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Computational Aerodynamics for 
Aircraft Design 

This article outlines some of the principal issues in the model, the design of shock-capturing algorithms, the 
development of numerical methods for the prediction of treatment of complex geometric configurations, and 
flows over aircraft and their use in the design process. shape modifications to optimize the aerodynamic per- 
These include the choice of an appropriate mathematical formance. 

W HILE COMPUTATIONAL METHODS FOR SIMULATING industry there is often a very narrow margin between success and 
fluid flow have by now penetrated a broad variety of failure. In the past two decades the development of new commercial 
fields, including ship design, car design, studies of oil 

and they have The author is McDonnell Professor of Aerospace Engineering, Princeton University, 
assumed a dominant role in aeronautical science. In the aircraft Princeton, NJ 08544. 
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aircraft successful enough to make a profit for the manufacturer has 
proved an elusive goal. The economics of aircraft operation are such 
that even a small improvement in efficiency can translate into 
substantial savings in operational costs. Therefore, the operating 
efficiency of an airplane is a major consideration for potential 
buyers. This provides manufacturers with a compelling incentive to 
design more efficient aircraft. 

One route toward this goal is more precise aerodynamic design 
with the aid of computational simulation. In particular it is possible 
to attempt predictions in the transonic flow regime that is dominat- 
ed by nonlinear effects, exemplified by the formation of shock 
waves. The importance of the transonic regime stems from the fact 
that to a first approximation, cruising efficiency is proportional to 
MLID, where M is the Mach number (speed divided by the speed of 
sound), L is the lift, and D is the drag. As long as the speed is well 
below the speed of sound, the lift-to-drag ratio does not vary much 
with speed, so it pays to increase the speed until the effects of 
compressibility start to cause a radical change in the flow. This 
occurs when embedded pockets of supersonic flow appear, generally 
terminating in shock waves. A typical transonic flow pattern over a 
wing is illustrated in Fig. 1. As the Mach number is increased the 
shock waves become strong enough to cause a sharp increase in 
drag, and finally the pressure rise through the shock waves becomes 
so large that the boundary layer separates. The most efficient 
cruising speed is usually in the transonic regime just at the onset of 
drag rise, and the prediction of aerodynamic properties in steady 
transonic flow has therefore been a key challenge. 

Prior to 1965 computational methods were hardly used in 
aerodynamic analysis, although they were widely used for structural 
analysis. There was already in place a rather comprehensive mathe- 
matical formulation of fluid mechanics. This had been developed by 
elegant mathematical analysis, frequently guided by brilliant in- 
sights. Well-known examples include the airfoil theory of Kutta and 
Joukowski, Prandtl's wing and boundary layer theories, von Kar- 
man's analysis of the vortex street, and more recently Jones's slender 
wing theory ( I ) ,  and Hayes's theory of linearized supersonic flow 
(2). These methods, however, required simplifying assumptions of 
various kinds, and could not be used to make quantitative predic- 
tions of complex flows dominated by nonlinear effects. The primary 
tool for the development of aerodynamic configurations was the 
wind tunnel. Shapes were tested and modifications selected in the 
light of pressure and force measurements together with flow 
visualization techniques. In much the same way that Brunelleschi 
could design the dome of the Florence cathedral through a good 
physical understanding of load paths, so could experienced aerody- 
namicists arrive at efficient shapes through testing guided by good 
physical insight. Notable examples of the power of this method 
include the achievement of the Wright brothers in leaving the 
ground (after first building a wind tunnel), and more recently 
Whitcomb's discovery of the area rule for transonic flow (3). In fact, 
in the 80 years since the Wright brothers' flight, every conceivable 
configuration has been tried, and by a process of natural selection 
airplanes have very rapidly evolved to the rather efficient forms we 
see flying today. 

Experimental design is an expensive process, however. More than 
20,000 hours of wind tunnel testing were expended in the develop- 
ment of some modern designs such as the General Dynamics F l l l  
or the Boeing 747. The computer opens up new possibilities for 
attacking these problems by direct calculation of solutions to more 
complete mathematical models. The requirements to be met by an 
effective method include: (i) capability to simulate the main features 
of the flow, such as shock waves and vortex sheets; (ii) prediction of 
viscous effects; (iii) ability to handle geometrically complex configu- 
rations; and (iv) efficiency in both computational and human effort. 

Fig. 1. Pattern of transonic 
flow past an airfoil. The son- 
ic line is where M = 1, that 
is, where the speed equals 
the speed of sound. 

This is a formidable list that poses a severe challenge to the 
numerical analyst. Aside from the need to treat nonlinear effects, the 
problem is also compounded by the fact that the steady flow 
equations are of mixed type, elliptic in the subsonic regions of the 
flow, and hyperbolic in the supersonic regions. Moreover, they are 
to be solved in the unbounded domain exterior to the aircraft. The 
problem is somewhat alleviated, however, by the fact that airplanes 
fly by achieving controlled and steady flows. In some ways it is easier 
to predict the flow past an airplane than the flow past a nonspinning 
baseball. The trajectory of a knuckle ball is unpredictable because 
vortices may be shed at any angle to the axis of flight. Experimental 
measurements of the drag coefficient of a sphere show drastic 
variations with speed associated with changes in the wake pattern 
(4). There is a sudden reduction in the drag coefficient from around 
0.4 to around 0.09 when the flow becomes turbulent and the flow 
separates further aft. Accurate prediction of the drag coefficient 
would thus require prediction of the change in the separation point 
as the flow becomes turbulent. The flow past an aircraft is generally 
attached in normal operating conditions, with the exception of 
certain high-speed aircraft which use controlled separation off sharp 
side edges to generate vortices which pass above the wing, thus 
enhancing the lift. Otherwise the onset of separation typically marks 
the limits of the flight envelope, such as the stalling point. Conse- 
quently, depending on the intended application, useful aerodynamic 
simulations can be achieved with substantially simplified mathemati- 
cal models. 

This article outlines some of the key issues in the development of 
algorithms for fluid flow simulation, and their use for aircraft 
design. The volume of work in computational fluid dynamics 
precludes a comprehensive review in an article of this length, and the 
choice of topics must necessarily be personal. Some representative 
examples of flow calculations have been drawn from the work of the 
author and his associates. 

Unsteadv VISCOUS 

Euler eqs 

Laplace eq 

Vorticity = 0 
b Density = Const. Density = Const 

Fig. 2. Equations of fluid dynamics for mathematical models of varying 
complexity. (Supplied by Luis Miranda, Lockheed Corporation.) 
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Mathematical Models of Fluid Flow 
The Navier-Stokes equations state the laws of conservation of 

mass, momentum, and energy for the flow of a gas in thermodynam- 
ic equilibrium. In the Cartesian tensor notation, let xi be the 
coordinates, p, p, T, and E the pressure, density, temperature, and 
total energy, and ui the velocity components. Each conservation 
equation has the form 

For the mass equation 

For the i momentum equation 
w .  = pui, F.. = pu.u. + pa.. - a.. 

1.l 1 5  rJ 0 (3) 

where uij is the viscous stress tensor, which is proportional to the 
rate of strain tensor and the bulk dilatation. If y and A are the 
coefficients of viscosity and bulk viscosity then 

Usually A = -2 ~ 1 3 .  For the energy equation 

a T 
W = pE, Fj = (pE + p)uj - UjkUk - K - 

axj ( 5 )  

where K is the coefficient of heat conduction. The pressure is related 
to the density and energy by the equation of state 

in which y is the ratio of specific heats. 
An indication of the relative magnitude of the inertial and viscous 

terms is given by the Reynold's number 

where U is a characteristic velocity and L a representative length. 
The viscosity of air is very small, and typical Reynolds numbers for 
the flow past a component of an aircraft such as a wing are of the 
order of lo7 or more, depending on the size and speed of the 
aircraft. In this situation the viscous effects are essentially confined 
to thin boundary layers covering the surface. Boundary layers may 
nevertheless have a global impact on the flow by causing separation. 
Unfortunately, unless they are controlled by active means such as 
suction through a porous surface, boundary layers are unstable and 
generally become turbulent. 

The computational requirements for the full simulation of all 
scales of turbulence have been estimated as growing proportionally 
to ~ e ~ ' ~  (5) ,  and are clearly beyond the reach of current computers. 
Turbulent flows may be simulated by the Reynolds equations, in 
which statistical averages are taken of rapidly fluctuating compo- 
nents. Denoting fluctuating parts by primes and averaging by an 
overbar, this leads to the appearance of Reynolds stress terms of the 
form which cannot be determined from the mean values of the 
velocity and density. Estimates of these additional terms must be 
provided by a turbulence model. The simplest turbulence models 
augment the molecular viscosity by an eddy viscosity that crudely 
represents the effects of turbulent mixing, and is estimated with 
some characteristic length scale such as the boundary layer thickness. 
A rather more elaborate class of models introduces two additional 
equations for the turbulent kinetic energy and the rate of dissipa- 

Linear Nonlinear lnviscid Reynolds Navier 
potential Euler averaged stokes 
fi0w 

\ T.. 

Aircraft 

3D Wing 

0 

2D Airioii 

Fig. 3. Complexity of the problems that can be treated with different classes 
of computer (1 flop = 1 floating-point operation per second; 1 Mflop = lo6 
flops, 1 G ~ ~ O P  = lo9 flops). 
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tion. Existing turbulence models are adequate for particular classes 
of flow for which empirical correlations are available, but they are 
generally not capable of reliably predicting more complex phenome- 
na, such as shock wave-boundary layer interaction. 

Outside the boundary layer excellent predictions can be made by 
treating the flow as inviscid. Setting uQ = 0 and eliminating heat 
conduction from Eqs. 2, 3, and 5 yields the inviscid Euler equations, 
which are a very useful model for predicting flows over aircraft. 
According to Kelvin's theorem, a smooth inviscid flow that is 
initially irrotational remains irrotational. This allows one to intro- 
duce a velocity potential + such that ui = d+iaxi. The Euler 
equations for a steady flow now reduce to 

This may be expanded in quasilinear form as 

where c is the speed of sound, which is determined by the relation 
2 = ypip. 

If the flow is locally aligned, say, with the xl axis, Eq. 9 reads as 

where M is the Mach number ul/c. The change from an elliptic to a 
hyperbolic partial differential equation as the flow becomes super- 
sonic is evident. According to Crocco's theorem (6) ,  the vorticity ( 
in a steady flow is related to entropy production through the 
relation u x ( + TVS = 0, where S is the entropy. Thus the 
introduction of a ~otential  is consistent with the assum~tion of 
isentropic flow. If M, is the free stream Mach number, then p = pyi 
y ~ i  and p = (M$ 2)11(y-'). 

The potential flow equation cannot exactly model shock waves, 
through which entropy is produced. weak solution admitting 
isentropic jumps that conserve mass but not momentum are a good 
approximation to shock waves, however, as long as the shock waves 
are quite weak (with a Mach number <1.3 for the normal velocity 
component upstream of the shock wave). Stronger shock waves tend 
to separate the flow, with the result that the inviscid approximation 
is no longer adequate. Thus this model is well balanced, and it has 
proved extremely useful for the prediction of the cruising perform- 
ance of transport aircraft. An estimate of the pressure drag arising 
from shock waves is obtained because of the momentum deficit 
through an isentropic jump. 
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If one assumes small disturbances about a free stream in the xl 
direction, and a Mach number close to unity, Eq. 10 can be reduced 
to the transonic small disturbance equation in which M2 is estimated 
as 

The final level of approximation is to linearize Eq. 10 by replacing 
M2 by its free stream value M:. In the subsonic case the resulting 
Prandtl-Glauert equation can be reduced to Laplace's equation by 
scaling the xl coordinate by (1  - M i )  'I2. Ideal incompressible flow 
satisfies the Laplace's equation, as can be seen by setting p = 
constant in Eq. 8. 

The hierarchy of mathematical models is illustrated in Fig. 2. 
With limits on the available computing power, and the cost of the 
calculations, one has to make a trade-off between the complexity of 
the mathematical model and the complexity of the geometric 
configuration to be treated. The first major success in computational 
aerodynamics was the development of boundary integral methods 
(7, 8 ) ,  which enabled the linearized potential flow equation to be 
solved routinely for arbitrary configurations. In the 1970s effective 
methods were devised for the treatment of the transonic potential 
flow equation (9-13). These were instrumental, for example, in the 
development of refined wing designs for aircraft such as the 
Canadair Challenger and the Boeing 757, and they are still widely 
used today. More recently there have been intensive efforts to 
develop good algorithms for the Euler and Navier-Stokes equations. 

The computational requirements for aerodynamic simulation are 
a function of the number of operations required per mesh point, the 
number of cycles or time steps needed to reach a solution, and the 
number of mesh points needed to resolve the important features of 
the flow. Algorithms for the three-dimensional transonic potential 
flow equation require about 500 floating point operations per mesh 
point per cycle. The number of operations required for an Euler 
simulation is in the range of 1000 to 5000 per time step, depending 
on the complexity of the algorithm. The number of mesh intervals 
required to provide an accurate representation of a two-dimensional 
inviscid transonic flow is of the order of 160 wrapping around the 
profile, and 32 normal to the airfoil. Correspondingly, about 
100,000 mesh cells are sufficient to provide adequate resolution of 
three-dimensional inviscid transonic flow past a swept wing, and 
this number needs to be increased to provide a good simulation of a 
more complex configuration such as a complete aircraft. The 
requirements for viscous simulations by means of turbulence models 
are much more severe. Good resolution of a turbulent boundary 
layer needs about 32 intervals inside the boundary layer, with the 
result that a typical mesh for a two-dimensional Navier-Stokes 
calculation contains 5 12 intervals wrapping around the profile, and 
64 intervals in the normal direction. A corresponding mesh for a 
swept wing would have, say, 512 x 64 x 256 = 8,388,608 cells, 
leading to a calculation at the outer limits of current computing 
capabilities. Figure 3 gives an indication of the boundaries of the 
complexity of problems with can be treated with different levels of 
computing power. The vertical axis indicates the geometric com- 
plexity, and the horizontal axis the equation complexity. 

Algorithms for Flow Simulation 
The case of the inviscid Euler equations is used here to illustrate a 

general approach to the design of algorithms for aerodynamic 
simulation (14). The underlying idea is simply to integrate the time- 
dependent equations of fluid flow until the solution evolves to a 
steady state. This may be accomplished by dividing the domain of 

the flow into a large number of small subdomains and applying the 
consenration laws in the integral form 

1 wdv + 1 FsdS = 0 
at n an 

Here F is the flux vector appearing in Eq. 1, and dS is the directed 
surface element of the boundary aR of the domain 0. The use of the 
integral form has the advantage that no assumption of the differen- 
tiability of the solutions is implied, with the result that it remains a 
valid statement for a domain containing a shock wave. In general the 
subdomains could be arbitrary, but it is convenient to use either 
hexahedral or tetrahedral cells. Hexahedral cells are naturally gener- 
ated by the use of body conforming meshes corresponding to 
curvilinear coordinate systems. Where the geometric complexity of 
the configuration is such that it becomes difficult to generate a 
structured mesh of this kind, one may prefer to resort to an 
unstructured decomposition into tetrahedral cells. Alternative dis- 
cretization schemes may be derived by storing sample values of the 
flow variables at either the cell centers or the cell vertices. 

With a tetrahedral mesh, each face is a common external boundary 
to exactly two control volumes. Therefore each internal face can be 
associated with a set of five mesh points consisting of its three 
corners 1, 2, and 3, and the vertices 4 and 5 of the two tetrahedra 
based on the face. Vertices 4 and 5 are the centers of the two control 
volumes influenced by the face. It is now possible to generate the 
discrete approximation by presetting the flux balance at each mesh 
point to zero, and then performing a single loop over the faces. For 
each face one first calculates the fluxes of mass, momentum and 
energy across the face, and then one assigns these contributions to 
the vertices 4 and 5 with positive and negative signs, respectively. 
Because every contribution is transferred from one control volume 
into another, all quantities are perfectly conserved. Mesh points on 
the inner and outer boundaries lie on the surface of their own 
control volumes, and the accumulation of the flux balance in these 
volumes has to be correspondingly modified. 

An alternative route to the discrete equations if provided by the 
Galerkin Method. Multiplying Eq. 1 by a test function 6, and 
integrating by parts over space, one obtains the weak form 

that is also valid in the presence of discontinuities in the flow. By 
choosing test functions with local support, separate equations are 
obtained for each node. For example, if + is piecewise linear, with a 
nonzero value only at a single node, and one also assumes that flux 
vector to be piecewise linear, one obtains a flux balance for the node 
that is equivalent to the use of trapezoidal integration in the integral 
conservation law. 

These procedures lead to nondissipative approximations to the 
Euler equations. Dissipative terms may be needed for two reasons. 
First there is the possibility of frozen oscillatory modes. The second 
reason is to allow the clean capture of shock waves and contact 
discontinuities without undesirable oscillations. An extreme over- 
shoot could result in a negative value of an inherently positive 
quantity such as the pressure or density. Consider a general semi- 
discrete scheme of the form 

A maximum cannot increase and a minimum cannot decrease if the 
coefficients cjk are nonnegative. Positivity conditions of this type 
lead to diagonally dominant schemes, and they are a key to the 
elimination of unwanted oscillations. They may be realized by the 
introduction of dissipative terms or by the use of upwind biasing in 
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the discrete scheme. Unfortunately they may also lead to severe 
restrictions on the accuracy unless the coefficients have a complex 
nonlinear dependence on the solution. 

Following the pioneering work of Godunov (15), a variety of 
dissipative and upwind schemes designed to have good shock 
capturing properties have been developed during the past decade 
(16-25). The one-dimensional scalar conservation law 

provides a useful model for the analysis of these schemes. The total 
variation 

of a solution of this equation does not increase, provided that any 
discontinuity appearing in the solution satisfies an entropy condi- 
tion (24). Harten proposed that difference schemes ought to be 
designed so that the total variation 

cannot increase (19). General conditions on coefficients which result 
in total variation diminishing (TVD) for schemes of this h d  were 
stated and proved by Jameson and Lax (27), and also by Osher and 
Chakravarthy (28). In the case of a three-point scheme they are 
equivalent to the positivity conditions stated above. 

A conservative semidiscrete approximation to the one dimension- 
al conservation law can be derived by subdividing the line into cells. 
Then the evolution of the value vj in the jth cell is given by 

where hj + y2 is an estimate of the flux between cells j and j + 1. The 
simplest estimate is the average ( j  + 1 + j ) / 2  but this leads to a 
scheme that does not satisf) the positivity conditions. T o  correct this 
one may add a dissipative term and set 

In order to estimate the required value of the coefficient oji+y2, let 
aj+y2 be a numerical estimate of the wave speed afiau, 

Now 

1 
= 4 - (aj+y2 - 5 aj+v2) (vj+l - vj) 

and similarly 

1 
hj- y2 = & - (aj- y2 + - aj- y2) (vj - vj- I )  

2 

Thus the positivity conditions are satisfied if 

for all j. The minimum sufficient value of just one half the wave 
speed produces the upwind scheme 

It may be noted that the successful treatment of transonic 
potential flow also involved the use of upwind biasing. This was first 
introduced by Murman and Cole to treat the transonic small 
disturbance equation (9). The author's rotated difference scheme 
(lo), which extended their technique to treat the general transonic 
potential flow equation, proved to be very robust. TVD schemes can 
yield sharp discrete shock waves without oscillations, but in this 
simple form they are at best first-order accurate. Schemes that are 
second-order accurate almost everywhere can be devised with the aid 
of flux limiters. These are used to limit the magnitude of higher 
order antidiffusive or corrective terms depending on the ratio of the 
differences = vj+l - vJ and AJ-y2 in adjacent cells. This 
technique may be traced to the work of Boris and Book (16), and it 
was also independently advanced by van Leer (17). 

In order to apply these ideas to a system of equations one may 
split the flux into components corresponding to the different wave 
speeds. A convenient way to do this was proposed by Roe (19). 
Another promising approach is to reduce the multidimensional 
Euler equations directly to a diagonal form (29, 30). The use of flux 
splitting allows the precise matching of the dissipative terms to 
introduce the minimum amount of dissipation needed to prevent 
oscillations, but it is computationally expensive. In practice the use 
of a blend of low- and high-order dissipative terms with adaptive 
coefficients conditioned to the maximum local wave speed can yield 
effective shock capturing schemes. Recently Engquist, Lotstedt, and 
Sjogreen have shown that oscillations can be effectively controlled 
by post-processing the result after each time step with a filter which 

3 Levels 

4 Levels 

5 Levels 

C 

Fig. 4. Multigrid W cycle for managing the grid calculation. Symbols: O, 
calculate the change in the flow for one time step; 0, transfer the data 
without updating the solution. 
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Fig. 5. Flow past the ONERA M6 wing at M = 0.840 and 3.06 degrees 
angle of attack. This simulation was calculated on a 192 x 32 x 48 mesh in 
25 cycles. (A) View of wing, (B) upper surface pressure, and (C) lower 
surface pressure. 

is applied only if a new extremum is detected (31). 
These procedures lead to a set of coupled ordinary differential 

equations, which can be written in the form 

where w is the vector of the flow variables at the mesh points, and 
R(w) is the vector of the residuals, consisting of the flux balances 
defined by the space discretization scheme, together with the added 
dissipative terms. These are to be integrated to a steady state. If the 
objective is simply to reach the steady state and details of the 
transient solution are immaterial, the time-stepping scheme may be 
designed solely to maximize the rate of convergence. The first 
decision is whether to use an explicit scheme, in which the space 
derivatives are calculated from known values of the flow variables at 
the beginning of the time step, or an implicit scheme, in which the 
formulas for the space derivatives include as yet unknown values of 
the flow variables at the end of the time step, leading to the need to 
solve coupled equations for the new values. The permissable time 
step of an explicit scheme is limited by the Courant-Friedrichs-Lewy 
(CFL) condition, which states that a difference scheme cannot be a 
convergent and stable approximation unless its domain of depen- 
dence contains the domain of dependence of the corresponding 
differential equation (32). 

One can anticipate that implicit schemes will yield convergence in 
a smaller number of time steps, because the time step is no longer 
constrained by the CFL condition. This will be efficient, however, 
only if the decrease in the number of time steps outweighs the 
increase in the computational effort per time step consequent upon 
the need to solve coupled equations. The prototype implicit scheme 
can be formulated by estimating awlat at t + k A t  as a linear 
combination of R ( d )  and R(w"+'). The resulting equation 

can be linearized as 

This reduces to the Newton iteration if one sets p. = 1 and lets 
At + co. In a three dimensional case with an N x N x N mesh its 
bandwidth is of order N'. Direct inversion requires a number of 
operations proportional to the number of unknowns multiplied by 
the square of the bandwidth, that is, of the order of N ~ .  This is 

prohibitive, and forces recourse to either an approximate factoriza- 
tion method or an iterative solution method. 

Alternating direction methods, which introduce factors corre- 
sponding to each coordinate, are widely used for structured rectan- 
gular meshes (33, 34), but they cannot be implemented on unstruc- 
tured tetrahedral meshes that do not contain identifiable mesh 
directions. If one chooses to adopt the iterative solution technique, 
the principal alternatives are variants of the Gauss-Seidel and Jacobi 
methods. A symmetric Gauss-Seidel method with one iteration per 
time step is essentially equivalent to an approximate lower-upper 
(LU) factorization of the implicit scheme (35-37). On the other 
hand the Jacobi method with a fixed number of iterations per time 
step reduces to a multistage explicit scheme, belonging to the 
general class of Runge-Kutta schemes (38). Schemes of this type 
have proved very effective for wide variety of problems, and they 
have the advantage that there can be applied equally easily on both 
structured and unstructured meshes (39-42). 

Let w" be the result after n steps. The general form of an m stage 
scheme is 

In cases where only the steady state solution is needed, it is helpfbl 
to separate the residual R(w) into its convective and dissipative parts 
Q(w) and D(w). Then the residual in the (q+ 1)st stage is evaluated 

1 Experiments 

I 
- Computation 

-1.60 i 

Fig. 6. Comparison of the calculated result and experimental data for the 
RAE 2822 airfoil at M = 0.729 and 2.31 degrees angle of attack. (Supplied 
by L. Martinelli, Princeton University.) 
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$. 7. Flow over a &- 
p for the Hermes 
w Shuttle at M = 8 
~d 30 Begrecs angle of 
tack. Corn-n of 
k h  nunlber distribu- 
ms fw (A) imriscid and 
,) viscous flow. (Bot- 
wn) The color contours 
present the kxal Mach 
Imba, with black 
mvingthe~streanl 
ia - 8), yellow-red the 
nge M = 3 to 6, and 
=-white the range 
1 =  3 to 0. (S+ 
r H. Rieger, Dornier, 
mbH.) 
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Blenikd multkage schemes of this typc, which have beea uaa- 
zed elkwhere (42), can be tailored to give largc stability intervals 
ong both the imaginary and negative real axes. 
Radical fimher improvements in the rate of convergence to a 

d y s t a t c c a n b e ~ b y t h e m ~ t i m c s q $ n g ~ -  
ique. Thc cenccpt of d o n  by the induction of rndtfpk 
rids was birscptod by Federenlro (43). Tbat k by nmv a fairk 
ddevdopcd th'oory ofmultigrid mZthbds for dli* equatiok 
14,45), based on the concept of the updating scheme acting as a 
~ ~ m r o n c a c h g r i d . T h i s t h e o r y Q o c s n o t h o I d f b r  
perbdic system. Neverthclcss, it seems that it ollght to be 
mibk to accelerate the evolution of a hyperbolic system to a 
9 -state by wing large time steps on coarse grids so that 
vmxbdxs will be more rapidly aepdkd through the outer 
oundary. Sewed multigrid time-stepping schemes desigmd to take 
hamage of this effect have been proposcd (46-50). 
Ow can devise a multigrid scheme using a sequence of in* 

ently generated coarset meshes that are not associatsd with eaeh 
tficrinanyway.Jnthecasedastnuauedmeshitis- 
owever, to generate the coarser meshes by ehk t ing  akmate 
oints in each coordinate direction. Jn order tu, give a p-reck 
ascription of the muItigrid scheme subscripts may be wed to 
l d i C a t e t h e g r i d . S c w r a l ~ ~ ~ d o n s a e e d t o b e ~  
irst the solution vector on grid k must be injtiahed as 

wL' = Tksk-i Wk-1 (26) 

The result w,(") then provides the initial data for grid k+ 1. Finally. 
theacmn&teddanongridkhastobe~dbackm 
gnd k-1 with the aid of an interpolation opcnztw Ik-$*. A more 
detailed analysis of multigrid tirne-stepping schemes is pro&kd 
clscwhc~r (50). Witfi prom o p h k d  d a c n t s  mul@ 
timostepphtg sdKmss can be wry c&iatt Qivers oftbe mubigid 

pgtticulart)r ciFeaive maegy hr manag@ the work spPt betwen 
t h e m e s h ~ i . I n a ~ ~ o n a l ~ t b c n u m b e r o f c e l t s L  
r c d u c e d b y a f a a o r s f ~ o n ~ ~ g t i & O n ~ o n d  
t f ics f igKe, i t . tan~~ebesaen~tctme~~~rkmeasuredinuni ts  
axrespodbgto asteponthe h e  gridis ofthe order of 

pator:  Next it is newwry to & a r&dual fg fimth mPb of mow ~ h & ~  
Ichthatthesoiutionongdd k is driven bythe~e~iddscalcul;lrc?ca 
n grid k- 1. This can be-accompbhed by setting 

that are atminable with thcse mahods, Thcdcdadons can bc 
~k = Q.R-I ~ k - I ( w ~ - I )  - R ~ E W ~ ~ ) I  (2q p f b ~ n e d  on ready a-i~e equipment, inedmiiag the mini- 

here Qk-, is another transfer operator. Then Rk(wk) jS: replaced qmmmputcrs that are m bccolniag widely available. 
v &(wk) + Pk in the time-stepping scheme. Thus, the m u l m  The first aaqlc,  displayed in Fig, 5, shows the d t  of a 
heme is rdbrmulated as ~c&wcllarlation~a~weptwing.Inthiscasemyprograrr 
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FL067 was used to solve the Euler equations on a struaurrd mesh 
with 192 intervals wrapped around the wing, 32 intervals normal to 
the wing, and 48 intervals in the spanwise direction, for a total of 
294,912 cells. The figure shows the prtssurc distribution on the 
upper and lower surfices measured by the pressure d c i e n t  
Cp = @ - p,)l(pq2/2), with negative Cp toward the top, following 
the usual convention in aeronautical science. The miangular shock 
pattan is clearly visible. This calculation, requiring the solution of 
coupled nonlinear equations for 1,474,560 unknowns, reached an 
essentially steady state in 15 multigrid cycles, with the lift converged 
within 1 part in 1,000. Because the algorithm is explicit it permits 
co- calculations at separate mesh points, so it is l l ly  
amenable both to vector processing and to massively parallel 
computation. 

The cover shows the vomcal flow generated by a delta wing at a 
high angle of attack. Thc flow separates offthe sharp side edges and 
mils up to form vortices which pass over the top of the wing. The 
associated low pressure is an important mechanism for enhancing 
the lift of a high-speed aircraft. In the 6guce the vortices are 
illustrated by tracking particle paths. (This flow calculation was also 
performed with F m 7 ,  while the mesh generation and the graphic 
visuabtion was the work of G. Volpc and M. Sidari, using 
facilities at the Grumman Corporate Research Center.) 

Figure 6 gives an indication of the present state of the art for 
viscous flow simulation. It shows a comparison between the predict- 
ed pressure distribution over the RAE2822 and experimental data 
obtained in a wind tunnel. These results were obtained by Martin- 
dli, using a new turbulence model based on renormahtion group 
theory (51). Figure 7 shows a comparison between inviscid and 
viscous flow simulations for the planned Hermes space shuttle in 
hypersonic flow at Mach 8, and an angle of attack of 30 degrees. 
While the calculation demonstrates the capability of the LU implicit 
algorithm (37), the temperatures reached in the flow are high 
enough that a more complex modd ought to be introduced to allow 
fw rcal gas e&cts, such as dkxiation and chemical reactions. 

If computational methods are to be d y  usefi~I to airplane 
designers, they must be able to treat extremely complex configura- 
tions. A major pacing item ofthe &R to attain this goal has been 
the problem of mesh generation. For simple wing body combina- 
tions it is possible to generate redhear  meshes without too much 
difiiculty (52): for more complicated codgwations contain&, for 
example, pylon-mounted engines, it becomes increasingly difKcult 
to produce a tanmud mesh, which is aligned with all solid 
surks .  A popular mesh generation procedure, p i o n d  by 
Thompson (53), is to generate grid surfaces as solutions of elliptic 
equations. Hyperbolic marching methods have also proved success- 
ful in some applications (54). These mcthods ace typically combined 
with domain decomposition to produce multiblock meshes in which 
the mesh inside each block is separately generated. The simulation 
by Sawada and Takanasha of the flow over a four-engined short- 
take ofF aimaft provides a striking example of what can bc achieved 
by these methods (55). 
Analtemativeprocedureistousetetrahedralcellsinanunstruc- 

tuced mesh which can be adapted to confbrm to the complex surface 
of an aircraft. Such an approach was successfully implemented for 
the potential flow equation by Bristeau et al. (13) whose simulation 
of transonic flow past a complete aircraft was a major advance. 
Because an arbitrary set of points admits a triangulation, the 
problem can be simplified by separating the procedure for gcnerat- 
ing mesh points fiom the procedure for tchngdating them. A 
cluster of mesh points surrounding the aircraft can bc created in any 
convenient manner. One may take, for example, the union of the 
points belonging to separately generated meshes around each 
component. The swarm of mesh points is then connected together 

to form tetrahedral cells, which provide the basis for a single finite- 
clement approximation for the entire domain. The trianguhion of a 
set of p o i k  to fbrm disjoint tetrahedra is, in general, non-unique: 
one p d u r e  is to generate the Delaunay tciangdation (56, 57). 
This is dual to the Voronoi diagram that d t s  fiom a division of 
the domain into polyhedral nei&borhoods, each consisting of the 
subdomain of points nearer to a given mesh point than any other 
mesh point. 

Combined with a finite-element method based on the conems 
outlined in this article, this approach to mesh generation yieldsAan 
e&aive method to @rm flow calculations for complete aircraft 
(58) 59). Figure 8 shows a result for the Boeing 747. The color 
contours &ote the surface ~ressure distribution. The calculation 
includes internal flow throd the engine ducts, but as yet no &rt 
has been made to simulate pmpulsive effcas. Using our Convex C2 
mini-supercomputer at Princeton University, we 6nd that calcula- 
tions with, say, 125,000 to 150,000 no& and 750,000 to 900,000 
tetrahedrons require 15 to 18 hours. We have also been fortunate 
enough to have been given acccss to a Cray 2 by Cray Research, 
which allows us to pcrfbrm the same calculations in 3 to 4 hours. 
They also requk a lot of memory, typically about 60 million words. 
Other effbrts to develop finite element methods to treat supersonic 
and hypersonic flows over complex configurations are un&r way 
(60, 61). 

The Design Problem 
In considering the objectives of computational -cs, 

three kvds of desirable pecbcmance can be identified: (i) capability 
to predict the flow past an airplane or its important components in 

Flg. 0. Flow past a Boc~ng 747-200 at Mach number 0.84 and 2.73 degrees 
angk of attack (Top) The color contours rrprcscnt the surfhcc pressure, 
with rod indicating low pressure in the supersonic zonc. (Bottom) Anorha 
view showing strrvnlims around aircraft. (Calculated by A. Jamson and T. 
J. Baka.) 
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Fig. 9. Redesign of the 
RAE 2822 airfoil by 
means of control theory 
to reduce its shock-in- 
duced pressure drag. (A) 
Initial profile. Drag co- 
efficient is 0.0175. (B) 
Redesigned profile after 
five cycles. Drag coeffi- 
cient is 0.0018. 

different flight regimes such as take-off or cruise, and off-design 
conditions such as flutter; (ii) interactive calculations to allow rapid 
improvement of the design; and (iii) integration of the predictive 
capability into an automatic design method that incorporates com- 
puter optimization. 

Although the results presented in this article demonstrate that 
substantial progress has been made toward the first objective, 
various problems of viscous separated flows still remain beyond our 
reach. Also in relatively simple cases, such as an airfoil or wing in 
inviscid flow, calculations can be performed fast enough that the 
second objective is attainable. The third objective must eventually 
prevail. What the designer really needs is a method of determining 
shapes that will have the desired aerodynamic properties. The ability 
to predict the flow over a given shape is not good enough for this 
purpose, as it does not provide any guidance on how to change the 
shape if it is unsatisfactory. It has been recognized that an experi- 
enced designer generally has an idea of the kind of pressure 
distribution that will lead to favorable characteristics. For example, 
he can avoid adverse pressure gradients that will induce premature 
separation of the boundary layer. Thus, in addition to the direct 
problem of calculating the pressure distribution over a given shape, 
the inverse problem of finding the shape that will yield a specified 
pressure distribution can also play an important role. The problem 
of designing a two-dimensional profile to attain a desired pressure 
distribution was solved by Lighthill for the case of incompressible 
flow by means of conformal mapping (62). Subsequently there has 
been continuing interest in the problem, and a variety of methods 
have been proposed for the solution of the inverse problem in 
compressible flow (63-66). One source of difficulty is that the 
desired pressure distribution is not necessarily attainable, unless it 
satisfies certain constraints, with the result that the problem needs to 
be very carefully formulated. 

The hodograph transformation offers an alternative approach to 
the design of airfoils to produce shock-free transonic flows. Garabe- 

dim and Korn achieved a striking success by using the method of 
complex characteristics to solve the equations in the hodograph 
plane (67). There have been several studies that have explored the 
possibility of meeting desired design objectives by using constrained 
optimization (68, 69). The configuration is specified by a set of 
parameters, and any suitable computer program for flow analysis is 
used to evaluate the aerodynamic characteristics. In principle this 
method allows the designer to specie any reasonable design objec- 
tives. The method becomes extremely expensive, however, as the 
number of parameters is increased. In a recent paper I suggested that 
there are benefits in regarding the design problem as a control 
problem in which the control is the shape of the boundary (70). A 
variety of alternative formulations of the design problem can then be 
treated systematically by using the mathematical theory for control 
of systems governed by partial differential equations (71). 

I have used this approach to accomplish the automatic redesign of 
airfoils to improve their performance for the case of transonic 
potential flow. The method proceeds as follows: A two-dimensional 
profile in the 2 plane is generated by conformal mapping from a unit 
circle in the a plane. Since the transformation is defined by an 
analytic function, it is fully determined by the value of its modulus h 
= Idz/dui on the boundary. Thus we can take f = log h as the 
control. Suppose now that we define a cost function, such as 

I = - p ,  
1 : I ( p  - pd)' d0 + p2CD + - 2 pI (CL - C L ~ ) ~  (30) 

where the integral is taken over the boundary C, 0 is the angle in the 
circle plane, p is the surface pressure, pd is the desired surface 
pressure, CD is the drag coefficient, CL is the lift coefficient, CLd is 
the desired lift coefficient, and PI, P2, and P3 are parameters to be 
chosen by the user. Note that in inviscid flow, minimization of the 
drag without additional constraints would yield a flat plate at zero 
angle of attack. Suppose that a perturbation analysis yields an 
estimate of the variation SI induced by a charge in the mapping 
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function S f  of the form 

whereg is independent of Sf: Theng can be identified as the gradient 
or derivative of I  with respect tof: If we adjust f  by a change 

where h is any sufficiently small positive variable, then 

S I  = - j hg2 dB 
C 

(33) 

and the cost must decrease unless the gradient g is already zero, 
indicating that a stationary point has been attained. At first sight it 
might appear that one must calculate the change in the solution for 
each possible change SJ: Actually this is not the case. The change 8 4  
in the potential that results from a change S f  in the mapping 
function satisfies an equation of the form 

LS+ = J (34) 

where L is the perturbation operator, which is self-adjoint, and J 
depends on Sf: This is a constraint, and we can augment the 
variation 6 1  by the integral over the domain of this equation 
multiplied by a Lagrange multiplier J I ,  

11 J I ( L S 1  - J ) d S  
D 

(35) 

Let $ now be chosen to satisfy the adjoint equation 

Llj = 0 (36) 

with appropriately chosen boundary conditions. Then, an integra- 
tion by parts, all terms explicitly depending on S+ can be eliminated. 
In this way it is possible to search for the mapping function f  that 
minimizes I by an iterative process, in which the flow equation and 
an adjoint equation of roughly equal complexity must be solved at 
each iteration. 

Figure 9 illustrates a result (previously unpublished) obtained by 
this method. I t  shows the automatic redesign of a rather well-known 
airfoil, the RAE 2822, to reduce its shock-induced pressure drag at a 
Mach number of 0.730, while the lift is held roughly constant. The 
figure shows the initial airfoil, and the modified airfoil after five 
design cycles. The corresponding distribution of the pressure coeffi- 
cient is also shown. The difference between the upper and lower 
surface pressures indicates the distribution of lift. It can be seen that 
during the five cycles the drag coefficient is reduced from an initial 
value of 0.0175, which would be unacceptably large, to a final value 
of 0.0018, a reduction by a factor of 10. Each design cycle takes 
about 9 s on the Convex C2, and the complete calculation requires 
less than 2 min. I t  appears entirely feasible to extend this method to 
the optimization of wings in three-dimensional flow. 

Future Possibilities and Challenges 
We are now at a point where a variety of efficient algorithms for 

the solution of the Euler and Navier-Stokes equations have been 
developed, and the principles underlying their construction are quite 
well understood. Progress in viscous flow simulations (72-75) is 
paced by availability of sufficient computing power, and the need for 
more reliable turbulence models. Efforts are under way to treat more 
complex flows. In particular the simulation of internal flows has 
lagged behind that of external flows. Devices such as compressors 
and turbines require the treatment of unsteady flows with strong 
viscous effects. The unsteady flow induced by a helicopter in 

forward flight is another example of a very complex flow which 
extends present methods of simulation to the limit of their capabili- 
ties. s he accurate prediction of hypersonic flow requires the-intro- 
duction of much more complex models to allow for dissociation and 
chemical reactions at high temperatures. 

There remain many opportunities for improvement. Procedures 
for automatic refinement of the mesh in regions requiring better 
resolution are likely to be widely adopted. Such methods have been 
developed for both rectangular and triangular meshes (60, 61, 76- 
80). The data structures of finite element methods that use unstruc- 
tured meshes provide a particularly natural framework for adaptive 
mesh generation adoption as the calculation proceeds. The ideal 
method would also be capable of providing both a solution and an 
accompanying estimate of bounds on the error introduced by 
discretization. The advent of massively parallel computers will force 
a reappraisal of the trade-offs in the design of algorithms in favor of 
schemes allowing concurrent calculation. As the simulations increase 
in complexity the need for sophisticated pre- and post-processing 
procedures becomes more pressing, and it is becoming increasingly 
necessary to integrate computer graphics software with numerical 
simulation methods. Further development of optimization methods 
should finally allow flow simulations to be exploited to their full 
potential for improving aerodynamic design. 
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Transcriptional Regulation in Mammalian Cells 
by Sequence-Specific DNA Binding Proteins 

The cloning of genes encoding mammalian DNA binding scriptional activation functions in sequence-specific tran- 
transcription factors for RNA polymerase I1 has provided scription factors. The mechanisms by which these factors 
the opportunity to analyze the structure and function of may activate transcriptional initiation and by which they 
these proteins. This review summarizes recent studies that may be regulated to achieve differential gene expression 
define structural domains for DNA binding and wan- are also discussed. 

I NITIATION OF MESSENGER RNA (MRNA) SYNTHESIS IS A biochemical pathways by which cells integrate physiological cues to 
primary control point in the regulation of differential gene bring about appropriate transcriptional changes are still largely 
expression. Cells respond to intra- and extracellular cues by unknown, it is clear that the frequency of initiation of mRNA 

turning certain genes on-or off and by modulating the extent of synthesis depends ultimately on factors -that interact with specific 
transcription of active genes. In higher eukaryotes, transcriptional 
changes- in the conrexi of a progrm can have Howard Hughes Medical Institute, Department of Biochemistty, University of C.for- 
profound long-term consequences. Although the mechanisms and nia, Berkeley, CA 94720. 
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