Cloning and Sequencing of Porcine LH-hCG Receptor cDNA: Variants Lacking Transmembrane Domain

Hugues Loosfelt, Micheline Misrahi, Michel Atger, Roland Salesse, Mai Tu Vu Hai-Luu Thi, André Jolivet, Anne Guiochon-Mantel, Sokhavuth Sar, Bahija Jallal, Jean Garnier, Edwin Milgrom^{*}

Complementary DNA clones, encoding the LH-hCG (luteinizing hormone-human choriogonadotropic hormone) receptor were isolated by screening a λ gt11 library with monoclonal antibodies. The primary structure of the protein was deduced from the DNA sequence analysis; the protein contains 696 amino acids with a putative signal peptide of 27 amino acids. Hydropathy analysis suggests the existence of seven transmembrane domains that show homology with the corresponding regions of other G protein-coupled receptors. Three other types of clones corresponding to shorter proteins were observed, in which the putative transmembrane domain was absent. These probably arose through alternative splicing. RNA blot analysis showed similar patterns in testis and ovary with a major RNA of 4700 nucleotides and several minor species. The messenger RNA was expressed in COS-7 cells, yielding a protein that bound hCG with the same affinity as the testicular receptor.

ITUITARY GLYCOPROTEINS (LUTEINizing hormone, LH; follicle-stimulating hormone, FSH; and thyroidstimulating hormone, TSH) form a family of closely related hormones. The structure and function of their receptors remain poorly understood (1). We have purified human choriogonadotropic (hCG)-receptor complexes from porcine testis on an Affi-Gel-10 immunomatrix to which a monoclonal antibody to β hCG had been coupled (2). Immunization of a mouse led to the preparation, and characterization of monoclonal antibodies to the receptor whose specificity was established by immunoprecipitation of hCG-receptor complexes, immunoblot, and purification of receptor by immunoaffinity chromatography (3).

Polyadenylated RNA's were isolated from porcine testes and used to prepare complementary DNA (cDNA) libraries (Fig. 1) in λ gt11 and λ gt10 vectors. Screening of the former with monoclonal antibodies to the LH-hCG receptor led to the isolation of three immunoreactive clones whose inserts were thereafter used to isolate 80 crosshybridizing clones from the λ gt10 library. We sequenced six clones and deduced the primary structure of the complete protein (Figs. 1 and 2). The first methionine in the sequence matches the Kozak consensus (4). There is no inframe stop codon upstream, but the longest of 50 separate cDNA clones had their 5'ends in the same region; primer extension experiments showed that we had cloned the complete messenger RNA (mRNA). The first methionine in the sequence was thus considered the initiator condon (Fig. 2). This was followed by a 27– amino acid sequence having the characteristics of a signal peptide with a cleavage site as

Fig. 1. Primary structure of the porcine LH-hCG receptor as deduced from cloned cDNA's. The full-length receptor (pLHRA) and shorter variants (pLHRB, pLHRC, and pLHRD) are indicated. The open reading frames are marked with squares (the short peptides observed after frameshift in two variants are shown as starred boxes). The divergence at amino acid 316 is shown by an arrow. The hydropathic profile (19) of the full-length protein is shown on top (the hydrophobic regions are represented by negative values). The cDNA's (from a Agt10 library) used in the sequencing experiments are shown under each protein form and the cDNA's initially isolated from the $\lambda gt11$ library are also indicated (pLHR1-3) (20). In each case an identical structure was observed in other clones by DNA blot analysis. As four different patterns corresponding probably to different splice junctions were detected in

defined by Von Heijne (5). Hydropathy analysis (Fig. 1) and alignment with rhodopsin (6) (Fig. 3) suggested a possible model for the organization of the protein. A putative extracellular domain of 333 amino acids precedes a region of 266 amino acids that displays seven possible transmembrane segments. There is a 70-amino acid COOH-terminal intracellular domain. The mature protein should consist of 669 amino acids (75,025 daltons); it contains a high proportion of basic amino acids (isoelectric point, 8.5), which are localized predominantly in the COOH-terminal region. Six potential glycosylation sites (7) are found in the putative extracellular domain. Clusters of cysteines are present in the NH2-terminal part of the protein at the junction between the putative extracellular and transmembrane domains and in the COOH-terminal region. In the COOH-terminal region there are three consensus sites for protein kinase C phosphorylation (Fig. 2) (8).

Homology searches in sequence banks (NBRF and Genpro) revealed similarities with other G protein-coupled receptors within the putative transmembrane regions (Fig. 3). The overall homology in this region is 23 percent with bovine rhodopsin (6) and 21 percent with human β 1 and β 2 adrenergic receptors (9). However, the ho-

H. Loosfelt, M. Misrahi, M. Atger, M. T. Vu Hai-Luu Thi, A. Jolivet, A. Guiochon-Mantel, S. Sar, E. Milgrom, Institut National de la Santé et de la Recherche Médicale Unité 135, Hormones et Reproduction, Hôpital de Biećtre, 94270 Kremlin Bicetre, France. R. Salesse, B. Jallal, J. Garnier, Institut National de la Recherche Agronomique, Unité d'Ingénierie des Protéines, Biotechnologies, 78350 Jouy-en-Josas, France.

^{*}To whom correspondence should be addressed.

mologies are especially focused in the putative transmembrane domains I to IV, VI, and VII (Fig. 3). Similarities are also found with the human $\alpha 1$ and $\alpha 2$ adrenergic (10), the porcine cholinergic muscarinic (11) and the bovine substance K (12) receptors, and to a lesser extent with the rat dopaminergic (13) and the human 5-hydroxytryptamine (14) receptors. Some limited regions of homology are also found with the mas oncogene (angiotensin receptor) (15). The long extracellular domain of LH-hCG receptor contrasts with the brevity of the corresponding region in the other receptors. It may play a role in the binding of the large glycoprotein hormone.

In addition to clones containing this large open reading frame (pLHRA), clones encoding shorter proteins were also observed.

In all cases, the NH₂-terminal part of the proteins was identical, divergence being observed at the same point (corresponding to amino acid 316 of the precursor protein). Two variants display a frameshift after the point of divergence and are thus truncated for the putative transmembrane and intracellular domains (pLHRB and pLHRC) (Fig. 1). The third variant conserves the same open reading frame after the divergence point and thus lacks the transmembrane domain but contains the putative COOHterminal intracellular domain (pLHRD). This pattern suggests a mechanism of alternative splicing. We estimated the relative frequencies of the different variants by hybridizing 80 receptor cDNA clones from the nonamplified cDNA library with probes specific for each variant. The full-length

form (pLHRA) was the most frequent (60 percent), followed by variants D (20 percent), C (15 percent), and B (5 percent).

The shorter variants of receptor, which do not contain the putative transmembrane region, may thus be entirely extracellular, either forming quaternary receptor structures with the full-length monomer or even being secreted from the cells (as has been described for the growth hormone receptor) (16). Immunoblotting with monoclonal antibodies and protein staining after immunoaffinity purification also showed a complex receptor pattern with a major species at 85 kD and less abundant smaller forms. These results are compatible with the mRNA heterogeneity described, but molecular mass comparisons should include the glycosylation of the receptor (17).

PLHR	4														ggca	agcad	etecc	gggct	geeq	gcgg	cacct	acco	agco	làcđợ	ggago	ccago	cgcto	caggo	ctcco	cggcc	-1
ATG AGA	CGG	CGG	TCC	CTG	GCG	CTG	CGG	CTG	CTG	CTG	GCG	CTG	CTG	CTA	TTG	CCA	CCG	CCA	CTG	CCG	CAG	ACG	CTG	CTC	GGG	GCG	CCC	TGC	CCG	GAG	96
Met Arg	Arg	Arg	Ser	Leu	Ala	Leu	Arg	Leu	Leu	Leu	Ala	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Leu	Pro	Gln	Thr	Leu	Leu	Gly	Ala	Pro	Cys	Pro	Glu	32
CCC TGC	AGC	TGC	CGG	CCC	GAC	GGC	GCC	CTG	CGC	TGC	CCC	GGC	CCG	CGG	GCC	GGC	CTC	AGC	CGA	CTA	TCA	CTC	ACC	TAT	CTC	CCT	ATC	AAA	GTA	ATC	192
Pro Cys	Ser	Cys	Arg	Pro	Asp	Gly	Ala	Leu	Arg	Cys	Pro	Gly	Pro	Arg	Ala	Gly	Leu	Ser	Arg	Leu	Ser	Leu	Thr	Tyr	Leu	Pro	Ile	Lys	Val	Ile	64
CCA TCT	CAA	GCT	TTC	AGA	GGA	CTT	AAT	GAG	GTC	GTA	AAA	ATT	GAA	ATC	TCT	CAG	AGT	GAT	TCC	CTG	GAA	AAG	ATA	GAA	GCT	AAT	GCC	TTT	GAC	AAC	288
Pro Ser	Gln	Ala	Phe	Arg	Gly	Leu	Asn	Glu	Val	Val	Lys	Ile	Glu	Ile	Ser	Gln	Ser	Asp	Ser	Leu	Glu	Lys	Ile	Glu	Ala	Asn	Ala	Phe	Asp	Asn	96
CTC CTC	AAT	TTG	TCT	GAA	ATA	CTG	ATC	CAG	AAC	ACC	AAA	AAC	CTG	GTG	TAT	ATT	GAG	CCT	GGA	GCA	TTT	ACA	AAT	CTA	CCT	CGG	TTA	AAA	TAC	CTG	384
Leu Leu	Asn	Leu	Ser	Glu	Ile	Leu	Ile	Gln	Asn	Thr	Lys	Asn	Leu	Val	Tyr	Ile	Glu	Pro	Gly	Ala	Phe	Thr	Asn	Leu	Pro	Arg	Leu	Lys	Tyr	Leu	128
AGC ATC	TGT	AAT	ACA	GGC	ATC	CGA	AAG	CTT	CCA	GAT	GTT	ACG	AAG	ATC	TTC	TCC	TCT	G AA	TTT	AAT	TTC	ATT	CTG	GAA	ATT	TGT	GAT	AAC	TTA	CAC	480
Ser Ile	Cys	Asn	Thr	Gly	Ile	Arg	Lys	Leu	Pro	Asp	Val	Thr	Lys	Ile	Phe	Ser	Ser	Glu	Phe	Asn	Phe	Ile	Leu	Glu	Ile	Cys	Asp	Asn	Leu	His	160
ATA ACC	ACC	GTA	CCA	GCA	AAT	GCT	TTC	C AA	GGG	ATG	AAT	AAC	GAA	TCC	ATA	ACA	CTC	AAA	CTA	TAT	GGA	AAT	GGA	TTT	GAA	GAA	ATA	CAA	AGT	CAT	576
Ile Thr	Thr	Val	Pro	Ala	Asn	Ala	Phe	Gln	Gly	Met	Asn	Asn	Glu	Ser	Ile	Thr	Leu	Lys	Leu	Tyr	Gly	Asn	Gly	Phe	Glu	Glu	Ile	Gln	Ser	His	192
GCC TTC	AAT	GGG	ACA	ACG	CTG	ATT	TCC	CTG	GAG	CTG	AAG	GAG	AAT	GCA	CAC	CTG	AAG	AAG	ATG	CAC	AAT	GAC	GCC	TTC	CGA	GGG	GCC	AGA	GGG	CCC	672
Ala Phe	Asn	Gly	Thr	Thr	Leu	Ile	Ser	Leu	Glu	Leu	Ļys	Glu	Asn	Ala	His	Leu	Lys	Lys	Met	His	Asn	Asp	Ala	Phe	Arg	Gly	Ala	Arg	Gly	Pro	224
AGC ATC	TTG	GAT	ATT	TCT	TCC	ACT	AAA	CTA	CAG	GCC	CTG	CCT	AGT	TAT	GGG	CTG	GAG	TCC	ATT	CAG	ACG	CTA	ATT	GCC	ACA	TCA	TCC	TAT	TCT	CTG	768
Ser Ile	Leu	Asp	Ile	Ser	Ser	Thr	Lys	Leu	Gln	Ala	Leu	Pro	Ser	Tyr	Gly	Leu	Glu	Ser	Ile	Gln	Thr	Leu	Ile	Ala	Thr	Ser	Ser	Tyr	Ser	Leu	256
AAA AAA	CTG	CCA	TCA	AGA	G AA	AAA	TTT	ACC	AAT	CTC	CTA	GAT	GCC	ACA	TTG	ACT	TAC	CCC	AGC	CAC	TGC	TGT	GCT	TTT	AGA	AAC	CTG	CCA	ACA	AAA	864
Lys Lys	Leu	Pro	Ser	Arg	Glu	Lys	Phe	Thr	Asn	Leu	Leu	Asp	Ala	Thr	Leu	Thr	Tyr	Pro	Ser	His	Cys	Cys	Ala	Phe	Arg	Asn	Leu	Pro	Thr	Lys	288
GAG CAG	AAT	TTT	TCA	TTT	TCC	ATT	TTT	AAA	AAC	TTT	TCT	AAA	CAA	TGT	GAA	AGC	ACA	GCA	AGG	AGA	CCA	AAT	AAT	GAA	ACA	CTT	TAT	TCT	GCC	ATC	960
Glu Gln	Asn	Phe	Ser	Phe	Ser	Ile	Phe	Lys	Asn	Phe	Ser	Lys	Gln	Cys	Glu	Ser	Thr	Ala	Arg	Arg	Pro	Asn	Asn	Glu	Thr	Leu	Tyr	Ser	Ala	Ile	320
TTT GCT	GÀG	AGT	GAA	CTG	AGT	GAC	TGG	GAT	TAT	GAC	TAT	GGT	TTC	TGC	TCA	CCC	AAG	ACA	CTC	C AA	TGT	GCT	CCC	GAA	CCA	GAT	GCT	TTT	AAC	CCC	1056
Phe Ala	Glu	Ser	Glu	Leu	Ser	Asp	Trp	Asp	Tyr	Asp	Tyr	Gly	Phe	Cys	Ser	Pro	Lys	Thr	Leu	Gln	Cys	Ala	Pro	Glu	Pro	Asp	Ala	Phe	Asn	Pro	352
TGT GAA	GAT	ATT	ATG	GGC	TAT	GAC	TTC	CTT	AGA	GTT	CTG	ATT	TGG	CTG	ATT	AAT	ATT	CTA	GCC	ATT	ATG	GGA	AAC	GTG	ACT	GTC	CTC	TTT	GTT	CTC	1152
Cys Glu	Asp	Ile	Met	Gly	Tyr	Asp	Phe	Leu	Arg	Val	Leu	Ile	Trp	Leu	Ile	Asn	Ile	Leu	Ala	Ile	Met	Gly	Asn	Val	Thr	Val	Leu	Phe	Val	Leu	384
CTG ACC	AGT	CAT	TAT	AAA	CTG	ACA	GTG	CCT	CGT	TTC	CTC	ATG	TGC	AAT	CTC	TCC	TTT	GCA	GAC	TTC	TGC	ATG	GGG	CTC	TAC	CTG	CTA	CTC	ATT	GCC	1248
Leu Thr	Ser	His	Tyr	Lys	Leu	Thr	Val	Pro	Arg	Phe	Leu	Met	Cys	Asn	Leu	Ser	Phe	Ala	Asp	Phe	Cys	Met	Gly	Leu	Tyr	Leu	Leu	Leu	Ile	Ala	416
TCA GTT	GAT	GCC	C AA	ACC	AAA	GGC	CAG	TAT	TAT	AAC	CAC	GCC	ATA	GAC	TGG	CAG	ACA	GGG	AAT	GGG	TGT	AGT	GTT	GCT	GGC	TTT	TTC	ACT	GTA	TTT	1344
Ser Val	Asp	Ala	Gln	Thr	Lys	Gly	Gĺn	Tyr	Tyr	Asn	His	Ala	Ile	Asp	Trp	Gln	Thr	Gly	Asn	Gly	Cys	Ser	Val	Ala	Gly	Phe	Phe	Thr	Val	Phe	448
GCA AGT	GAA	CTT	TCT	GTC	TAC	ACC	CTC	ACA	GTC	ATC	ACA	CTA	GAA	AGA	TGG	CAT	ACC	ATC	ACC	TAT	GCT	ATT	CAG	CTG	GAC	C AA	AAG	CTA	CGC	TTA	1440
Ala Ser	Glu	Leu	Ser	Val	Tyr	Thr	Leu	Thr	Val	Ile	Thr	Leu	Glu	Arg	Trp	His	Thr	Ile	Thr	Tyr	Ala	Ile	G1n	Leu	Asp	Gln	Lys	Leu	Arg	Leu	480
AGA CAT	GCC	ATT	CCA	ATT	ATG	CTT	GGA	GGG	TGG	CTC	TTT	TCT	ACA	CTA	ATT	GCC	ATG	TTG	CCT	CTT	GTG	GGT	GTC	AGC	AGT	TAC	ATG	AAG	GTC	AGC	1536
Arg His	Ala	Ile	Pro	Ile	Met	Leu	Gly	Gly	Trp	Leu	Phe	Ser	Thr	Leu	Ile	Ala	Met	Leu	Pro	Leu	Val	Gly	Val	Ser	Ser	Tyr	Met	Lys	Val	Ser	512
ATT TGC	CTC	CCC	ATG	GAT	GTG	GAA	ACC	ACT	CTC	TCA	CAG	GTC	TAC	ATA	TTA	ACC	ATC	CTG	ATC	CTC	AAT	GTG	GTG	GCC	TTC	ATC	ATC	ATT	TGT	GCT	1632
Ile Cys	Leu	Pro	Met	Asp	Val	Glu	Thr	Thr	Leu	Ser	Gln	Val	Tyr	Ile	Leu	Thr	Ile	Leu	Ile	Leu	Asn	Val	Val	Aľa	Phe	Ile	Ile	Ile	Cys	Ala	544
TGC TÀC	ATT	AAA	ATT	TAT	TTT	GCA	GTT	CAA	AAT	CCA	GAG	CTG	ATG	GCT	ACC	AAC	AAA	GAC	ACA	AAG	ATT	GCT	AAG	AAA	ATG	GCA	GTC	CTC	ATC	TTC	1728
Cys Tyr	Ile	Lys	Ile	Tyr	Phe	Ala	Val	Gln	Asn	Pro	Glu	Leu	Met	Ala	Thr	Asn	Lys	Asp	Thr	Lys	Ile	Ala	Lys	Lys	Met	Ala	Val	Leu	Ile	Phe	576
ACT GAT Thr Asp	TTC Phe	ACC Thr	TGC Cys	ATG Met	GCA Ala	CCG Pro	ATC Ile	TCT Ser	TTC Phe	TTT Phe	GCC Ala	ATC Ile	TCA Ser	GCT Ala	GCC Ala	TTA Leu	AAA Lys	GTG Val	CCC Pro D	CTT Leu	ATT Ile	ACA Thr	GTA Val	ACG Thr	AAC Asn	TCT Ser	AAG Lys	GTA Val	TTA Leu	CTG Leu	1824 608
GTT CTT	TTT	TAT	CCT	GTC	AAT	TCT	TGT	GCC	AAT	CCG	TTT	CTA	TAC	GCA	ATT	TTC	ACA	AAG	GCA	TTC	CGA	AGG	GAT	TTC	TTT	CTG	TTG	CTG	AGC	AAA	1920
Val Leu	Phe	Tyr	Pro	Val	Asn	Ser	Cys	Ala	Asn	Pro	Phe	Leu	Tyr	Ala	Ile	Phe	Thr	Lys	Ala	Phe	Arg	Arg	Asp	Phe	Phe	Leu	Leu	Leu	Ser	Lys	640
TCT GGC	TGC	TGT	AAA	CAT	C AA	GCC	GAA	CTT	TAT	AGA	CGG	AAG	GAC	TTT	TCA	GCT	TAC	TGC	AAA	AAT	GGC	TTC	ACT	GGA	TCA	AAT	AAG	CCT	TCC	CGG	2016
Ser Gly	Cys	Cys	Lys	His	Gln	Ala	Glu	Leu	Tyr	Arg	Arg	Lys	Asp	Phe	Ser	Ala	Tyr	Cys	Lys	Asn	Gly	Phe	Thr	Gly	Ser	Asn	Lys	Pro	Ser	Arg	672
TCC ACA Ser Thr	TTG Leu	AAG Lys	TTG Leu	ACC Thr	ACA Thr	TTA Leu	CAA Gln	TGT Cys	CAG Gln	TAT Tyr	TCC Ser	ACT Thr	GTC Val	ATG Met	GAC Asp	AAG Lys	ACT Thr	TGC Cys	TAT Tyr	AAA Lys	GAC Asp	TGT Cys	taa	actgi	ttgta	atga	gtaa	ceaca	ataa	ttaa	2119 696
				315	; V																										

P ^{LHR B}	ACA Thr	CTA Leu	CTT Léu	CTG Leu	CAT His	GGG Gly	GCT Ala	CTA Leu	CCT Pro	GCT Ala	ACT Thr	CAT His	TGC Cys	CTC Leu	AGT Ser	TGA			987 329
p ^{LHRC}	ACA Thr	CTT Leu	TCA Ser	AAA Lys	TCC Ser	AGA Arg	GCT Ala	GAT Asp	GGC Gly	TAC Tyr	CAA G1n	CAA Gln	AGA Arg	CAC His	AAA Lys	GAT Asp	TGC Cys	TAA	993 331
	ACA Thr	CIG Leu	GCA Ala	TTC Phe	CGA Arg	AGG Arg	GAT Asp	TTC Phe	TTT Phe	CTG Leu	TTG Leu	CTG Leu	· · ·	•••	AAA Lys	GAC Asp	TGT C ys	TAA	1152 384

Fig. 2. Sequence of the porcine LH-hCG receptor cDNA and of the deprotein. duced (∇) Point of divergence between full-length and shorter forms of receptor. (♥) Points of junction with the main sequence in the various shorter forms. The sequence of the shorter variants is shown from amino acid 315 (preceding the divergence). For pLHRD, apart from a single amino acid change at the junction, the same amino acid sequence is observed from residue 317 to the end (matching exactly residues 629 to 696 of LHRA). Nlinked glycosylation sites (solid lines) and protein kinase C consensus phosphorylation sites (dotted lines) are underlined.

SCIENCE, VOL. 245

526

Fig. 3. Homologies between LH-hCG receptor and other G protein-coupled receptors. The bovine rhodopsin (bRHOD), and human $\hat{\beta}_1$ (hBETÁ1), β_2 (hBE-TA2), α_1 (hALPHA1), and a2(hALPHA2) adrenergic, porcine muscarinic cholinergic (pm3-ACH) and bovine substance K (bSK) receptors were compared to full-length LH receptor. Amino acids identical in the latter and in at least one of the other receptors are squares. The putative transmembrane domains (I to VII) are indicated by brackets.

Fig. 4. RNA blot analysis of porcine LH-hCG receptor mRNA in different tissues. (Lane 1) Liver; (lane 2) intestine; (lane 3) ovary; (lane 4) lung; (lane 5) testis; and (lane 6) muscle. Blots were exposed for 20 hours (A) or 1 week (B) to "no screen" x-ray films. Sizes of DNA markers (kilobases) are indicated on the left. Polyadenylated RNA's were prepared as described (Fig. 1). Each lane contained 20 µg of polyadenylated RNA. Hybridization was performed with the random-primed ³²P-labeled 1-kb insert of the pLHR1 clone (6 \times 10⁶ dpm/ng, 0.5 \times 10⁶ dpm/ml). Receptor concentration (as measured by 125I-labeled hCG binding) in testes and ovaries was 200 and 40 fmol of protein per milligram, respectively. Receptor was not detected in the other organs.

Blot analyses of polyadenylated RNA's from various organs showed the presence in testes and ovaries of the same mRNA species (Fig. 4): a major mRNA of 4700 nucleotides and minor species of 6700 (abundant in testis), 5800, 4000, 2600, and 1400 nucleotides. No receptor mRNA was detected in liver, intestine, lung, and muscle. The receptor mRNA concentrations, as estimated from the RNA blot, paralleled hormone binding assays in the same tissues (Fig. 4).

The cDNA containing the longest open reading frame was inserted into the

Fig. 5. Expression of the porcine LH-hCG receptor cDNA in COS-7 cells. Binding of ¹²⁵I-labeled hCG to membranes (25). (Curve a) Cells transfected with a vector encoding LH-hCG receptor. (Curve b) Cells transfected with a vector containing inverted cDNA. (Inset) Scatchard plot of the binding assay $(K_d = 1.8 \times 10^{-10} M)$.

pKSV10 expression vector, and the resulting DNA was transfected into COS-7 cells (Fig. 5). This led to the appearance of the cell membrane of a hCG-binding protein with an affinity $(K_d = 1.8 \times 10^{-10} M)$ similar to that displayed by the receptor in porcine Leydig cells (18).

Our data suggest that the protein encoded by the cloned cDNA contains all the information necessary to bind the hormone. The protein also has the characteristic transmembrane structure of adenylate cyclase-modulating receptors. However, further experiments are necessary to establish whether the protein can activate adenylate cyclase by itself and promote steroidogenesis regulation. Moreover, receptor immunoaffinity purification experiments provided no evidence for the existence of any other protein component (3). The role of the relatively abundant truncated forms of the receptor is not understood at present, and it is not known whether the LH-hCG receptor is physiologically active as a monomer or as an oligomer. The cloning of the cDNA encoding the porcine LH-hCG receptor should now allow the isolation of the corresponding human receptor cDNA and possibly that of the receptors binding the other members of the pituitary glycoprotein hormone familv.

REFERENCES AND NOTES

- 1. S. Kusuda and M. L. Dufau, J. Biol. Chem. 261, 16161 (1986); K. P. Keinanen, S. Kellokumpu, M. K. Metsikko, H. J. Rajaniemi, *ibid.* 262, 7920 (1987); H. T. Sojar and O. P. Bahl, ibid. 264, 2552 (1989); M. Ascoli and D. L. Segaloff, Endocrinol. Rev. 10, 27 (1989).

- B. Jallal et al., in preparation.
 M. T. Vu Hai-Luu Thi et al., in preparation.
 M. Kozak, Nature 308, 241 (1984).
 G. Von Heijne, Nucleic Acids Res. 14, 4683 (1986).
- J. Nathans and D. S. Hogness, Cell 34, 807 (1983). S. C. Hubbard and R. J. Ivatt, Annu. Rev. Biochem.
- 50, 555 (1981).
- B. J. R. Wodget, K. L. Gould, T. Hunter, Eur. J. Biochem. 161, 177 (1986).
- 9. T. Frielle et al., Proc. Natl. Acad. Sci. U.S.A. 84, Y. Hicke et al., Piol. Four. Fund. Sci. U.S.A. 65, 7920 (1987); B. K. Kobilka et al., ibid., p. 46.
 S. Cotecchia et al., ibid. 85, 7159 (1988); B. K. Kobilka et al., Science 238, 650 (1987).
 T. Kubo et al., Nature 323, 411 (1986).

- 12. Y. Masu et al., ibid. 329, 836 (1987).
- 13. J. R. Bunzow et al., ibid. 336, 783 (1988).
- 14. A. Fargin et al., ibid. 335, 358 (1988); D. Julius, A. B. MacDermott, R. Axel, T. M. Jessel, Science 241, 558 (1988); D. B. Pritchett et al., EMBO J. 7, 4135 (1988)
- 15. T. R. Jackson, L. A. C. Blair, J. Marshall, M. Gocdert, M. R. Hanley, *Nature* **335**, **437** (1988). 16. D. W. Leung *et al.*, *ibid.* **330**, 537 (1987). 17. K. P. Keinanen, *Biochem. J.* **256**, 719 (1988).

 - 18. N. Genty, R. Salesse, J. Garnier, Biol. Cell. 59, 129 (1987).
 - T. P. Hopp and K. R. Woods, Proc. Natl. Acad. Sci. U.S. A. 78, 3824 (1981).

- 20. Polyadenylated RNA's were prepared (21) from piglet testes (10 to 20 days old). Random-primed cDNA synthesis, size selection (0.5 to 2 kb), and cloning into λ gt11 vector were as described (22). The expression library $(3 \times 10^6 \text{ clones})$ was screened (23) with a mixture of ten monoclonal antibodies to the porcine LH-hCG receptor (3). Three positive clones that cross-hybridized were selected (pLHR 1 to 3) and sequenced. The longer insert (a 1-kb Eco RI fragment from pLHR1) was 32 P-labeled by random priming and was used to probe 2 × 10⁶ clones from a second size-selected (2 to 6 kb) cDNA library in λ gt10 vector. Six overlapping clones from the 400 detected signals (selected for length) were used for sequencing (24)
- 21. H. Loosfelt, F. Logeat, M. T. Vu Hai, E. Milgrom,

I. Biol. Chem. 259, 14196 (1984)

- H. Loosfelt et al., Proc. Natl. Acad. Sci. U.S.A. 83, 22 9045 (1986).
- 23. T. V. Huynh, R. A. Young, R. W. Davis, in DNA Cloning: A Practical Approach, D. M. Glover, Ed. (IRL, Oxford, 1985), vol. 1, p. 98.
- 24. M. Misrahi et al., Biochem. Biophys. Res. Commun 143, 740 (1987).
- The full-length open reading frame of the receptor 25. (nucleotides -11 to 2113, see sequence in Fig. 2) was inserted into the Bgl II site of the pKSV10 vector (Pharmacia). COS-7 cells were grown and transfected (26) with 10 μ g of vector DNA per 10⁶ cells. After 42 hours of transient expression, cell membranes were isolated (27). Radioligand binding assays were carried out in duplicate: membranes (1.5

mg of protein per milliliter) were incubated in 0.4 ml of phosphate-buffered saline containing 0.1% sodium azide and various amounts of ¹²⁵I-labeled hCG (0.5 µCi/pmol), for 12 hours at 37°C. The mixture was centrifuged at 10,000g and the pellets were washed once with 1 ml of buffer; bound radioactivity was then measured. The nonspecific binding was determined by parallel incubations with unlabeled $2.10^{-7}M$ hCG and this amount was subunabled 2.10 *M* nCG and this amount was sub-tracted from total binding.
26. A. Guiochon-Mantel *et al.*, *Nature* 336, 695 (1988).
27. V. Rebois, *J. Cell. Biol.* 94, 70 (1982).
28. We thank P. Dessen for help in computer analysis

- and D. Grebert for technical assistance.

23 May 1989; accepted 23 June 1989

Domain Separation in the Activation of Glycogen Phosphorylase a

E. J. GOLDSMITH, S. R. SPRANG, R. HAMLIN, N.-H. XUONG, **R. J. FLETTERICK**

The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser¹⁴ (phosphorylase $b \rightarrow a$).

LYCOGEN PHOSPHORYLASE (GP) (E.C. 4.2.1.1) is a cooperative homodimer that catalyzes the degradative phosphorolysis of glycogen. The enzyme is regulated by covalent phosphorylation (1) and by substrates and effectors (2). The substrates phosphate, glucose-1-phosphate (G1P), and glycogen bind cooperatively (3) and, in terms of the two-state model (4), drive the conformational equilibrium from the catalytically inactive T-state to the active R-state conformation. Of special interest are the conformational changes required to bind these substrates and the mechanisms by which the allosteric effectors promote these changes. Comparison of the high-resolution crystal structures of the dephosphorylated (GPb) and phosphorylated (GPa) enzymes (5), the latter under glucose inhibition, has shown that phosphorylation of Ser¹⁴ results in the formation of extensive subunit contacts on the regulatory face of the molecule. Similar changes are induced by the activator adenosine monophosphate (AMP) (6). However, the active-site-bound glucose in GPa crystals blocks structural changes at the catalytic site that might otherwise occur in the free enzyme on phosphorylation. Previous attempts to grow crystals of GPa with substrates bound or in the absence of glucose have been unsuccessful. Madsen et al. (7) found that fresh crystals of GPa tend to disintegrate when exposed to a combination of AMP, oligosaccharide, and G1P, although such crystals can reanneal to form a stable lattice with expanded unit cell dimensions. In contrast, crystals of GPa that have become naturally cross-linked while aging maintain their integrity in the presence of substrates and activators and diffract to moderate resolution.

To probe the active conformation of phosphorylase a, we substituted glucose in crystals of GPa with orthophosphate and maltopentaose by diffusion. The refined 2.8 Å resolution structure contains phosphate ion bound in the catalytic site and maltopentaose bound only in the storage-activation site. Together, the two substrates induce local conformational changes in the catalytic site and a domain separation, as well as rearrangements at the subunit interface that are not observed when either alone is present (8, 9). However, natural cross-linking and lattice forces may restrain the enzyme from undergoing a complete transition to the R state.

After diffusion of the substrates orthophosphate and maltopentaose into crystals of GPa, the volume of the tetragonal unit cell (Table 1) increases by 28,100 Å (3), primarily as a result of a 1.7 Å expansion along the crystallographic c-axis, and the resolution of observable diffraction decreases from 2.0 to 2.8 Å (10). Diffraction data were measured on the Mark II multiwire area detector (11). Crystals containing orthophosphate and maltopentaose show substantial nonisomorphism with respect to the parent crystals, with an average change of 43% in structure-factor amplitudes (8). The structure was determined by a sequence of rigid body and restrained group

Table 1. Crystal data and refinement parameters for substrate-inhibited GPa (space group $P4_32_12$). For comparison, data are also shown for glucoseinhibited GPa. The scaling R-factor between data sets is 0.36; $R_{sym} = \{ \sum_{hkl} \sum_{n} [(I_{hkl}^n - I_{hkl})/I_{hkl}] \} /$ N_{hkl} , where I_{hkl}^n is the *n*th measurement of I_{hkl} ; $R_{\text{cryst}} = \Sigma_{hkl} [||F(\text{obs})_{hkl}| - |F(\text{calc})_{hkl}||]/$ $|F(obs)_{hkl}|$, where |F(obs)| and |F(calc)| are the observed and calculated structure factor amplitudes, respectively.

D	GPa									
Parameter	Activated	Inhibited								
	Crystal data									
Unit cell	•									
dimensions										
a (Å)	128.5	128.4								
c (Å)	118.1	116.4								
Resolution (Å)	2.8	2.1								
Reflections	23,035	35,231								
R _{sym}	0.06	0.05								
Ref	inement parameters									
Protein atoms	6695	6624								
Δ bond* (Å)	0.013	0.015								
Δ angle* (Å)	0.050	0.050								
Resolution (Å)	50 to 2.8	50 to 2.1								
Reflections	21,753	34,792								
R _{cryst}	0.19	0.16								

*Applied restraints were 0.01 Å on bonds and 0.03 Å on angles.

E. J. Goldsmith, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX Ź5235.

S. R. Sprang, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235.

^{R. Hamlin and N.-H. Xuong, Departments of Physics,} University of California San Diego, La Jolla, CA 92093.
R. J. Fletterick, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143.