
which GLADYS (8) is an example. 
The way in which MYCIN made infer- 

ences was'found suitable for other medical 

Computer Programs for Mineral Exploration 

The search for undiscovered orebodies solved rapidly with commercially available 
often begins by targeting areas on two- 
dimensional surface maps that are favorable 
for more detailed exploration, such as three- 
dimensional geophysical surveys and drilling 
to obtain large numbers of core samples for 
geochemical analysis. Target selections are 
based on diverse geological information on 
rock types, mineralogy, stratigraphic rela- 
tions, and structure. Geological maps for a 
study region usually are augmented by re- 

statistical-software packages such as SAS 
( 2 ) ,  which also provide procedures for ob- 
taining various regression diagnostics. 

The diagnostic problems in mineral ex- 
ploration are similar to those in medicine. 
As early as 1556, Agricola in "De Re Metal- 
lica" proposed methods for reading signs on 
the surface of the earth in order to find 
mineral deposits. At about the same time, 
Paracelsus (1493-1541) created a theory of . - 

mote-sensing data &d information on re- similarity for treating disease. It can be " .2 

gional geochemistry and geophysics. Theo- argued (3) that probability concepts grew 
retical models of the genesis and occurrence out of such early rules for reading signs. The 
of orebodies are used for integrating the development of PROSPECTOR (4), an ex- 
many different types of data. pert system for mineral exploration, began 

During the past few years there has been in about 1975. It was preceded by MYCIN 
an upsurge in the use of computers for ( 5 ) ,  one of the first expert systems in medi- - - 
finding orebodies. Geoscientists have either cine for handling subiective and heuristic " ., z 

written their own programs, mostly in For- knowledge of expert physicians to diagnose 
tran, LISP, C, Pascal, or BASIC, or devel- infectious diseases and to provide antimicro- 
oped their techniques within the frame- bial therapy. In PROSPECTOR, statements 
work of commercially available software pack- on evidence and hypotheses are linked 
ages that include intelligent geographic in- through a hierarchical network. Each link 
formation systems (GISs) and expert system between statements is characterized by nurn- 
shells. bers that are not based on direct observation 

Computer-based techniques for problem- but are subjective guesses by experienced 
solving in mineral exploration data integra- scientists. 
tion are discussed in this review, with an The logic for propagating uncertainty 
emphasis on the models on which the soft- through the networks of expert systems 
ware is based. The output of most of these generally is not in agreement with basic 
programs is a map that indicates principlks of probabil* theory. For exam- 
where hidden orebodies may occur. Such ple, in both MYCIN and PROSPECTOR, 
maps may highlight combinations of fea- "fuzzf logic may be used to combine uncer- 
tures which. in  laces that are relativelv well tain facts at the base of the network (61. If , I \ r 

explored, are spatially correlated with these facts have different probabilities of 
known orebodies, or display estimated being true, then the probability that they are 
probabilities for the occurrence of mineral all true simply is set equal to the smallest of 
de~osits. How the uncertainties of facts and the different probabilities. Such a rule may 
the relations between facts are determined not give good results in practice. Mathemat- 
and propagated through the system is of ical statisticians (7) have proposed the use of 
critical importance in these programs. networks that are logically coherent, of 

Historical Perspective 

The history of computer applications in 
mineral exploration is illustrated in Fig. 1. 
The earliest computer programs were for 
regression, discriminant analysis, and other 
multivariate techniques (1). For example, 
total amount of ore per unit area was re- 
gressed on explanatory variables for the type 
of rock, the geological age, and tectonic 
environment. Similar problems can now be 

Multivariate Statistical Analysis (MSA) 

MSA Diagnostics 

Development of Expert Systems (ES) 

ES Shells 
____) 

Interactive Graphics 

GiS - 
Fig. 1. Time-line representation of the applica- 
tions of computer-based techniques in mineral 
exploration. 

diagnosis problems and led to the develop- 
ment of EMYCIN (or empty MYCIN), one 
of the first expert system "shells" (9).  A shell 
does not contain a knowledge base, but 
consists only of internal operative mecha- 
nisms for knowledge representation and 
probability updating. Expert system shells 
currently used by geoscientists include 
GEOMYCIN (10) and The Deciding Factor 
(11), the latter being derived from PROS- 
PECTOR. Commercially available expert 
shells generally are useful for decision-mak- 
ing in complex deterministic situations with 
manv "if-then" rules. 

The advent of interactive graphics in the 
late 1970s facilitated the development of 
spatially based systems in the earth sciences 
that allowed rapid comparison of different 
map patterns. The extraction and display of 
salient features from large digital databases 
is widely used in mineral exploration. Early 
interactive graphic systems included SIM- 
SAG (12) for multivariate statistical analysis 
of data in mineral resource evaluation, 
GIAPP (13) for geological image analysis, 
and NCHARAN (14) for characteristic 
analysis, this latter being a simplified form 
of principal component analysis. A follow- 
up study on target areas outlined by 
NCHARAN in the Grong area of central 
Norway resulted in the identification of a 
previously unknown sulfide vein system 
(14). During the 1980s most mineral explor- 
ation programs, including interactive graph- 
ic systems, could be run on microcomputers. 

Recent GISs such as MAPS (15) resemble 
expert system shells in their knowledge rep- 
resentation as well as logical operations. For 
mineral exploration, intelligent GISs have 
the advantage of being based on maps. For 
example, SPANS (16) allows the rapid pro- 
cessing of map images because it has a 
hierarchical quadtree data structure (that is, 
the region containing the data, or the cell, is 
initially divided into squares by a gridding 
procedure; a process is then started such that 
each square containing data points is subdi- 
vided into four squares). 

Examples of computer programs recently 
developed by geoscientists are muPRO- 
SPECTOR (17) and PROSPECTOR I11 
(18), which are microcomputer and symbol- 
ic workstation-based versions of PROS- 
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K1A OE8. 
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Robert P Futrelie Joseph L. Modelevsky 
Daniel F. Merr~am David A Pensak 

76 SCIENCE, VOL. 245 



Fig. 2. Prognostic contours 
and occurrences of copper de- 
posits in favorable areas near 
(A) Timmins, Ontario, and 
(B) Noranda, Quebec. Open 
circles denote known deposits 
used in 1972 to construct 
contours for predicted nurn- 
her of cells containing one or 
more copper deposits per unit 
area. Solid circles denote later 
discovered copper deposits. 

A 
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PECTOR, respectively; GEOVALUATOR 
(19) for regional mineral resource appraisal 
(based on muPROSPECTOR); EWLOR 
(20), which is primarily designed to analyze 
contour maps derived from wells to find oil 
deposits; and FINDER (ZI), which can be 
used to identify massive sulfide deposits 
through geochemical alteration data. These 
programs are usually used by small teams of 
scientists for research; information on ob- 
taining and implementing these programs is 
given in the references cited. 

Examples of Multivariate Statistical 
Analysis 

In about 1970 it became possible to per- 
form multivariate statistical analysis of large 
regional data sets that were systematically 
coded for small cells belonging to grids 
superimposed in maps. Probabilities esti- 
mated either by stepwise regression or the 
logistic model can be used to construct 
contour maps of the expected frequency of 
undiscovered mineral de~osits Der unit area. 
In Fig. 2 the locations of later discoveries are 
compared with frequency contours for poly- 
metallic massive sulfide deposits in the Abi- 
tibi Volcanic Belt of the Canadian Shield 
(22) on a mineral potential map derived by 
multivariate analysis in 1972. The depen- 
dent variable for the presence or absence of 
sulfide deposits was regressed on explana- 
tory variables obtained by coding rock types 
and regional geophysical maps for square 
cells 10 km on a side. The estimated proba- 
bilities for such cells were added to obtain 
freauencies for unit areas 40 km bv 40 km 
and contoured. The validity of suih prog- 
nostic contours could be assessed statistical- 
ly (23). However, in most multivariate sta- 
tistical analysis methods it is difficult to 
interpret the estimated coefficients. Al- 
though diagnostics now can be used to 
evaluate the effect of individual observations 
on estimated probabilities and coefficients, 

Fig. 3. Prognostic probability map 
generated by FINDER for Kuroko de- 
posits in Hokuroku Mining District, 
Japan, based on sodium depletion and 
sericite and gypsum plus anhydrite 
(21). 

the latter generally cannot be used as 
weights for extrapolation to other regions. 

In applications of multivariate analysis, 
the study region should contain sufficient 
information on the type of deposit consid- 
ered and its relations with the ex~lanatorv 
variables quantifying the geological frame- 
work. These conditions are rarely hlfilled. 
Normally, facts for similar mineral deposits 
elsewhere should be included. Polymetallic 
massive sulfide deposits, which were orig- 
inally formed on the seatloor, are exception- 
al in that they permit multivariate analysis 
on a regional basis. 

The program FINDER (21) was used 
recently for targeting the Kuroko deposits in 
the Hokuroku District in Japan, which are 
polymetallic massive sulfide seatloor depos- 
its of Miocene age. FINDER combines 
concepts of spatial-statistics with frequency 
distribution information. It is assumed that 
every sulfide deposit occurs at the center of 
an ellipse reprisenting its alteration zone. 
Inside the ellipse, chemical composition of 
the volcanic rocks hosting the deposit is 
assumed to differ from the regional back- 
ground. The study area is divided into a 

number of small cells. All of these are as- 
signed a prior probability of containing a 
deposit. Revised (posterior) probabilities 
are calculated for each cell on the basis of the 
spatial arrangement of the samples and the 
size of the elliptically shaped target. The 
latter can be regarded as a template that is 
successively centered over each of the small 
cells. All samples under the template are 
used to revise the prior probability. The 
underlying statistical model is that altered 
rock and background each have a multivari- 
ate normal distribution for all chemical ele- 
ments considered. An example of FIND- 
ER'S output is shown in Fig. 3. Most of the 
known Kuroko deposits occur in areas with 
relatively high posterior probability. The 
map can be used for targeting unknown 
Kuroko deposits in the same district. 

PROSPECTOR 

In the original PROSPECTOR, the need 
was recognized to integrate, on a worldwide 
basis, all information that may be relevant to 
the possible occurrence of a type of mineral 
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deposit. For each deposit type, a network of 
statements was created by an expert eco- 
nomic geologist assisted by a knowledge 
engineer (24). PROSPECTOR has been 
credited with the recognition of a hidden 
molybdenum deposit near Mount Tolman 
in Washington (25). Some of the rules used 
in this application schematically are shown 
in Fig. 4A (26). The boxes represent state- 
ments of evidence or hypotheses, whose 
interrelation is represented by connecting 
arrows. Most of these arrows are accompa- 
nied by two numbers (LS and LN) that 
represent the likelihood measures for "suffi- 
ciency" and "necessity," respectively. The 
prior probability of a statement at the end of 
an arrow is either increased or decreased by 
LS or LN, depending on the presence or 
absence of the supporting evidence. The 
prior probabilities and likelihood measures 
were subjectively estimated. 

The rules of PROSPECTOR are a mix- 
ture of statistical procedures and heuristic 
reasoning, that is, an approximate version of 
Bayes' rule is used. At the base of the 
particular network shown in Fig. 4A, which 
uses information from soil geochemistry, 
the statements deal with the situation that 
the molybden~un deposit of interest is likely 
to occur at a positive molybdenum anomaly 
but away from a gold anomaly. Suppose that 
the first of these two statements of evidence 
(X near peak Mo) is labeled E. If E is true, 
the prior probability P(H) = 0.17 of H, 
which represents the subsequent hypothesis 
(suggestive AdlMo at X) being true, is 
changed by the factor LS = 20 as follows. 
The probability P is replaced by its corre- 
sponding odds 0 = Pl(1 - P) [O(H) = 
0.20481. The prior probability of E (= 0.1 
in Fig. 4A) is ignored because E is true. The 
conditional odds O(HIE) of H being true 
given the evidence satisfy O(HIE) = LS X 

O(H) = 4.096, so that the posterior proba- 
bility P(HIE) becomes 0.804. However, i fE  
is true (that is. E is false), O(H) would be 
multiplied by L N  = 1, so that P(H) would 
remain unchanged. The subjective numbers 
of Fig. 4A are not logically coherent. If 
Bayes' rule was satisfied, L N  = 1 would 
imply LS = 1 (see below). 

If, in addition to E being true, the other 
evidence statement (X "away from" Au) is 
true, then O(HIE) = 4.096 is multiplied by 
3 (= LS for other evidence) to yield a higher 
posterior probability for H (suggestive Aui 
Mo at X) equal to 0.925. The logical AND 
statement ( n )  ln the box for the hypothesis 
"favorable AdMo at X" in Fig. 4A means 
that the previous hypothesis "suggestive A d  
Mo at X" may be replaced by this stronger 
statement if there is "200 to 400 ppm at X." 

PROSPECTOR assumes that if "favor- 
able AdMo at X" is at its prior probability 

P(E) = 0.1, the prior probability of "favor- 
able soil geochemistry" (0.17) would be 
changed into the posterior probability 
P(HIE) = 0.381 through O(HIE) = 
0.6145. The previously computed probabil- 
ity (= 0.925) of "suggestive Au/Mo at X" 
then is propagated by the following rule. 
The posterior probability of "favorable soil 
geochemistry" should be the fraction (0.925 
- O.l)i(l - 0.1) = 0.9167 of the way 
between 0.17 and 0.6145, or 0.17 + 
0.9167 x (0.6145 - 0.17) = 0.577. The 
probability of the evidence being false is not 
considered in this rule. 

Weights of Evidence 

P(H), LS, and LN, were defined, whereas 
only three parameters are necessary statisti- 
cally; and 

2) If LS and LN were likelihood ratios in 
a statistical sense, then LN = 1 would imply 
LS = 1, and vice versa. Relatively minor 
changes in the numbers of the network of 
Fig. 4A would make them logically coher- 
ent, as is shown in Fig. 4, B and C, for two 
portions of the network, at its top and base, 
respectively. The four probabilities for inter- 
sections of E, H, and their complements can 
be represented as 

The preceding rules in PROSPECTOR 
are based only in part on probability theory Any three probabilities in this table that are 
(27). The two main obstacles to logical not in the same row or column completely 
coherence in the network of Fig. 4A are define the system because the sum of the 
that: four probabilities for the logical intersec- 

1) Each rule for proceeding from evi- tions equals 1. If H and E are statistically 
dence (E) to hypothesis (H) in the system is independent, P(HnE) = P(H) X P(E) and 
overspecified because four parameters, P(E), P(H) = P(HIE) = P(HIE). 

FAVORABLE LOCATION / FOR DRILLING I 

/ INDICATORS OF 1 
PRESENCE OF COPPER 

CARBONATES AND I 1 SIL1CATES 

20,0.1 i0,o.i 
0.17 

X IN REGION WHERE FLUID FAVORABLE SOIL 
INCLUSION DATA SHOW GEOCHEMISTRY 

SATURATED BRINE A 

SUGGESTIVE , . o,i 

X NEAR PEAK MO XnAWAY FROM" Au 

FAVORABLE LOCATION 1 FOR DRILLING 

2,l 

0. I 

200 TO 
400 PPM 
Cu AT X 

t 
3.0.26 

INDICATORS OF 
PRESENCE OF COPPER . 20:o. 1 

X IN TRANSITION 
AREA BETWEEN 

FAVORABLE 
AuJMo-AT X 
<A.N D) 

I 0.36 

FAVORABLE SOIL 
GEOCHEMISTRY 

X NEAR 
PEAK Mo 

1 EVIDENCE 1 I I EVIDENCE 1 
PRESENT ABSENT 

EVIDENCE / 
UNKNOWN 

Fig. 4. (A) Part of the PROSPECTOR network for porphyry molybdenum deposits (26). (6) Example 
of two consecutive links in network of uncertain statements that are logically coherent. (C) Example of 
two parallel links in network of uncertain statements that are logically coherent. (D) Connection 
between "evidence" and "hypothesis" in the weights of evidence method. 
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If two likelihood ratios L1 = P(EIH)I 
P(EI@ and L2 = P ( E I ~ I P ( E I @  are de- 
fined, then O(HIE) = L1 x O(H) and 
O ( H I ~ )  = L2 x O(H). Although it would 
seem that L1 and L2 are identical to LS and 
LN, it also follows that P(E) = [P(H) - 
P(HIE)]I[P(HIE) - P(HIE)]. In Fig. 4A, 
the prior probability of "favorable location 
for drilling" is P(H) = 0.17. Setting L1 = 3 
and L2 = 0.25 gives P(H1E) = 0.381 and 
P ( H I ~ )  = 0.049, respectively, so that P(E) 
= 0.364 (Fig. 4B) instead of 0.17 as in Fig. 
4A. Downward propagation of 0.364 by the 
same method yields a prior probability of 
"favorable soil geochemistry," which is 
equal to 0.358 (Fig. 4B) instead of 0.17 
(Fig. 4A). A logically coherent network in 
which all three prior probabilities remain 
equal to 0.17 (as in Fig. 4A) could be 
constructed, but then at least one of the 
numbers in each of the two pairs (LS, LN) 
must be changed. The other difference be- 
tween the pairs (L1, L2) and (LS, LN) is that 
L1 and L2 either both equal 1 or differ from 
1 [the latter occurs if P(H) = P(HIE) = 
P ( H ~ ) ] .  The partial network of Fig. 4C was 
made logically coherent by changing the 
values of L N  that were equal to 1 in Fig. 4A. 

The previous discussion was given in de- 
tail to help preface the weights of evidence 
method illustrated in Fig. 4D (27). A dis- 
tinction is now made between evidence that 
is either present, absent, or unknown. The 
weights of evidence corresponding to these 
three possibilities are W+ = h L 1 ,  W- = 
hL2,  and WO = 0. The third possibility ( WO 

= 0) represents the situation that P(HIE) = 

P(HIE) = P(H), implying that the prior 
probability of the hypothesis remains un- 
changed when there is no evidence. This 
situation, in which L1 = L2 = 1, cannot be 
distinguished from presence (or absence) of 
"evidence" that is statistically independent 
of the hypothesis. 

Unless both are equal to zero, W+ and 
W- must have opposite signs. Normally, 
the existence of evidence (such as a "posi- 
tive" anomaly) implies that the correspond- 
ing hypothesis is strengthened, so that nor- 
mally W+ > 0 and W- < 0. However, it 
may be useful to define evidence with W+ < 
0 and W- > 0, such as when the weights of 
different features are compared with one 
another. 

Combining Weights of Evidence 

The weights of different types of evidence 
for the same hypothesis can be added pro- 
vided that the features considered are condi- 
tionally independent of the hypothesis. The 
validity of the assumption of conditional 
independence can only be tested if probabil- 

ities are available for the hypothesis being 
true or false under all possible combinations 
of evidence. Suppose that "X near peak Mo" 
in Fig. 4C is written as El, "X away from 
Au" as E2, and "suggestive AulMo at X" as 
H. The eight different outcomes imply seven 
degrees of freedom. Acceptance of the seven 
numbers specified for the two links in Fig. 
4C would mean that two parameters remain 
to be specified. (Separate links between box- 
es have three parameters, so that two links 
have only five parameters if one box is 
shared.) Conditional independence would 
imply that P(ElnE21H) = P(EIIH) x 
P(E2H) and that P ( E ~ ~ E ~ I @  = P ( E ~ I @  
x P ( E ~ I @ ,  which is equivalent to P(EI- 
n ~ ~ n q  = P(EIIH) x P ( E ~ I H )  x P(H) and 
P ( E ~ ~ E ~ ~ H )  = P ( E ~ I @  X P ( E ~ I @  X 

P(@. With the seven numbers shown in 
Fig. 4C, these two additional conditions 
result in a fully specified system. If the 
weights for El and E2 are written as W1 and 
W2, then lnO(HlElnE2) = W1+ + W2+ + 
lnO(H), and similar rules apply for combin- 
ing evidence including g1 or g2. Thus if El 
and ~2 are true, H has a posterior probabili- 
ty P ( H I E ~ ~ ~ ~ )  = 0.77, as follows from 
~ o ( H I E ~ ~ E ~ )  = ln (20) + In (0.84) + In 
(0.1710.83) = 1.236. In the situation of Fig. 
4B, it could be assumed that H and EI are 
conditionally independent of E2, implying 
that P(HIElnE2) = P(HIE2) and 
P ( H I E ~ ~ E ~ )  = P ( H I E ~ ) .  If E2 is true, the 
probability H would increase from 0.17 to 
0.381, independent of whether El is true. 

Suppose that, as is common practice in 
backward chaining expert systems, the user 
is asked questions regarding evidence in 
sequence, moving down from the top to- 
ward the base of the network. Then, if 
evidence near the top is available, there may 
be no need to proceed further downward 
through the network. Obviously, this strate- 
gy is in accordance with the preceding as- 
sumption of conditional independence of H 
and El with respect to E2. Suppose that E2 is 
missing but that El is true. One could 
proceed one step downward into the net- 

work and calculate P(HIEI) = P(El flH)I 
P(El) = [P(ElnE2nH) + P ( E ~ ~ ~ ~ ~ H ) ] I  
P(E1). From the numbers of Fig. 4B, 
P (HEl )  = 0.354, which is only slightly less 
than P(HIE2) = 0.381. 

By continuing to make assumptions of 
conditional independence, large, logically 
coherent networks can be constructed. 
GLADYS (8) provides an example of an 
expert system based on the assumption 
P(HIElnE2n ... En) = P(HIE1) X P(HIE2) X 

... P(HEn) .  The probabilities of n symptoms 
in GLADYS were determined by means of 
sampling experiments and the assumption of 
conditional independence is tested statisti- 
cally. A similar approach discussed below 
can be used in regional mineral exploration 
when the probabilities are determined from 
areas measured by using a geographic infor- 
mation system. 

Integration of Datasets for Gold 
Exploration in Nova Scotia 

In this example, the weights of evidence 
method was combined with a GIs  called 
SPANS (16) to determine probabilities for 
map patterns. SPANS uses a raster data 
structure with a variable ~ i x e l  size. Raster 
images up to a maximum resolution of 2'' 
by 215 pixels can be handled, although nor- 
mally most SPANS applications deal with 
maps with a quad level of 10 to 12, that is, 
with a size between 21° and 212 (1024 by 
1024 and 4096 by 4096 pixels). Typical 
hardware needed to run SPANS is an 80386 
DOS-based personal computer with a 70- 
Mbyte hard drive. The system accepts a 
variety of vector and raster data inputs, 
allows forward and backward transforma- 
tions from about 20 cartographic projec- 
tions to geographic coordinates and pro- 
vides a powerful set of analytical tools for 
analyzing multiple maps. Because SPANS 
permits the user to move readily to DOS, 
other DOS-compatible software (such as 
editors, statistical packages, and locally de- 

Table 1. Meguma Terrane, central Nova Scotia. Binary map patterns were used to estimate posterior 
probabilities of a gold deposit occurring in a 1-km2 unit. Weights W+ for presence or W for absence 
were added to the logarithms of odds of prior probability. Errors are standard deviations. 

Map pattern 
Corridor Area 

width 
(km) (km2) 

Geochemical signature 
Anticline axes 
Northwest lineaments 
Granite contact 
Goldenvile-Halifax contact 
Halifax Formation 
Goldenville Formation 
Devonian granite 

Gold 
de- 

posits 

10 
50 
17 
12 
34 

3 
63 

2 
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veloped programs) can be executed on mu- 
tually shared data files. 

In addition to presence or absence of rock 
types, five potentially useful exploration in- 
dicator patterns for occurrence of gold de- 
posits were digitized for Meguma Terrane in 
central Nova Scotia (28) (Table 1). The 
mechanism of gold mineralization is not 
well understood, and each of the five pres- 
ence-absence indicator patterns reflects a 
separate prospecting philosophy for the fa- 
vorable occurrence of gold deposits (29). 
Positive lake sediment geochemical anoma- 
lies provided a polygonal pattern for parts of 
the region only. The other four patterns 
consisted of corridors representing proximi- 
ty to linear or curvilinear features. The half- 
width of these corridors was optimized by 

maximizing the contrast C = I W+ I + I W- i ,  
which measures the strength of correlation 
between a corridor pattern and the point 
pattern for known gold deposits. For exam- 
ple, two corridor patterns are shown in Fig. 
5, A and B. The contrast C as a function of 
half-corridor width for proximity to anti- 
cline axes is shown in Table 2. 

The weights in Table 1 suggest that posi- 
tive geochemical anomalies are the best indi- 
cators of gold mineralization, followed by 
proximity to anticline axes. Relatively few 
gold deposits occur outside the corridors in 
Fig. 5A, and this is reflected by the absolute 
value of W-(= -0.7735) exceeding 
W+(= 0.5452) for this pattern. The maxi- 
mum contrast for proximity to Goldenville- 
Halifax contact (= 0.3683 + 0.2685 = 

Table 2. Weights and contrast ( W +  - W - )  of binary patterns for proximity to anticlinal axes as a 
function of corridor half-width; total area, 2945 km2; total number of known gold deposits, 68. Errors 
are standard deviations. 

Corridor Corridor 
half-width area W+ W - Gold 

deposits 
(km) (km2) 

*,Maximum contrast for corrldor pattern selected. 

Anticl~ne binary pattern *.> 7 

"bd We~ght for feature present w+ = 0 5452 
Weight for feature absent w- = -0 7735 1 -- - - -- - - - - 

- 

I Goldenville-Halifax contact 

I binary pattern 

I 

'&'* Welght for feature present w+ = 0.3683 1 
Wetght for feature absent w- = -0 2685 1 

Posterior probabil~ty for Au Past producers 
I with uncertatnty mask Occurrences 

Fig. 5. Corridor patterns for (A) anticline axes 
and (B) contact between Goldenville and Halifax 
Formation, central Nova Scotia. Thcse are exam- 
ples of binav patterns obtained with SPANS for 
"corridors" around linear or cun~ilinear geological 
features believed to be favorable for occurrence of 
gold deposits. (C) Posterior probability of gold 
occurrence per unit area (1  km by 1 km) in part of 
Meguma Terrane, central Nova Scotia. A blank 
pattern denotes an uncertainty mask where the 
estimated posterior probability was less than 
twice its standard deviation. 

0.6368) is less than one-half of that for the 
anticline axes (= 1.3187) (compare Fig. 9A 
with 9B). 

In this application, the probability that a 
small unit area, measuring 1 km on a side, 
contains a gold deposit was set equal to total 
number of known gold deposits divided by 
total area measured in sauare kilometers. 
The weights for presence or absence of each 
of the patterns available for each unit area 
were added to the logarithm of the prior 
odds in order to obtain the logarithm of the 
posterior odds. The corresponding posterior 
probabilities are shown for part of the study 
area in Fig. 5C. Weights of evidence and 
prior probability have their own uncertain- 
ties. which can be estimated and added to 
obtain standard deviations for the estimated 
posterior probabilities. Missing patterns 
provide additional uncertainty which also 
was considered. Only posterior probabilities 
with t test values greater than 2 (P < 0.05) 
are shown in Fig. 5C. 

The prior probability P(H)  of occurrence 
of a gold deposit in a unit cell was based on 
known deposits only. Suppose that it would 
be increased by assuming that there are 
undiscovered deposits in the region. New 
posterior probabilities can be computed 
with the weights kept constant, which 
would be equivalent to assuming that the 
undiscovered deposits are associated with 
the indicator patterns in the same way as the 
known deposits. 

As expiained in the previous section, 
weights may only be added if their patterns 
are conditionally independent. This assump- 
tion was tested (i) for ail possible pairs of 
indicator patterns by using procedures from 
discrete multivariate analysis (30) and (ii) by 
using the pattern of posterior probabilities 
to obtain expected frequencies for occur- 
rence of gold deposits for comparison with 
observed freauencies in unit cells with the 
same posterior probabilities. Each chi- 
square test for conditional independence of 
a pair of two patterns has two degrees of 
freedom. The estimated chi-square value 
exceeded the 5% significance level but not 
the 1% level for only one pair of patterns 
(proximity to anticline axes and proximity to 
contact between Halifax-Goldenville For- 
mations), which indicates that the assump- 
tion of conditional independence of the 
patterns listed in Table 1 is approximately 
satisfied. 

A comparison of frequency distributions 
in a Kolomogorov-Smirnov test using the 
posterior probabilities of all unit cells to 
provide the expected frequencies is shown in 
Fig. 6. If two or more patterns would be 
conditionally independent, the expected fre- 
quencies in this second test would overesti- 
mate the observed frequencies when the 
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Fig. 6. Frequency distribution curves of observed 
and expected gold deposits as a h c t i o n  of their 
posterior probability. The expected frequency 
would exceed the observed frequency for larger 
posterior probabilities if one or more pairs of 
indicator patterns were not conditionally inde- 
pendent of the pattern of gold deposits. Differ- 
ences between curves are statistically significant at 
the 5% but not at the 1% significance level in the 
Kolrnogorov-Smirnov test. 

posterior probability is relatively large and 
underestimate them when it is small. Some 
conditional dependence may indeed exist, 
but it is as not significant at the 1% level for 
the Kolmogorov-Smirnov test. 

Concluding Remarks 

Future mineral exploration expert systems 
will probably remain map-oriented both in 
input and output. In such systems the rules 
for spatial pattern integration should be as 
simple as possible but logically coherent. 
They should allow verification of assump- 
tions such as that two or more prognostic 
patterns are conditionally independent with 
respect to occurrence of mineral deposits. 
Estimated probabilities for occurrence of 
hidden ore deposits should be accompanied 
by measures of uncertainty, including uncer- 
tainty due to missing data. 
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