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Interleukin-2 Receptor 3 Chain Gene:
Generation of Three Receptor Forms by Cloned
Human « and B Chain cDNA’s

MASANORI HATAKEYAMA, MITSURU TSUDO, SEJIRO MINAMOTO, TAKESHI KONO,
TAKESHI Do1, TAKASHI MIYATA, MASAYUKI MIYASAKA, TADATSUGU TANIGUCHI

Interleukin-2 (IL-2) binds to two distinct receptor mole-
cules, the IL-2 receptor a (IL-2Ra, p55) chain and the
newly identified IL-2 receptor B (IL-2RB, p70-75)
chain. The cDNA encoding the human IL-2R chain has
now been isolated. The overall primary structure of the
IL-2RB chain shows no apparent homology to other
known receptors. Unlike the IL-2Ra chain, the IL-2Rf
chain has a large cytoplasmic region in which a functional
domain (or domains) mediating an intracellular signal
transduction pathway (or pathways) may be embodied.
The cDNA-encoded B chain binds and internalizes IL-2
when expressed on T lymphoid cells but not fibroblast
cells. Furthermore, the cDNA gives rise to the generation
of high-affinity IL-2 receptor when co-expressed with the
IL-2Ra chain cDNA.

cell-to-cell communications, are essential in the regulation of
the immune system. Cytokines induce proliferation, differ-
entiation, and activation of target cells through interaction with
specific cell surface receptors. Interleukin-2 (IL-2), previously de-
fined as T cell growth factor (1), is one of the best characterized
cytokines, and it has a pivotal role in the antigen-specific clonal
proliferation of T lymphocytes (T cells) (2). IL-2 also appears to act
on other cells of the immune system such as immature thymocytes
(3), B lymphocytes (B cells) (4), macrophages (5), natural killer cells
(NK cells) (6), and lymphokine-activated killer cells (LAK cells) (7).
These multifunctional properties of IL-2 have opened new possibili-
ties in the formulation of immunotherapies such as adoptive immu-
notherapy (8). Furthermore, IL-2 has been shown to function also
on neural cells such as oligodendrocytes (9), suggesting a possible
involvement of this cytokine in the central nervous system. Despite
extensive studies on the IL-2 system, information on the molecular
mechanisms underlying the IL-2—-mediated signal transduction (10)
is limited.
The IL-2 receptor (IL-2R) is present in three forms: high-,
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intermediate-, and low-affinity forms with respect to binding ability
to IL-2, and respective dissociation constants (Kg’s) of 107''M,
107°M, and 1075M (11, 12). After the IL-2Ra chain (Tac antigen,
p55) was characterized (13), it became evident that the a chain
constitutes the low-affinity form and is not functional in IL-2
internalization and signal transduction unless it is associated with
another specific membrane component (or components) of lym-
phoid cells (14, 15). Subsequently, the lymphoid membrane compo-
nent was identified as a novel receptor chain, termed B chain (or
p70-75) (12, 16, 17). In fact, experimental evidence has suggested
that the IL-2R chain by itself constitutes the intermediate-affinity
form (12). In addition, its association with the IL-2Ra chain seems
to result in the high-affinity form of the receptor (12, 16, 17).
Expression studies with wild-type and mutated IL-2Ra chain
c¢DNA’s support the possibility that the IL-2RB chain but not the
IL-2Ra chain has one or more domains responsible in driving the
intracellular signal transduction pathways (18). Thus, elucidation of
the structure and function of the IL-2RB chain should provide
further insight on the molecular basis of the high-affinity IL-2R as
well as on the mechanism of signal transduction operating in IL-2
responsive cells. We now report the isolation, structural analysis,
and expression of the cDNA’s encoding the human IL-2R chain.
We present data showing the reconstitution of three forms of IL-2R
in Jurkat cells, an IL-2R~-negative human T cell line, and discuss the
IL-2—mediated events in reconstituted systems.

Isolation and analysis of the cDNA clones. In isolating the
c¢DNA clones, we applied an expression cloning strategy by using
two monoclonal antibodies, Mik-B 1 and Mik-B 2 (19), to the IL-
2R chain found on the human leukemic cell line YT (20). The
cDNA library was prepared with the polyadenylated (poly(A)™)
RNA (30 pg) from YT cells according to standard procedures. In
the successful experiment, a pool of recombinant plasmid DNA’s
representing 5.6 X 10° cDNA clones were transfected into COS-7
cells, and cDNA clones giving rise to the expression of the antigenic
epitopes were selected as described (21). After four cycles of
expression screening, we isolated two independent cDNA clones,
pIL-2RB 9 and pIL-2RB 30; ecach of the expression products
specifically reacted with the antibodies. The two clones contained
c¢DNA inserts of 1.3 kb and 2.3 kb, respectively, and cross-
hybridized with each other. Subsequent sequence analysis of the
cDNA’s revealed that they represent the same mRNA. In fact, RNA
blotting analysis revealed that the mRNA is approximately 4 kb (see
below). Subsequently, we screened other YT ¢DNA libraries with
the cloned cDNA’s as probes, and isolated several independent
cDNA clones which together cover the entire mRNA for the IL-
2R chain.
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Complete nucleotide sequencing of four of the cloned cDNA’s
(Fig. 1) revealed a large open reading frame that encodes a protein
consisting of 551 amino acids. No significant similarity or identity
with other known proteins was found (22). Unlike many other
cytokine receptors, the IL-2Ra and IL-2RB chains do not appear to
belong to the immunoglobulin superfamily. From the deduced
structure of the protein, the NH,-terminal 26 amino acids may
represent the signal sequence (Figs. 1 and 2) (23). Thus, the mature
form of the IL-2RB chain consists of 525 amino acids with a
calculated molecular size of 58,358 daltons. The receptor molecule
contains an extracellular region consisting of 214 amino acids
(Fig. 1). This region contains eight cysteine residues of which five
are found in the NH,-terminal half and they are interspaced rather
periodically by 9 to 12 amino acids. Abundance of cysteine residues
seems to be one of the common features of the ligand-binding
domain of many receptors (24). The predicted number of amino
acids (aa) within the extracellular region of the IL-2Rp chain (214
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aa) is almost comparable in number to that of the IL-2Ra chain
(219 aa). Such size similarity may be significant in considcring the
conformation of the heterodimeric receptor complex that is a
dlstlngulshmg mark for this receptor because both « and B chains
individually interact with distinct sites of the same IL-2 molecule
(25). A hydrophobic stretch of 25 amino acids from residues 215 to
239 appears to constitute the membrane spanning region of the
receptor (Figs. 1 and 2).

The cytoplasmic region of the B chain consists of 286 aa and is far
larger than that of the o chain, which is only 13 aa long. The
consensus sequences of tyrosine kinase (Gly-x-Gly-x-x-Gly) (26) are
absent in the B chain, but a triplet, Ala-Pro-Glu(293-295), that has
been implicated to be the consensus motif for a catalytic domain of
some protein kinases (26) is present. The possibility that the
cytoplasmic region of the B chain may have a protein kinase activity
is yet to be tested. The primary structure of this region revealed yet
another interesting feature, namely, it is rich in proline (42 of 286)
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Fig. 1. Structure of the human IL-2RB chain 76
cDNA. (A) Representation of the mRNA as
deduced from the cloned cDNA’s. Dotted,
hatched, open, and closed rectangles represent,
respectively, the signal sequence, the extracellular,
the transmembrane, and the cytoplasmic regions.
Different ¢cDNA clones encoding for specific
overlapping regions of the mRNA are shown
below. S, Sac I; P, Pst I; X, Xho I; Z, Sma I; B,
Bam HI; H, Sph I; Sp, Ssp I. (B) Nucleotide and
amino acid sequences of the human IL-2R chain
c¢DNA. The sequence was deduced after complete
DNA sequence analysis of the above described
¢DNA clones. Nucleotides are numbered on the
right margin and amino acids are numbered on
the left margin. Clones pIL-2RB 19 and pIL-2Rp
6 contained the G—A mutation at nucleotide
residues 425 and 1531, respectively. Thus pIL-
2RB 6 cDNA acquired a TAG triplet in the
cytoplasmic region. It is thought to be an error in
reverse transcription, since all other clones, pIL-
2RB 30, pIL-2RB 19, and pIL-2RP 16 (32), have
a TGG triplet at that position. The first under-
lined 26 amino acid residues represent the signal
sequence as predicted by the consensus sequence
(23). The 25 transmembrane amino acid residues
are marked by underlining. The cysteine residues
are boxed. The potential N-glycosylation sites are
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Arg Leu Met Ala Pro lle Ser Leu GIN Val Val His
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undcrlincd tWiCC. The pOSSiblC polyadcnylation 476 Asp Ala Gly Pro Arg Glu Gly Val Ser Phe Pro Trp Ser Arg Pro Pro Gly GIN Gly Glu Phe Arg Ala Leu AsN
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prepared from the NK-like human lymphoid cell
line YT, and cDNA libraries were prepared with

ACAGATGGOCAGGG TGGGAGGCAGGCAGCTGOCTOCTC TGOGCOGAGOCTCAGAAGGACCCTGT TGAGGGTCCTCAGTCCACTGCTGAGGACAC

CDMS8 vector as described (21), except usin TCAGTGTOCAGT TOCAGCTOGACT TCTOCACCOOGA! AT A A IO A T AT 1980
cither random primers (Amersham) (for [[:IL 2R§ CATOGCTOCTCTOCAGOOCTGCAGCTATTCACCAATA oTe eouTT 278
6, 9, and 30), or oligo(dT) prlmcr (for pIL-2RB GGTOOCACTGOOCTCAGCOCCACT TCTCAGOCTGGT. YA St SR O oo 2378
19). Briefly, 30 g of poly(A)* RNA was used e oAU o oo AT AT oS ST e oo AT aTecame o ert 207
for each cDNA library. The cDNA was synthe- ACGO000C TOOACANGAGOOCC TOT TACTATTCCTT TOUGA TOGCTOCTCTATCT TTAATOCTGCOGCCCANGTANG 2673
sized by modified procedures of Gubler and Hoff- 2871
man as described earlier and cloned into CDM8 mmﬁMnmmW ,TGOCCATT, oTATAx }322
(21). The cDNA libraries were screened with a D T A T T A R o T, 4
mixture of monoclonal antibodies to IL-2RB, OGO00CCACAGGCTCTGACCAGCAGCCTA TCAGITAGCCTCOOCCTGACTAGOCAATCAGATCAACTE 3266
Mik-B1 and Mik-B2, as described (21). The pan- GAGOCACTAAGCAGAGGACCTTGOGTTOCCAATACAAAAATACCTAC TTGOCTTTATATCC 3564
ning procedures were repeated four times. Nucle- e e SRS I A AR UL S A by AU e AT A IS 682
otide’ sequences were “determined by dideoxy A T T e e e T 2
chain termination and chemical cleavage methods. A ACTCTGTAAATGAAAAAANCCCATTTTOGCT, AACTGTACAAAATAAGTACAAT 4034
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and serine (30 of 286) residues. The “proline-rich” structure has
also been demonstrated in the cytoplasmic region of CD2, a T cell
membrane antigen involved in the activation pathway of T cells
(27). In addition, the cytoplasmic region contains 40 negatively
charged amino acids (glutamic and aspartic acids), whereas only 18
amino acids account for the positively charged residues (lysine and
arginine). Such a distribution is notable in the middle portion (aa
345-390) of the cytoplasmic region. Thus, the cytoplasmic region
of the B chain may be quite acidic. Taken together, some if not all of
these characteristic features may contribute to driving further the
downstream signal transduction pathways. The receptor protein
contains five potential sites for N-linked glycosylation (Fig. 1), in
which four are extracellular. Such a posttranslational modification
may account for the difference between the size of the estimated
mature (70 to 75 kD) and the calculated (58 kD) protein molecules.
Hydropathy plot analysis of the a and B chains revealed hydrophilic
regions just adjacent to the cell membrane in both chains (Fig. 2).
These regions may participate in the noncovalent intermolecular
association between the two chains.

Expression of IL-2R chain mRNA. Expression of the IL-2R
mRNA was examined with the cDNA insert from pIL-2R8 30 as
the probe. The RNA blot analysis revealed the presence of a 4-kb
mRNA (Fig. 3A), the expression of which is restricted to lymphoid
cells previously identified to bear IL-2RB chain (that is, YT, MT-2,
Hut102, SKW6.4) (12, 16, 17). In contrast, the mRNA expression
was not detected in cells such as Jurkat, MT-1, U937, ARH-77, and
HeLa. Essentially, the amount of mRNA expression correlated with
that of the IL-2RB chain. We next examined the mRNA expression
in normal peripheral blood lymphocytes (PBL’). The IL-2RB
mRNA was detectable in unstimulated PBL’s and its expression
increased transiently only 2.5 times after mitogen stimulation (Fig.
3B). Previous data derived from flow cytometric analysis (19) make
it likely that the mRNA induction patterns differ between the
different lymphocyte populations. This expression pattern is quite
different from that of the IL-2Ra chain whose expression strictly
requires mitogenic stimulation of the cells (Fig. 3B), suggesting the
presence of distinct mechanisms of gene expression between the two

cs.

IL-2 binding properties of the cDNA-encoded IL-2R8 chain.
We next performed cDNA expression studies in order to determine
whether the cDNA product binds IL-2 and indeed manifests the
properties of the IL-2RB chain that have been demonstrated or
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Fig. 3. Expression of human IL-2RB chain mRNA. (A) Poly(A)* RNA (2
g per lane) from different cell sources was prepared and subjected to RNA
blotting analysis with the Xho I-digest ecr human IL-2RB chain cDNA
fragment derived from pIL-2RB 30 as a probc (14, 18, 28). Lane 1, YT; lane
2, Hutl02 (HTLV-1l-transformed human T cell line); lane 3, MT-2
(HTLV-1-transformed human T cell line); lane 4, ARH-77 (multiple
myeloma line); lane 5, SKW6.4 (Epstein-Barr virus—transformed human B
lymphoblastoid line); lane 6, U937 (histiocytic leukemia line); lane 7, MT-1
(HTLV-1-transformed human T cell line); lane 8, Jurkat (human T
leukemic line); lane 9, HeLa (human cervical carcinoma cell line). (B)
Expression of IL-2RB and IL-2Ra mRNA’s in human PBL’s. Total RNA
(15 pg per lane) was placed on each lane. Lanes 1 and 4, unstimulated
human PBL’s; lanes 2 and 5, PBL’s stimulated with phytohemagglutinin
(PHA) at 5 pg/ml for 24 hours; lanes 3 and 6, PBL’s stimulated with PHA at
5 pg/ml for 72 hours. The RNA-blotted filter was hybridized with the IL-
2R8 probe (lanes 1 to 3). After dehybridization of the IL-2Rf probe, the
same filter was hybridized with the IL-2Ra probe [Xba I-Bcl I fragment
derived from pSVIL2R-3 (14)] (lanes 4 to 6).

suggested (or both) in previous studies. Two cDNA expression
plasmids were constructed in which expression of the cDNA
spanning the entire coding region was directed by either the mouse
Ick gene (28) promoter (PLCKRB) or Moloney leukemia virus long
terminal repeat (29) (PMLVRB) (30) The plasmld pLCKRB was
introduced together with neomycin resistance gene into the mouse
T lymphoma EL-4 and the human T cell leukemia Jurkat lines (31),
both of which are devoid of surface molecules that bind human IL-
2. Stable transformant clones expressing the cDNA product were
obtained for both the EL-4 (ELB-13) and Jurkat (JB-8) cells as
judged by FACS analysis (Fig. 4A). In addition, we also introduced
the same gene into the Jurkat transformant clone, Ja-5, which
expresses the transfected, human IL-2Ra chain cDNA. Two of the
resulting transformants, JaB-2 and Jap-10, expressed both « and B
chains (Fig. 4A, d and ¢). As expected, RNA blotting analyses of the
mRNA expressed in those Jurkat transformants revealed that the
and B chain—specific mRNA’s are derived from the transfected
c¢DNA’s but not- from the endogenous genes as judged by size
differences between cDNA-derived and endogenous receptor
mRNA’s (32). Furthermore, in order to examine the property of the
c<DNA product in nonlymphoid cells, the plasmid pMLVRB was
introduced into an NIH 3T3 cell-derived cell line 2 (31), and the
resulting transformant expressing the cDNA, Fg-3, was obtained
(Fig. 4A, f).

The IL-2 binding studies were performed with '*’I-labeled
recombinant human IL-2 (11, 12, 14). The following binding
profiles were obtained by Scatchard plot analyses (Fig. 4B). Actual-
ly, the EL-4—derived clone (ELB-13) and the Jurkat-derived clone
(JB-8), both expressing the B chain cDNA, displayed intermediate-
affinity to IL-2 with estimated Ky values of 4.0 nM and 2.7 nM,
respectively. The IL-2 binding to those cells was completely abol-
ished by the Mik-B1 antibody (Fig. 4B, a and b). The Jurkat-derived
JaB-2 and JaB-10 clones expressing both the human IL-2Ra and
IL-2RB cDNA displayed both high- and low-affinity receptors with
estimated Ky values of 22 pM and 15 nM for JaB-2 and 19 pM and
33 nM for JaB-10, respectively (Fig. 4B, d and ¢). In contrast, the
parental, Jurkat-derived Ja-5 cells expressing the a chain cDNA

RESEARCH ARTICLES 5§53



A c
Jp-8 Ja-§
A
X
! \
I\
- [ \
F] /o
£ I
3 \
2 \
§ d e f
[ §)
2 Wap-2 Jog-10 ; Fp3
: | \
c ] ]
\ \ :
' \ H
\ : '\ H
\ 4
K \ / : \ K
B Relative fluorescence intensity (log scale)
a ' b c
1
) 61
2
ELB-13 Js-8 . Ja-5
os{* N
- ! ;I;. :
: \ d 4
3 MR M
£ ool 2 a oo‘ 1 > 98 2 4
3 d e
~ 6 -
N 101 i
= JaB-2 R JaB8-10
s
2
> e d e 4 4
—— 0- — — > o
no 5 10 [ 2 4
Bound IL-2 molecules per cell (x10~>)
["2%)-1L-2: 5nM 100 pM
T 1
anti-Tac: + + +
Mik-p1: i o =
unlabﬂ_e.g: + + +
y kd -
b
ZOO-L -
|
“Lg2
B+IL-2—= T
ez . » B =
_I._GG_\_ .*R‘
45—
B ——— - - L. . -

M 1 2 3 458617 8910

M 111213 14 1516

alone manifested exclusively low affinity (K4, 19.5 nM) to IL-2 (Fig.
4B, c). The number of the high-affinity IL-2R expressed on JaB-2
and JaB-10 cells was comparable to that of expressed IL-2RB

molecules.

In addition, treatment of these cells with Mik-B1 antibody
completely abolished high-affinity IL-2 binding sites from the cell
surface, while retaining the expression of low-affinity IL-2R (Fig.
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Fig. 4. ression of human IL-2Ra or IL-2RB chain
cDNA’s. (A) Cell surface staining patterns of human IL-
2Ra or IL-2RB cDNA (or both) transformants. Parental
cells and various transformant cells were separately stained
with either a monoclonal anti to human IL-2Ra, anti-
Tac (-~ -), or monoclonal anti to human IL-2R8,
Mik-B1 (—). Dotted line (. . . . . ) is a fluorescence profile
of the cells stained with fluorescein-conjugated goat-anti-
mouse immunoglobulin G alone. Cells used were (a) ELB-
13 (an EL-4—derived clone transfected with pLCKRB),
(b) JB-8 (a Jurkat-derived clone transfected with
pLCKRB), (c) Ja-5 (a Jurkat-derived clone transfected
with pSVIL2Rneo), (d) JaB-2 (a Ja-5—derived clone
transfected with pLCKRB), (¢) JaB-10 (a Ja-5-derived
clone transfected with pLCKRB), and (f) FB-3 (a NIH
3T3—derived line transfected with pMLVRB). (B) Scat-
chard plot analysis of '*’I-labeled IL-2 binding to the
transfectants expressing the cloned cDNA’s. Scatchard plot
of the IL-2 binding data in the absence (O—O) or
presence (@—@) of 1:100 diluted ascites of Mik-Bl.
Binding of '*I-labeled IL-2 to ELB-13 or JB-8 was
completely abolished by Mik-B1. Each cell line was exam-
ined twice and the findings were reproducible. The non-
specific IL-2 binding was less than 10 percent of the total
bound IL-2. No specific IL-2 binding was observed when
parental Jurkat or EL-4 cells were examined. The number
of IL-2 binding sites per cell and the receptor affinity Ky
were determined by computer-assisted analysis of the IL-2
binding data. (a) ELB-13, 4100 sites per cell, Ky, 4.0 nM;
(b) JB-8, 1900 sites per cell, K4, 2.7 nM; (c) Ja-5, 18,300
sites per cell, K4, 19.5 nM; (d) JaB-2, 1250 sites per cell,
K, 22 pM; 13,500 sites per cell; Kd, 15 nM; (c) Jap-10,
400 sites per cell, Ky, 19 pM; 12,500 sites per cell, Ky, 33
nM.

Flg. 5. Affinity cross-linking studies of the IL-
2R-positive transformants. Cells were incubated
with 5 nM (lanes 1 to 13) or 100 pM (lanes 14 to
16) 'ZI-labeled IL-2 in the absence (lanes 1 to 4,
14 to 16) or presence of a molar excess (250-fold)
of unlabeled IL-2 (lanes 5 to 7), a molar excess
(500-fold) of affinity column—purified Mik-B1
(lanes 8 to 10) or a molar excess (500-fold) of
affinity col urified anti-Tac (lanes 11 to

* 13). Then cells were chemically cross-linked with
dissuccinimidyl suberate (DSS) (16). The cells
were then solubilized, and the lysates were sub-
jected to 7.5 percent SDS-PAGE. Two indepen-
dent gels were run simultancously with lysates
from the same cell number (5 x 10°). The cross-
linking efficiencies and the exposure times (4 days
at —70°C) were the same. The cells used were
Jurkat (lane 1); Ja-5 (lanes 2, 5, 8, 11, 14); JB-8
(lanes 3, 6,9, 12, 15); JaB-10 (lanes 4, 7, 10, 13,
16). YT cells cross-linked with '2I-labeled IL-2
were used as a marker (M).

4B, d and ¢). These observations demonstrate unequivocally that the
cDNA-encoded IL-2R8 molecule is directly involved in the forma-
tion of high-affinity receptor complex in association with the IL-
2Ra chain. In contrast to the T cell transformants described above,
the FB-3 cells did not show any IL-2 binding on the cell surface
under the same binding conditions. The same observation was made
with monkey COS cells that express the 8 chain, but failed to bind
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IL-2 (32). Thus, the results suggest the involvement of either a cell
type-specific processing mechanism or an additional cellular com-
ponent, or both for the functional IL-2Rp chain expression.

In order to characterize further the molecular structure of recon-
stituted IL-2R, we performed chemical cross-linking experiments
with "’I-labeled IL-2 and the noncleavable chemical cross-linker,
dissuccinimidyl suberate (DSS). When cells expressing only IL-2R8
chain were cross-linked with 'I-labeled IL-2 and analyzed by
SDS—polyacrylamide gel electrophoresis (PAGE), a doublet band
consisting of 90 kD major and 85 kD minor was detected and its
migration profile was indistinguishable from that of YT cells (Fig. 5,
arrows) (16, 17). The appearance of the doublet was inhibited by an
excess of unlabeled IL-2 or by Mik-B1. The doublet formation may
be due to degradation of the receptor—IL-2 complex. It is also
possible that both protein products are derived by a differential
posttranslational modification. Alternatively, one of the doublet
may represent a third component of the receptor complex. A broad
band migrating around the position of 150 kD was also detected in
the transformant (Jaf-10) as well as YT cells (Fig. 5, lanes M and
4). The appearance of this band is also inhibited by either unlabeled
IL-2, anti-Tac, or Mik-B1 (Fig. 5, lanes 7, 10 and 13); it may
represent the ternary complex of IL-2, IL-2Ra, and IL-2RB
molecules. In a series of chemical cross-linking experiments (Fig. 4),
the properties of the receptor complex expressed on the surface of
JaB-10 were indistinguishable from those of high-affinity receptor
expressed on cultured T cell lines or PBL’s (12, 16, 17).

Whether the expression of the a and B chains in nonlymphoid
cells results in the formation of high-affinity receptor is not known.
However, we have some data indicating that, when the o and
chain cDNA’s are coexpressed transiently in COS cells, both chains
can cross-link with '>I-labeled IL-2 at the concentration (400 pM)
where the similarly expressed a chain alone cannot (32). The results
may suggest the formation of the af heterodimeric receptor in this
nonlymphoid cell line.

IL-2 internalization by reconstituted receptors. Intermediate-
and high-affinity IL-2 receptors can both internalize IL-2 (33-35).
Ligand internalization is usually accompanied with the IL-2 signal
transduction, suggesting that this process is essential. In experiments
on internalization of IL-2 by reconstituted receptors (Fig. 6), the
cells expressing IL-2Rp chain alone, or both a and B chains were
found capable in internalizing IL-2 as judged by a kinetic pattern
similar to that of the native receptor. In contrast, the Jurkat cells
expressing only IL-2Ra failed to internalize IL-2, similar to previ-
ously reported observations (33, 34). We have some results indicat-
ing that the growth of the cells expressing the intermediate- or high-
affinity receptors is selectively inhibited by IL-2 (14, 36). We also
have some results that the  chain expressed in another host cell line
functions in stimulating the cell growth in response to IL-2 (32).

Signal transduction in IL-2 system. The availability of the gene
encoding the IL-2RB chain makes it possible to explore novel
approaches for the functional studies of the IL-2 system. As revealed
from our study as well as previous reports, the receptor structure
operating in the IL-2 system is unique in that two structurally
distinct membrane molecules, the IL-2Ra and IL-2R chains, both
bind IL-2 independently. The series of cDNA expression studies in
this report substantiate further the previous notion that the o and
chains constitute the high-affinity IL-2R complex via a noncovalent
association of the molecules (18, 37). Thus the peculiarity of this
system is the involvement of three intermolecular interactions
between one ligand and two distinct receptor components. The
availability of both receptor cDNA’s (a and ) will make it possible
to elucidate functional domains of this cytokine receptor system.
Mutational analyses of the cloned B chain cDNA may provide clues
as to the identification of respective domains involved in ligand
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Fig. 6. IL-2 internalization via the reconstituted receptors. IL-2 internaliza-
tion was examined as described (35). Briefly, cells (5 X 107) were treated
with '**I-labeled IL-2 at a final concentration of 200 pM (JaB-10) or 5 nM
(Ja-5, JB-8, and ELB-13) at 0°C for 30 minutes. The cells were suspended in
warm culture medium (37°C), and the kinetic pattern of IL-2 internalization
was examined (35). (@) ELB-13, (b) JB-8, (¢) JaB-10, (d) Jo-5. (-e-e-e-),
internalized IL-2; (~O~0~0O~), cell-surface bound IL-2; (-H--H--W-), free
IL-2.

binding and association with the a chain. To date, little is known
about the cascade of biochemical events triggered by cytokines
interacting with their homologous receptors. Our findings on the
structure of the IL-2RB chain demonstrate the presence of a large
cytoplasmic region which most likely is involved in driving the IL-2
signal pathways. The particular acidic nucleus found in the cytoplas-
mic region may suggest coupling to other cytoplasmic signal
transducers. Alternatively, in view of a previous report on the
presence of IL-2 within the nucleus (33), the possibility exists that
the acidic as well as the proline-rich regions of the IL-2RB
cytoplasmic component may participate in activation of the genetic
programming. The availability of the expression system in which the
cDNA-encoded B chain can deliver growth signals should allow us
to dissect further the functional domains of the receptor. Further-
more, the mouse homolog of the IL-2R chain has been cloned
recently (32), and therefore it should now be possible to study the
essential role of IL-2 in the development and regulation of the
immune system.
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