptive fields across the cortcx. In Fig. 8, the 
lefrmost receptive field occurs at a cortical point x where cos 
k - x  = 1, so the right eye is dominant. The central receptive field 
occurs at a point x' whcrc cos k . x' = 0, so the two eyes arc equal. 
The righanost receptive field occurs at a point x" whcrc cos 
k x" = - 1, so the kft eye is dominant. In the case of monocular 
chamxeristic fields, it is this d t i o n ,  betwccn ocular dominance 
by one eye and by the other, that causes organization of monocular 
cortical cells into ocular dominance patches. We &r to the spatial 
period or wavelength of this oscillation as the wavelength of the 
charaaaistic pattern. This wavelength corresponds to the width of 
left-eye patch plus nght-eye patch, which we refer to simply as the 
patch width. 

A B 
T-O 

synaptic 

T* 

- -.- 

C T* 

L 

R 

rnax T-O 

Flg. 3. Typical development of ocular dominance patches (A), cortical cell 

I 
receptive fields (B), and geniculocortical afferent arbors (C). (A) Ocular 
dominance of cortex at timesteps T = 0, 10, 20, 30, 40. 80. Each pixel 

I I represents a single cortical cell. The colors represent ocular dominance of 
each cell, that is, the dfference between the total (summed) strength of right- 
eve and of left-eye geniculate inputs to the cell. Deepest red indicates 

T-30 complete dominance b!. the right eye, deepest green indcates complete 
dominance by the left eye, and blue represents c g h y  of the two eyes. The 

L . . . . . . . . ocular dominance varies linearly along dK color at right. Final (timestep 
200) cortex can be seen in the upper left of Fig. 6A. (B) Receptive fields 

" .. . . . . . . (ignoring the contribution of d m m d  conncuiom) of eight cortical 
cells at timesteps 0, 30, 60, and 200. Each vertical pair of colored squares 

T* shows strengths of the 49 left-eye and 49 right-eye synapses onto a cortical 
cell. The color bar varies h e a d y  in synaptic strength from 0 (gray for 0; 

L .. . . . . . . 0 purple just above zero) to the rnaximurn stragth present at the given 
timestep (red). These maximum strengths arc: hmtcp  0, 1.2; timestep 30, 
3.5; and timesteps 60 and 200, 8.0. C o M  c d s  shown are the eight .. . . . . . lefmost cells in the bottom rowr of the cortices of (A). Receptive fields first 
reline in size, then become monocular with synaptic strength confined to 

T-200 left- or right-eye inputs. (C) A&-t arbors at timcsteps 0,30,60, and 200. 
Conventions as in (B), except that srrcngths of synapses made by eight left- 
eye and eight right-eye LGN - arc shoum. The derents shown are 

the eight lefrmost cells in the bottom row of the geniculate grids. Note that arbors first refine, then break up into patches confined to cornplementay ocular 
dominance strips. This development uscd the following functions: The correlation functions have same-eye correlations only, with Gaussian parameter 2.8 
(Fig. 5A). The intracomical interactions are mixed excitatory-inhibitor). (Fig. 5B). The arbor function is taken to be 1 over a 7 x 7 arbor, 0 elsewhere. 
Conventions for all simulations: Illustrations of cortex show 40 x 40 grids. although the model cortex is 25 x 25. Periodic boundaq conditions were used, 
so this dspla!. shows continuity of the pattern across what would otherwise appear to be a boundary. Simulations in most cases were run through timestep (it- 
eration) 200; the cortex was mature by timestep 60 to 100, and ver). few or no changes were visible in the cortical maps after timestep 150. For the range of 
functions considered in this article, all but 2,500 to 4,000 of the 61,250 synapses had limiting values of 8.0 or 0.0 at timestep 20 
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+ O w y e  
anlcorr 
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Fig. 4. Cortex, timestep 100, for four different random initial conditions. 
Cortical interaction, arbor, and correlation functions and conventions as in 
Fig. 3A. Results are qualititatively and quantitatively similar for all initial 
conditions we have aied, that is, the two-dimensional Fourier transforms 
yield similar power spectra. 

As Fig. 8 indicates, the characteristic receptive fields have associat- 
ed with them characteristic afferent arbors, given by multiplying the 
receptive field by the oscillation in ocular dominance. In other 
words, when characteristic receptive fields are monocular, so that 
ocular dominance patches arise, the afferent arbors will only inner- 
vate the patches fiom the relevant eye. Thus, characteristic arbors 
show patches with a periodicity equal to that of the cortical 
oscillation, as is seen both in the simulations and in actual biological 
development. 

Determining the Monocularity and 
Periodicity of Cortex 

If the fastest growing characteristic receptive field is monocular, 
then a pattern of ocular dominance patches will form. The patch 
width is given by the wavelength of the fastest growing pattern. 
Thus, our problem can be reduced to two questions. (i) Under what 
circumstances will the fastest growing field be monocular? (ii) If it is 
monocular. what determines its wavelenmh? 

Solution.of the equation in simple limikg cases suggests that the 
correlation function cD determines the wavelength of oscillations of 
ocular dominance across a receptive field, whereas the cortical 
interaction function I determines the wavelength of oscillations 
across an arbor. In these limits, each wavelength is given by the 
dominant wavelength in the corresponding function. This is the 
wavelength correspondmg to the peak of that function's Fourier 
transform. The oscillation of ocular dominance across the cortex is 
the superposition of these two oscillations. Thus, if cD does not 
oscillate within an arbor radius, the fastest growing receptive field 
does not oscillate and hence is monocular. The wavelength of the 
fastest growing pattern is then given by the dominant wavelength in 
I. Each limiting case leads to an analytic expression for the growth 
rate of each cortical wavelength of ocular dominance in terms of 
arbors, correlations, and comcal interactions (12, 13). 

Direct computation of the characteristic patterns of ocular domi- 
nance for a variety of parameters confirms these basic results (31). 
Figure 9A shows the growth rates of characteristic patterns as a 

Fig. 5. Correlation functions (A) B 
and comcal interaction functions 
(B) used in simulations and compu- Excltatory/inhlbltory 
tations. Horizontal axes are in units 
of grid intervals. ALI functions are 
ckdarly symmetric in two dimen- 
sions. (A) Correlation functions. o 

tions" represent 'tive correla- 
tions, as illJbeen f i r -  

Functions labeled"same-eye corn&- 0 1 2  3 4 5 6 7 8 lo 

ents within each eye, with zero cor- 1 
Excitatory 

relation between the eyes. The func- 
tions illusttated are Gaussians c-~ '@,  
with parameters ( = 2.8 and 1.4, 
respectively. Results do not depend 
on the Gaussian tails. Results with ( 0 

timaion is set to zero outside a 

n 
=2.8arewtuallyidenticalifthc O 1 2  3 4 5 6 7 8 9 1 0  

square of +3 grid intervals, that is, outside an arbor radius. Results with ( = 
1.4 change only slightly if the function is set to zero outside a square of + 1 
gnd interval. Functions labeled "+oppeyc anticomn indude anticorrelations 
between afFerents from the two di&rcnt eycs, illustrated by the curve below 
the axk, in addition to the positive correlations within each eye as in the 
same-eye correlations case. Functions labeled "+same-eye anticom" have 
anticorrelations added within each eye, in addition to the positive correla- 
tions within each eye, while correlations between the two eyes remain zero. 
Both opposite-eye and same-eye anticorrelations are given by the Gaussian 
-(ID) e-"2N3@ with ( the same as for the same-eye undations. (8) Cortical 
interaction functi e mixed "cxatatory-inhibitory" function is given by 
e-*W - (ID) e-rath ( = 0.933. It was aplidtly set to zero outside a 
square of 27 grid intervals. Results are identical if the cutoff is +5 grid 
intervals, and only small changes are  sea^ if the cutoff is +3 gnd intervals. 
The "cxatatory" function consists of the exatatory Gaussian alone, explicitly 
set to zero outside a square of 22 grid intervals. Results are indistinguishable 
with a cutoff of + 1 grid interval. 

function of their wavelength, for the functions used in Fig. 6A. Gray 
level indicates the monocularity of the corresponding receptive 
fields, where lightest is M y  monocular and darkest is M y  binocu- 
lar. The fastest growing field is monocular whenever cD(a  - P) is 
locally positive, that is, positive at least between nearest neighbors 
on a grid, and nonnegative within an arbor radius. Broader correla- 
tions or opposite-eye anticorrelations increase the monocularity of 
fields and the advantage in growth rate of monocular over binocular 
fields. Same-eye anticorrelations have the opposite effects. Their 
presence within an arbor radius (same-eye anticorr 1.4) leads 
binocular fields to grow fastest. In d cases, the wavelength of the 
fastest growing monocular pattern is detemined by the peak of the 
Fourier transform of the comcal interaction function I(x - y) (light 
lines in Fig. 9A) in dose accordance with predictions fiom limiting 
cases (heavy lines in Fig. 9A). 

There is an exception if the wavelength of a monocular pattern is 
much larger than an arbor diameter. Then in order for the pattern to 
grow, entire arbors centered within a dominance patch must either 
increase in strength or decrease in strength. If there is a constraint 
limiting the total synaptic strength supported by a single arbor, 
arbors will be constrained to break up, so that a gain in synaptic 
strength in one part of the arbor is offset by a loss in another part. 
Such a constraint can limit the patch width to approximately one 
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arbor diameter (32). Figure 9B shows the growth rates of patterns, 
in the presence and absence of these constraints, for the two 
intracortical interactions of Fig. 5B. The excitatory cortical interac- 
tion normally selects a long wavelength but selects a wavelength of 
about an arbor diameter in the presence of consmints. The excitato- 
ry-inhibitory cortical interaction normally selects a smaller wave- 
length, and development under this interaction is not - by 
these constraints. 

To summarize, suppose that the correlation functions are such 
that CD is locally positive and nonnegative within an arbor radius, so 
that cells tend toward monodarity. Then the patch width is 
dcmmined by the dominant wavelength in the cortical interaction 
function Z(x - y). I f  the dominant wavelength is no larger than an 
arbor diameter, the patch width is equal to this wavelength. If it is 
largerthananarbordiamacrandthetotalaffmntarborsynaptic 
strength is diciently constrained, then the patch width is equal to 
the arbor diameter. The wavelengths of cortical ocular dominance in 
simulations, as dammined by the twodhensional Fourier trans- 
h of the patterns, develop in accordance with these rules (13). 

Many Biolo 'cal Mechanisms Can Be 
Modeled in %us Framework 

The results we have presented are not unique to a Hebbian 
synapse mechanism. A variety of other correlation-based mecha- 

nisms can be expressed in terms of an e&tive arbor function, an 
mt correlation function, and a cortical interaction function. 
T h d r e ,  they can be W e d  within our mathematical framework, 
as we shall now show for simplified versions of three alternative 
mechamm. 
F i  suppose that cortical cells release diffusible or actively 

transported substances in proportion to their activity. Suppose that 
these substances are t h  up by synapses in proportion to synaptic 
activity, as would be expead if uptake occurs in conjunction with 
vesicle reuprake, and that they m e  synaptic strength. Let 
E(x - z)  describe an e&tive concentration of the substance at 
cortical site x resulting h m  release of a unit amount of the 
substance at cortical site x. Then, if we assume a plasticity rule for 
individual synapses of the fbrm As = [ (cm)(pre)  - &uy]At, where 
conr is a linear function of the substance's concentration, and pre is 
again a function of pmsynaptic activity, we obtain Eq. 1. In this case 
the intracomcal interaction Z(x - y)  = 8 E(x - z )H(x  - y), where 
H ( z  - y) is the intracomcal interaction of the Hebbian case arising 
from intracortical synaptic interactions (33). 

Second, we suppose a plasticity rule as just described, except that 
ahxmts rather than cortical cells release the modilication factor in 
proportion to the mength of their activity. This leads to Eq. 1, with 
the intracortical interaction Z(x - y) = E(x - y). In this case the 
activity of cortical cells has no idhence on plasticity (34). 
Third, suppose that in addition to modifiable synapses, we 

consider chemospific adhcsion between afkent  and cortical cells. 
Such "retinotopic" adhcsion has been considered important in many 
models of retinotectal connections (19,35). Suppose the degree of 
chemospeu6c adhesion between the'afFerent from a and the cortical 
cdl at x depends only on x - a. In this case, the retinotopic 
adhesion can be represented by a factor f ( x  - a) multiplying some 
of  the terms on the right side of Eq. 1. This is formally the role 
played by the arbor function. Hence, by letting A(x - a) represent 
the produa of the chemospea6c adhesion times the arbor strength, 
we can take account of retinotopic adhesion. 

Discussion 
We have formulated and analyzed a class of models of cortical 

ocular dominance development. Thcy prcdia the development of a 
periodic pattern of ocular dominance like that seen experimentally. 
The organization of periodicity uires three conditions: 

1) The correlation function 3 = - CLR must favor 
formation of monocular cells, by being positive locally and not 
signilicantly negative within an arbor radius. 

2 )  There must be inmacortical interactions, which should be 
locally excitatory (36). 

3) If the intracortical interactions are purely excitatory, there 
must be constraints on the total synaptic strength over an arbor. 
Given these conditions, a patch width of left-eye plus right-eye 
ocular dominance patches is dacrmimd. It corresponds to the 
wavel- at which the Fourier transform of  Z(x) is maximized, 
provided that wavelength is less than an arbor diameter. Otherwise, 
if arbor constraints exist, the patch width will be approximately an 
arbor diameter. These results are very robust, being independent of 
initial conditions, nonlinearities, and the detailed form of the three 
functions. 

These results are consistent with the measured sizcs of ocular 
dominance patches, correlations, comcal interactions, and arbors in 
the adult cat (5-9). Thc observed patch width of about 850 pm can 
be produced by a variety of intracomcal interactions ranging h m  
aatation over a radius of 50 pm or less surrounded by weak 
inhibition to exatation over 200 pm or more surrounded by strong 
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Flg. 7. Results of monocular deprivation. Results at timestep 200 are shown 
for initiation of monocular de~rivation at five different times [timeste~ 0.10. 
20,30, and 40). The sixth p&el shows, for comparison, timkstep 260 ih 
identical run but without deprivation. Arbor, correlation, and cortical 
interaction functions, initial conditions, and conventions as in Fig. 3A except 
as follows. Monocular deprivation is modeled as 30% decrease of amplitude 
of correlation function within deprived eye. Constraints on total synaptic 
strength over afferent arbors allow each arbor to decrease or increase its total 
synaptic strength by up to 50%. Without some constraint limiting changes 
in total synaptic strength over an arbor, one eye would completely take over 
cortex with early onset of deprivation. Although the choices of activity and 
constraint levels are arbitrary, the qualitative results are robust: with early 
onset of deprivation, the open eye takes over cortex to the limits imposed by 
constraints; with later onset, deprivation has progressively less effect. 

inhibition. Periodic longer range corticocortical connections, if 
present in the young animal, could enhance the growth of patterns 
with a similar period. Alternatively, a variety of arbor sizes, ranging 
from flat arbors of diameter about 850 pm to larger tapering arbors, 
would yield 850-pm patch widths by an arbor-driven mechanism. 
Such a mechanism is consistent with X-cell, though not with Y-cell, 
initial arbor sizes. 

Many other observed features of biological development emerge 
from the mechanisms studied. These include refinement of receptive 
fields and development of monocularity, refinement of arbors and 
their confinement to patches, monocular deprivation plasticity with 
a critical period, and an increase in monocularity resulting from 
treatments such as artificial strabismus or alternating monocular 
deprivation that reduce correlations or produce anticorrelations 
between activity in the two eyes. 

Many of these developmental details are less robust than the 

development and organization of periodicity. The robust elements 
of these results involve relative rates of growth and depend on 
interactions between synapses. Periodicity develops because one 
eye's synapses grow faster than the other's within each ocular 
dominance patch. Similarly, central synapses in a receptive field 
grow faster than peripheral ones. The less robust elements of the 
results involve absolute rates of growth and depend on the range of 
total synaptic strength allowed for each synapse and for the summed 
synaptic strength over each cell. For example, when a periodic 
difference in the strengths of the two eyes develops, the synapses of 
the weaker eye in a patch may decrease in strength or they may 
simply grow more slowly than the dominant eye's synapses. Only in 
the fbrmer case will individual cells become monocular. This can 
occur if there is a constraint limiting the total synaptic strength over 
a cortical cell and if individual synapses can grow sufticiently so that 
a single eye's synapses can saturate a cortical cell. In the absence of 
such constraints, one may see periodicity in each eye's innervation 
without seeing organization of monocular patches. Such a result 
may be seen in some New World monkeys (37). 

Limitations on the range of synaptic strengths can be achieved by 
many means (16, 17, 19-22, 38). Because little is known about the 
actual mechanisms involved biologically, we prefer to use simple 
mechanisms, which can be analyzed more easily, for modeling 
purposes (39). 

Other Models 
Some earlier models of ocular dominance (3) showed that patches 

could form from simple mechanisms like those studied here. Others 
(20, 40) focused on the development of monocularity in isolated 
cells, as well as on dynamical means of limiting synaptic strengths. 
Legendy (18) studied a Hebb-like model and concluded that 
intracortical synaptic interactions will determine the distances over 
which cortical cells are similar in their response properties. 

Swindale (41) formulated a model in terms of an effective 
interaction across cortex between right-eye and left-eye synapses, 
which produced stripes like those obtained here. The precise nature 
of this interaction was not specified. In the limit in which the 
correlation function cD is constant or slowly varying, the influence 
of one synapse on another depends only on their cortical locations 
and their eyes of origin, and not on their retinotopic locations. Then 
the present model can be reduced mathematically to Swindale's (12, 
13). We can then express his effective interaction in terms of arbors, 
cortical interactions, and afferent correlations. 

Flg. 8. Illustration of typical monocular characteristic pattern of ocular 
dominance. The characteristic receptive field, and associated characteristic 
arbor, at three cortical points are illustrated. The sinusoid indicates the 
oscillation of ocular dominance across cortex associated with a characteristic 
pattern. Color codes .Say the difference between the synaptic strengths of the 
two eyes, varying from dominance by one eye to dominance by the other. At 
the cortical point corresponding to the leftmost receptive field, cortical cell 
inputs are dominated by the right eye. Merents with the corresponding 
retinotopic position therefore project arbors such that the right eye aKerents 
prcfcrentially project to the central patch of the arbor (cortical right-eye 
stripe) and the left-eye afferents preferentially project to the peripheral 
patches (left-eye cortical stripe). Similarly, the central receptive field is at the 
border between left-eye and right-eye stripes, where the two eyes have equal 
innervation, and the righunost receptive field is in the center of a left-eye 
stripe. The pattern shown here is one of the set (identical except for rotations 
of the direction of the oscillation) of fastest growing characteristic patterns 
for the functions used in Fig. 3. The oscillation is shown correctly scaled to 
the arbor and receptive field size. The oscillation projects in a direction 
perpendicular to the stripes across the arbors rather than horizontally as 
depicted. 
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Linsker (21) developed a model of plasticity very much like ours, that model also extend over several hundred micrometers. Physio- 
which he used to study the development of orientation selectivity in logically, no such structures exist on such a large scale (44). Hence, 
visual cortex. It differs from ouis in allowing modifiable input our analysis would rule out their model without sigdicant modjfi- 
synapses to be excitatory or inhibitory, in using Gaussian arbors, in cation. 
using constraints that ultimately fix the summed excitatory and the These points will be discussed elsewhere at greater length (13, 14, 
summed inhibitory input to a cortical cell, and in studying input 45). 
from only a single eye. Our eigenfunction analysis can provide 
insight into his results. Thus, our equation for sD can alternatively 
be regarded as an equation fbr the skength of synapses, of one eye, 
that can be positive or negative. "Center-surround" cells develop in 
his model, because the fastest growing eigenfunctions have receptive 
fields that concentrate their strength centrally. When combined with 
constraints that force 35% offinal synapses to be negative (42), this 
can lead to a center of positive synapses with a surround of negative 
synapses. Therdbre, the development of "center-surround" cells 
and the corresponding development of anticorrelations in the 
afferent correlation function depend on the negative synapses and 
the constraints. Given an afferent correlation function with strong 
anticorrelations within an arbor radius, oriented cells can develop. 
This is related to the fact that the fastest growing eigenfunctions for 
such a case (same-eye anticorr 1.4) have receptive fields that are 
striped. 

Pearson, Finkel, and Edelman (43) developed a similar, but more 
complex, model to study somatosensory development and plasticity. 
By examining this model in terms of arbors, correlations, and 
cortical interactions, we conclude that the periodicity that develops 
in it should scale with the cortical interactions. If these interactions 
extend over several hundred micrometers, the "groups" found in 

Experimental Implications 
Our model can serve as a guide for experiment. We have found 

that local correlations over an arbor radius determine the develop 
ment of monocuhity, whereas cortical interactions determine the 
width of ocular dominance patches up to a possible limit set by 
arbor diameters. Measurement of initial correlation, cortical interac- 
tion, and arbor functions in various brain regions or species can test 
whether a propased developmental mechanism is consistent with 
the patch width that emerges in each case. For example, area 18 of 
the cat has patches 1.5 to 2 times wider than those in area 17; 
arbors, and perhaps correlations, are also more widespread (5, 6, 
46). If a Hebbian mechanism is responsible, we predict that kittens 
will show either a difference between the two regions in intracortical 
connectivities suflicient to account for the difference in patch width 
or predominantly excitatory intracortical connections in both re- 
gions resulting in arbor-limited patch widths. 

Perturbation of the d m  functions in an experimental preparation 
&re the onset of segregation, and comparison of the resulting 
patch width to the unperturbed case, can also test mechanisms. 

Flg. 9. Computed growth rate (vertical axes) of characmistic tterns of Sarne-eye +OPPQY~ +Sarne-eye 
ocular dominance, as a W o n  of inverse wavelength of pattern A correlations anticorr anticorr 
(horizontal axes), for varying choice of (A) correlation and (B) cortical 
interaction functions. Grayscale indicates maximum dominance of any 
c h a r a c t d c  pattern with the given wave number and growth rate. Domi- 
nance is a measure of the degree of monocularity of the pattern's characteris- 
tic receptive field, on a scale from 0 for complete binocularity to 1 for perfect 2.8 
monocularity. Number beside the vertical axis indicates the maximum 
growth rate of any pattern. The horizontal axis represents wave numbcr, the 
wavelength in units of grid intervals is 25 divided by the wave number. The 
6rst bin on the horizontal axis represents wave numbers 0 to 0.23; 
subsequent bins represent increments of 0.4 in wave number, so that the 
second bin represents wave numbers 0.23 to 0.63, and so forth. Bins 
representing wave numbers for which there can be no characteristic pattern, 
becaux of the nature of our grid, are indicated with a white mark on the 
horizontal axis; for each dominance, these bins are assigned a growth rate 
that is the average of that of the two adjoining bins. (A) The six correlation 
functions of Fig. 5k Arbor and cortical umraction functions are as in Fig. 3; 
there are no constraints on total synaptic strength over an arbor. The heavy 
lines show an analytic prediction for growth rate of each cortical wavelength 
of ocular dominance in terms of the cortical interaction and arbor functions B No constraints Constraints 
and the correlation functions in each case. This prediction is normalized to 
the m u m  growth ratc of characteristic patterns with dominance 20.5. 
The hght lines show the Fourier mambrm of the cortical interaction 
function, identically normalized. We derived the analyt~c expression by X 
assuming that correlations change slowly over an arbor diameter. However, C 
it accurately predicts the growth of monocular patterns over a wide range of I 
correlaaon functions. At its peak, which is the dominant wavelength in the T 
cortical interaction, the degree of m o n d a r i t y  and the growth ratc of 
monocular patterns are enhanced. (B) The two cortical interaction functions 
of Fig. 5B. Arbor and correlation functions as in Fig. 3. Two cases are 
shown: with constraints that fix the total synaptic strength over each &rent 
arbor and without any c o n s m t s  on that total synaptic m g t h .  Black lines X 
indicate predictions of the analytic expression obtained as described m (A). C 
The constraints suppress the growth of monocular pattems with wavelength 
longer than an arbor diameter. Constraints have a profound effect on the 
outcome when the excitatory cortical interaction funcaon is used. They select N 0-0 1 

a wavelength of an arbor diameter: the maximum growth rate in the figure H 

for this case occurs at wavelengths of 7.3 to 8.3 grid intervals. Consmints 
have little effect on the outcome when the mixed excitatory-inhibitory shorter than an arbor diamaa. In this case, the maximum growth rate 
interaction function is used. This function normally selects a wavelength occurs at wavelengths of 5.4 to 5.9 grid intervals. 
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Under the hypothesis that a Hebbian mechanism underlies ocular 
dominance plasticity, periodic segregation is driven by intracortical 
synaptic connections. Local infusion of muscimol, a y-aminobutyric 
acid (GABA) agonist, which inhibits postsynaptic cells, will elimi- 
nate activation of such connections. Therefore, we would predict 
that no pattern of ocular dominance organization would be seen in 
the muscimol-infused region, although individual cells might be- 
come monocular. Alternatively, intracortical inhibitory connections 
may be blocked by local infusion of bicuculline, a GABA antagonist. 
An increase in patch width would be consistent with a Hebbian 
mechanism. with width determined bv the intracortical interactions. 
If patch width were unchanged by bicuculline, one would conclude 
either that the period was normally arbor-limited (which could be 
tested by measuring whether intracortical interactions were predom- 
inantly excitatory during initial column development) or that a non- 
Hebbian mechanism was involved. 

The model ~redicts that broader correlations within each eve 
would increase monocularity of layer 4 for mechanisms of the type 
we study. This could be tested by inducing broader correlations 
through pharmacological interventions in the retinas. One could 
also measure whether retinal correlations are broadened in animals 
deprived of pattern vision. Such animals have increased numbers of 
monocular cortical neurons (47) .  It would also be of interest to 
determine whether geniculate correlations are broader, relative to a 
geniculocortical arbor radius, in the developing monkey than in the 
kitten, because the monkey develops a more fully monocular layer 4 
(24, 26). 

Conclusion 
A variety of biological mechanisms will robustly cause develop- 

ment of a periodic structure of ocular dominance. The patch width 
can be predicted from a few biological functions that are, in 
principle, measurable. Given biologically plausible conditions to 
limit the synaptic strengths, these mechanisms also result in reline- 
ment and development of monocularity in individual receptive 
fields, the confinement of arbors to patches, and monocular depriva- 
tion plasticity including a critical period. These results lend plausibil- 
ity to the notion that simple mechanisms of activity-dependent 
competition may underlie many of the phenomena seen in the 
developing visual nervous system. 

- - -  
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