
Do Mathematicians Still Do Math? 
Yes, but increasingly they are turning to computers to help them with some of their trickier proofs 

IN HISTREATISE ON CELESTLALMECHANICS, 
the 19th-century mathematician Pierre-Si- 
mon de Laplace found it convenient to 
shorten some of his proofs to the phrase, "It 
is easily seen that. . . ." Students of his work 
came to dread those words. What Laplace so 
easily saw often took others days if not 
weeks to reproduce. Even Laplace some- 
times had trouble figuring out how he had 
seen things so easily. 

That hasn't stopped mathematicians from 
mimicking Laplace. But a growing number 
of research papers offer a new wrinkle as 
well: mathematicians are increasingly turn- 
ing to computers to fill in critical steps in 
their calculations and logical arguments. 
Some mathematical truths are easily seen, it 
seems, if you happen to be a VAX 8600. 

To be sure, most mathematical proofs are 
still done the old-fashioned way, with pencil 
and paper. And for some mathematicians, 
proof by computer will always be anathema. 
But for others the computer is a versatile 
and powerful tool for attacking otherwise 
intractable problems. Computerproofs have 
penetrated into areas of number theory, 
geometry, dynamical systems, functional 
kalysis,. combinatorics, and even Laplace's 
domain of celestial mechanics. 

The most famous computer-assisted proof 
is the 1976 proof of the Four Color Theo- 
rem by Kenneth Appel and Wolfgang Ha- 
ken at the University of Illinois. Last year 
Clement Lam and colleagues at Concordia 
University in Montreal completed a com- 
puter proof in finite geometry showing that 
a certain type of projective 
plane does not exist (Science, 
16 December 1988, p. 
1507). Each proof boiled 
down to a theoretical analvsis 
followed by a brute-force 
computer search through 
thousands of cases, subcases, 
and sub-subcases-just the 
sort of thing that machines 
excel at. 

In 1981, Oscar Lanford 
I11 at the Institut des Hautes 
Etudes Scientifiques, Bures- 
Sur-Yvette, made a quite dif- 
ferent use of computer pow- 
er to prove a result known as 

the Feigenbaum conjecture. Loosely speak- 
ing, the Feigenbaum conjecture concerns 
the rate at which a process known as period 
doubling occurs in a large class of dynamical 
systems. Lanford called on the computer to 
carry out a set of complicated numerical 
calculations that proved the conjecture. 

Numerical computation such as Lanford's 
might sound like a natural thing for a com- 
puter to do, but making computations pre- 
cise is not. The problem stems from the fact 
that computers can represent only a finite, 
necessarily discrete, subset of real numbers, 
so that even simple arithmetic falls prey to 
round-off errors. Fortunately, the proof of 
the Feigenbaum conjecture rests, in part, on 
showing that a certain number is less than 1. 
The computer succeeds in proving this by 
calculating not the number in question but a 
slightly larger number, which is obtained by 
consistently rounding up at each step in the 
computation; since this larger number turns 
out to be less than 1, the proof is complete. 

More generally, computers can supply 
rigorous numerical estimates through an 
approach called interval arithmetic. Instead 
of trying to approximate a real number with 
a single machine value, interval arithmetic 
works with two approximations: one slightly 
large and one slightly small. Arithmetic is 
then done on the two bounds. Any time a 
round-off occurs, the lower bound is round- 
ed down and the upper bound is rounded 
up. In other words, interval arithmetic keeps 
track of an interval that is guaranteed to 
contain the number it claims to represent. 

Jean-Pierre Eckrnann. a mathematical 
physicist at the ~niversiik de Genkve, says 
that further analysis has made it possible to 
do some of the. Feigenbaum esiirnates by 
hand-especially if the hand is holding a 
pocket calculator-but others continue to 
reauire more calculation than a human 
would care to do. Eckrnann and colleagues 
have also applied interval arithmetic to other 
problems in functional analysis that depend 
on extensive rigorous computations. 

Case crunching and number (or interval) 
crunching are not the only ways that com- 
puters about proving things. They also 
do a lot of symbol crunching. P o w e f i  
computer algebra systems such as Mathema- 
tics, MACSYMA, Reduce, and Scratchpad 
allow mathematicians to ~ l a v  with exact 

L ,  

algebraic and analytic expressions, which the 
computer, like a dull but industrious stu- 
den< treats as meaningless strings of sym- 
bols subject to mysterious rules and opera- 
tions. Much as pocket calculators alleviate 
the pain of filling out tax forms, algebraic 
processors take the tedium and worry out of 
long, complicated derivations. 

Kenneth Mever and Dieter Schmidt at the 
University of Cincinnati used computer al- 
gebra to get new results on the n-body 
problem in celestial mechanics. The n-body 
problem is perhaps the simplest mathemati- 
cal problem that defies exact solution. It 
concerns the motion of objects, such as stars 
or planets, that attract each other gravita- 
tionally according to an inverse square law. 
When n = 2, such a system does have an 

exact solution: the elliptical 
orbits of Kepler. But when 
more than two objects are 
flying around, the problem 
becomes intractable: there 
are no analytic expressions 
that describe h ture  positions 
based on arbitrary initial con- 
ditions. 

However, certain initial 
conditions do permit exact 
solutions. In particular, if 
n - 1 identical "planets" are 
placed symmetrically around 
a central "sun" and spun at 
just the right rate, the circu- 
lar motion is eternal-what 
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I The Sorcerer's Apprentice 
While some mathematicians are working on computer-assisted proofs, Siemion 
Fajtlowicz has taken the opposite approach: computer-assisted conjectures. 
Fajtlowicz, a mathematician at the University of Houston, has developed a computer 

I program, called Graffiti, that generates conjectures by the truckload.- he program's 
output is so prodiglous that Fajtlowin has had to  write other programs that sift 
through Graffiti's offerings and decide which ones are interesting enough to pass 
along. 

Graffiti works in a branch of mathematics called graph theory. A graph in this 
context is simply a finite collection of points, called vertices, and edges, which connect 
various pairs of vertices. Represented geometrically, a graph may look like a stick 
model of an organic molecule or the complicated design of a printed circuit. In fact, 

/ chemisq and-computer science are two areas where graph theory has found 
applications. I The basic idea of Grailiti, Fajtlowin explains, is that it "knows" certain graphs and 

I can evaluate various formulas based on certain fundamentals of graph theo& called 
u .  

invariants. Anytime G r d t i  runs across a formula that 
is true of all the graphs in its library, it considers the 
formula a conjecture. If a conjecture later turns out to 
be false, Fajtlowicz can tell Graffiti about it by adding 
a counterexample to the program's repertoire of 
graphs. Usually a single graph acts as a counterexam- 
ple to several false conjectures, so Graffiti's library is 
still fairly small; it now contains about 200 graphs. 

Invariants of a graph are numbers that don't change 
if the graph is redrawn or relabeled. They range from 
geometric data, such as the graph's diameter (deter- 
mined by finding the shortest path between each pair 
of vertices), to algebraic information, such as the 
number of positive eigenvalues of the graph's adjacen- 
cy matrix. While some are purely mathematical con- 
coctions, other invariants seem to have real physical 
meaning. One called the Randic index, for instance, is 
used to predict boiling points of hydrocarbons. 

I Grafliti's conjectures all say that one invariant is-less than or- equal to another 
invariant (or combination of invariants). For instance, G r d t i  conjectured (correctly) 
that the Randic index is never more than the number of vertices; Graffiti also claims 
that the average &stance between vertices is never more than the Randic index, a 

1 conjecture that remains to be settled. So far Graffiti boasts a respectable batting 

I average: of the conjectures that have been settled, roughly a third have been proved 
correct. / Faitlowin first ran Graffiti in 1985. Using a library of about 40 graphs, the 

I generated more than 7000 conjectur&. The sheer volume forced ~ajtlowicz 
;o &troduce programs that would evaluate Graffiti's output. Picking out interesting 
conjectures, Fajtlowia says, is itself an important problem. 'The main problem is not 
how to write a program which will decide whether a given conjecture is interesting, 
but on what basis to make this decision." 

One approach is to trace the "genealogy" of invariants-that is, how their 
definitions are related. From this point of view a conjecture about sibling invariants is 
less interesting than a conjecture about distant relatives. For instance, an inequality - .  

I comparing geometric data to algebraic information is more interesting than a . - .  

I comparison of, say, the radius to che diameter of a graph. 
Fajtlowin acknowledges that interesting conjectures might get lost in the shuBe, 

but says that the alternative is a "flood of dull conjectures." A somewhat futuristic 
possibility is to hook Graffiti up with an automatic theorem prover-a program that 
iodrs for.short or obvious pr&fs-and reject as dull anydung the machine can prove 
for itself. Given that the current list of "interesting" conjectures numbers dose to 
1000 statements, the future of Graffiti may lie with machines rather than humans. 
Mathematicians sometimes joke about journal papers that are written for and 
understood by only a handful of specialists. ~ o u l d ~ c o m ~ u t e r s  wind up doing the 
--and WID they get the joke? m B.A.C. 

mathematicians call a relative equilibrium. 
Using a combination of symbol crunching 
and number crunching, Mever and Schmidt 
found a host of new relative equilibria, 
which arise as deformations of the svmmet- 
ric, central configuration. 

Schmidt wrote a special-purpose algebraic 
processor. POLYPAK, to carry out the sym- 
bolic manipulations on the n-body equa- 
tions needed to bring them into a form 
amenable to further analysis-just the sort 
of computation Laplace might have called 
"easily seen." Theoretical considerations 
then proved that the central configuration 
split, or bifurcated, into new, less symmetric 
equilibria as the mass of the "sun" increases. 
The new configurations could then be 
drawn using ordinary numerical methods. 

Can computer proofs be trusted? There is 
always the risk that a programming bug 
might cause the system to overlook cases or 
carry out the wrong calculation, but these 
traps occur with people-generated proofs 
too. Proponents therefore believe that com- 
puter proofs are reliable, provided that the 
programs are thoroughly checked and that 
the proofs are run on reliable software. Says 
Charles Fefferman of Princeton University: 
"There are differences of orders of magni- 
tude-a computer proof is much more com- 
plicated than a standard proof, so it has to 
be checked more carefully. But it's the same 
kind of issue." 

The doubts are partly philosophical, part- 
ly a matter of taste. Computer proofs call 
into question the nature of human participa- 
tion in mathematics, reminiscent of the 
sound-of-a-falling-tree conundrum: Has a 
theorem been proved if no one has read the 
proof? There is also a question of aesthetics: ' 
Do computer-assisted proofs meet the crite- 
ria of simplicity and elegance that mathema- 
ticians hold dear? There is a long-standing 
tradition in mathematics that short proofs 
are best. Can a few lines of code that call for 
50 million calculations be considered a short 
proof? 

Science fiction scenarios aside (one can 
imagine a computer saying it has a marvel- 
ous proof of Fernlat's Last Theorem, which 
the floppy disk is too small to contain), 
computers are unlikely to replace human 
mathematicians anytime soon. Nevertheless, 
Eckrnann has introduced a phrase that may 
become commonplace. Speaking on the Fei- 
genbaum conjecture at a recent conference 
at the University of Cincinnati on comput- 
er-assisted proofs in analysis, Eckmann 
pointed to a technical definition and joked, 
"This is the brain-assisted part of the proof." 
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