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Pulmonary Blood Flow Regulation in an 
Aquatic snake 

- 

HARVEY B. LILLYWHITE AND JOHN A. DONALD 

Regulation of pulmonary blood flow was studied during voluntary diving in the 
aquatic file snake, Acrochordus granulatus. Measurements of pressure and blood flow in 
pulmonary and systemic vessels indicate that blood flow completely bypasses the lung 
for significant periods during prolonged and quiescent submergence (greater than 30 
minutes). When the lung is ventilated, pulmonary blood flow increases to 36 milliliters 
per minute per kilogram of body mass (measured in the anterior pulmonary artery), 
and the cardiac output largely bypasses the systemic circulation. These reciprocating 
patterns of preferential blood flow reflect inverse relations between flow and vascular 
resistance, with the result that systemic and pulmonary arterial pressures remain 
virtually constant throughout repetitive dive cycles. Neuropharmacological studies of 
freely diving snakes and isolated, perfused lung preparations show that pulmonary 
blood flow is regulated by an interplay of adrenergic vasodilatation and cholinergic 
vasoconstriction within the densely innervated lung vasculature. The patterns of blood 
circulation shown by diving Acrochordus reflect an unusual lability of intracardiac 
shunts. 

I N AMPHIBIANS AND NON-CROCODIL- 

ian reptiles, a single ventricle allows 
redistribution of cardiac output be- 

tween systemic and pulmonary vessels by 
way of central cardiovascular shunts. Such 
shunts are especially pronounced in aquatic 
species in which pe&sion of the lung close- 
ly matches its ventilation (1). Although pat- 
terns of cardiovascular shunts are docu- 
mented in several diverse species, knowledge 
of their controlling mechanisms is rudimen- 
tary. We investigated the regulation of pul- 
monary blood flow as it relates to  diving 
behavior in the aquatic file snake, Acrochor- 
dus granulatus (2) .  We report that both sym- 
pathetic and parasympathetic components 
of the autonomic nervous system play inter- 
active roles in regulating pulmonary blood 
flow in precise correspondence with ventila- 
tion and intracardiac shunts. Although the 
sympathetic (adrenergic) innervation of pul- 
monary vascular beds has been studied in 
mammals, little is known concerning a pos- 
sible antagonistic interplay of parasympa- 
thetic and sympathetic nerves as occurs in 
the heart (3). Such activity in Acrochordus 
profoundly changes pulmonary perfusion 
and the magnitude of intracardiac shunts 
during repetitive dive cycles. 

The species we studied is particularly in- 
teresting because of its adaptations to pro- 
longed submergence in shallow, aquatic 
habitats. These include low metabolic rate, 
comparatively large volume and oxygen ca- 
pacity of blood, large pulmonary oxygen 
stores, high-affinity pH-sensitive hemoglo- 
bin, and cutaneous gas exchange (4). File 
snakes possess sufficient oxygen stores to 
sustain aerobic dives for 1.5 to 2 hours 
(minimally), whereas some individuals can 
remain submerged for as long as 3 to 5 
hours (4). As in all three species of the genus 

and family, typical breathing episodes con- 
sist of two to four breaths spaced over 
several minutes, during which -lung gases 
reequilibrate with air, C 0 2  stores are re- 
leased, and the blood is saturated with oxy- 
gen (5) .  

The most prominent cardiovascular event 
associated with the ventilatory period is a 
large increase of pulmonary blood flow (Q,) 
attributable to tachycardia, a decrease in 
pulmonary vascular resistance and a left to 
right shunt of the ventricular outflow (Fig. 
1): Ventilatory tachycardia typically entails 
four- to sevenfold increases of heart rate 
over submergence values (mean maximum 
rate +- SD = 25.7 +- 3.3 beats per minute; 
n = 47 dives in seven animals) (Fig. 1). 
However, the increase of Q, during ventila- 
tion entails a net left to right cardiac shunt as 
well, for systemic blood flow (Q,) measured 
in the dorsal aorta, carotid artery, or either 
aortic arch does not mirror the increases of 
Q, during ventilation. More usually, Q, and 
Q, change in a reciprocating manner, and 
changes of stroke flow in pulmonary and 
systemic vessels are inversely related during 
ventilatory episodes as well as during diving 
when the cardiac output shifts predominant- 
ly to the systemic circuit (Fig. 1). Character- 
istically, Q, increases more than tenfold 
while Q, approaches zero during ventilation 
(6) .  Thus, the major fraction of ventricular 
outflow is directed to the lung during venti- 
latory episodes. 

Both systemic and pulmonary arterial 
pressures are relatively constant throughout 
dive cycles, except for occasional, small 
changes of pulmonary pressure which are 
coincident with ventilatory tachycardia and 
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Fig. 1. Blood flow mea- 
sured in (A) the anterior , E A 

pulmonary artery and 
(B) dorsal aorta of an 
80-g Acrochordus granula- 
tu5 during breahmg - - 
(breaths indicated by ar- f " E m) and diving (nght 2 
half of records). Ncte that - 
pllmonafybypassof I 
blood flow during sub- 
m e c g ~ ~ ~  except for peri- 
odic, blief pulses of per- 4 4 
hion.  The dramatic 5 I . . . . .  
left-right shunt during breathing episodes and tight-left shunt during diving are attributable, in part, to a regulated interplay of adrenergic vasodilatation and 
antagonistic cholinergic vasoconstriction within the pulmonary vasculatuce. 

by antagonistic adrenergic and cholinergic 
i i ' innervation mediating vasodilatation and 

vasoconsmction, respectively. This conclu- 
-i sion was confirmed by in situ perfusions of 
I t  isolated lung preparations: vasodilatory re- 

sponses to nerve stimulation were adrener- 
gic in nature, whereas vasoconstrictory re- 

I - i r  - 2 -  ,. ,--&-. rT- I \ -  i ; \ 1 spa- were cholinergic (1 1). The bulk of 
W the vasamnstriction appears to occur within 

\ I-' - i \ , , the pulmonary microvasculature because . -,l- \ :--i 

1 1 '  normal levels of pulsatile pressures persist in 
the exmnsic pulmonary arteries of freely 

5 mln diving snakes, even while Q, falls to zero. If, 
Fig. 2. Arterial press- measured in (A) the distal emrinsic pulmonary artery and (B) the central on the other hand. consmction were to 
dokd aorta in a-96-g ~crochonluc granulahcs. The ventilatory pehod is in&catedvby the'horizontal bar the proxim'd pulmonary outflow 
above each record in the left-hand pomon of the panel. Mean pulmonary pressure falls about 28% 

met, pulmonary pressurn would be during the ventilatory period, although this magnitude of change is unusual. Typically, pulmonary 
arterial pressure changes very little during the dive cycle, as illustrated for systemic pressure in (B). to equilibrate with pulmonary ve- 

nous pressures. 
Th; importance of autonomic regulation 

Fig. 3. Vasoactive intcs- 
dn.l phlplpde-k bn- of Q, is corroborated by neuroanatomid 
r n M v e  in (a) investigations (12) that demonstrate exten- 
a small pulmonary artery sive perivaxular plexuses of adrenergic and 
within the lung Paren- vasoactive intestinal polypeptide-like immu- 
chyma and (b) the noreactive (VIP-LI) axons on arteries and rior pulmonary vein (12) 
( x  115). veins along the length of the lung (Fig. 3). 

The density of VIP-LI axons in the pulmo- 
nary vasculature is exceptional, exceeding 
that in many pulmonan, and systemic vessels 

the redismbution of blood flow during ven- 
tilation (Fig. 2). In view of the magnitude of 
Qp during breathing, pulmonary vascular 
resistance decreases greatly and clearly re- 
flects net vasodilatation in-the lung (7). On 
the other hand, maintenance of pressure in 
the systemic circulation during breathing 
must be attributable to increased mtemic 
resistance concomitant with the reduction of 
0 s .  

During long (>30 min) dives, heart rate 
decreases and Q, falls to very low levels that 
are coincident with increased flow in the 
systemic circuit. In quiescent animals there 

complete pulmon& bypass during much 
of the dive, interrupted by brief 2- to 5-min 
pulses of Q, spaced at variable intervals 
throughout submergence (8) (Fig. 1). There 
is always small but steady Q, (c0.3 mltmin) 
for several minutes immediately preceding 

breathing and tachycardia. 
Although large right to lefi shunts have 

been observed in some other diving reptiles 
(9), left to right shunts of comparable mag- 
nitude have not been noted. Because blood 
flow in major systemic vessels such as the 
dorsal aorta is nearly zero during periods of 
lung ventilation (Fig. l), we conclude that 
there is nearly complete systemic bypass for 
relatively brief periods of lung ventilation, 
just as there is complete pulmonary bypass 
during diving. In these contexts, Acrochordus 
exhibits possibly the greatest functional la- 
bility of cardiac shunts that has been report- 
ed in any vertebrate. 

Administration of atropine elevates Q, 
and prevents its reduction during diving, 
whereas adrenergic blockade abrogates Q, 
during ventilation (10). These findings sug- 
gest that pulmonary perfusion is regulated 

of mamm&s.- The VIP-LI &munoreactive 
material probably is localized in postgangli- 
onic parasympathetic neurons (12), but its 
role in neurogenic control of the pulmonary 
vasculature of Acrochordus is unclear because 
we found no evidence for nonadrenergic, 
noncholinergic neurotransmission to pul- 
monary vascular smooth muscle (1 l). 

In reptiles that exhibit intermittent 
breathing, lung ventilation and perfusion 
remain closely matched in spite of large 
changes in breathing rate. Clearly, the lefi to 
right shunt and increased Q, during lung 
ventilation in Acrochordus permit rapid oxy- 
genation of the blood and reduce the breath- 
ing time at the water surface (5). The value 
of pulmonary bypass during diving is less 
clear. Current proposals that the condition 
saves cardiac energy or reduces plasma fltra- 
tion in lungs are controversial (13). In the 
case of Acrochordus, reductions of Q, may be 
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regulated to avoid over-filling of the pulmo- 
nary veins which necessarily accumulate a 
substantial volume of blood during the ven- 
tilatory period. Following submergence, Qs 
is then expected to draw largely from the 
pulmonary venous reservoir of oxygenated 
blood, and Q, increases only intermittently 
as the venous volunle is reduced. The phasic 
pattern of Q, evident during submergence 
conceivably "meters out" the lung oxygen 
store, as demonstrated recently in a turtle 
(8 ) ,  while allowing the pulmonary venous 
volume to be reduced to preventilatory lev- 
els. Alternatively, patterns of Q, during 
diving might be related to C 0 2  exchange or 
chemosensory monitoring of circulating 
blood (12). Clearly, the ability to adjust the 
parallel perfusion of pulmonary and system- 
ic tissues-a situation unattainable by birds 
and mammals-has been favored by natural 
selection almost universally during evolu- 
tion of the lower tetrapods (13). The dra- 
matic expression of this capability in Acro- 
clzordus may provide a novel system for stud- 
ies of pulmonary blood flow regulation, as 
well as the performance of cardiovascular 
shunts. 
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Localization of the Pancreatic Beta Cell Glucose 
Transporter to Specific Plasma Membrane Domains 

Irnmunocytochemical techniques revealed that the "liver-type" glucose transporter is 
present in the insulin-producing beta cells of rat pancreatic islets but not in other islet 
endocrine cells. Ultrastructural analysis of the transporter by the protein A-gold 
technique showed that it is restricted to certain domains of the plasma membrane, its 
density being sixfold higher in microvilli facing adjacent endocrine cells than in the flat 
regions of the plasma membrane. These results support a possible role for this glucose 
transporter in glucose sensing by beta cells and provide evidence that these cells are 
polarized. 
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