
nearby source areas." This phenomenon is 
sometimes known as the rescue effect. 

In temperate regions, where species' 
ranges are much larger, most dispersing 
individuals will fall within the preferred 
habitats, not in unsuitable habitats. As a 
result, the flow of colonists to marginal 
habitats is limited: the rescue effect is much 
less obvious in temperate latitudes. 

In presenting data for geographic ranges 
of species in his paper, Stevens is quick to 
point out that he is building on an obsenra- 
tion made almost a decade and a half ago by 
an Argentinian ecologist, Eduardo Rapo- 
port. "I suggest that this correlation be- 
tween geographic range and latitude be 
called 'Rapoport's rule'," says Stevens. Ra- 
poport had made some limited observations 
about the geographic ranges of some sub- 
species of small mammals in his book, Areo- 
gvafia, published in 1975. Described by 
Brown as "one of the most original works in 
biogeography," Rapoport's book is, howev- 
er, not widely known. 

"I came across Rapoport's book while I 
was doing a literature search based on my 
initial findings, in May 1986," says Stevens. 
"I quickly found that the pattern he de- 
scribed for small mammals also applies to 
other vertebrates, to trees, mollusks, every- 
thing." It was this generality that convinced 
Stevens that the latitudinal pattern for gco- 
graphic range might tie in with the species- 
richness pattern. "Stevens seems to have 
developed Rapoport's observations in an 
inventive way," comments Brown. 

"Stevens has directly related something in 
the physical environment that leads to spe- 
cies diversity over the whole latitudinal 
range," says Ricklefs. "Many others have 
made connections between certain enuiron- 
mental conditions and local diversity, but 
none has been general throughout." Ricklefs 
is intrigued by the way the rescue effect is 
part of this overall pattern. 

Faced with a problem that has frustrated 
biologists for generations, he would have to 
be incautious in the extreme who would 
claim to have solved it. "I certainly don't say 
'this is the answer'," Stevens told Science. For 
one thing, he acknowledges, some of the 
relevant data on species distributions are 
often poor or even absent. "But there are 
enough there for me to be as confident as I 
can be that the pattern is real." 

"A lot of the impact of science is not 
necessarily priority, who publishes an idea 
first," says Brown. "It often has to do with 
someone who pulls ideas from here and 
there, and takes them a step further." There 
are ideas here of both Janzen and Rapoport, 
notes Brown. But the key element is that 
"Stevens has taken it all a step further." 

ROGER LEWIN 

The Circle Can Be Squared! 
Ask any mathematician if it's possible to square the circle, and the answer is bound to 
be No. Anyone claiming to have done so is rightfully disregarded as a crank, since 
mathematicians proved thc impossibility of circle-squaring over a hundred years ago. 
Now along comes Mikl6s Laczkovich of the Eotvos Lorind University in Budapest 
with a claim that he can square the circle, and this time the response is enthusiastic 
applause. What's going on here? 

The difference is, Laczkovich has solved a different, more difficult problem that 
goes by the same name. 

The unsolvable circle-squaring problem requires a ruler-and-compass construction 
of a square having the same area as a given circle. The question-Is there such a 
construction?-predates even Euclid; the answer-No!-was finally proved in 1882. 
Even so, some amateur mathematicians refuse to give up. Mathematics journals still 
receive-and auton~atically reject-"solutions" to the problem. 

Laczkovich's circle-squaring problem is entirely different. What Laczkovich has 
shown, in 39 pages of intricate analysis, is that a circle (the interior plus the boundary) 
can be cut up into a finite number of pieces, which can then be rearranged into the 
form of a square having the same area. In fact, Laczkovich has shown that almost 
anything can be cut up and rearranged into a square of the same area, with no gaps 
and no overlaps. 

This version of the problem was first posed by Alfred Tarski in 1925. In 1924, 
Tarski and Stefan Banach proved a remarkable analog in three dimensions: Not only 
can a sphere be cut up and rearranged into a cube of the same volume, but it can be cut 
up and rearranged into a cube of twice the volume, or for that matter into virtually any 
shape of any size whatever. In fact, a solid ball can be rearranged into two solid balls of 
the same radius using as few as five pieces! 

At first glance, the Banach-Tarski result sounds like a contradiction at the very heart 
of geometry. The explanation of the paradox lies in the nature of the pieces that get 
rearranged. The pieces arc not solid chunks with nice boundaries. Instead they are so 
convoluted, diffuse, and intertwined that it is mathematically impossible to measure 
the volume of an individual piece. It's only when the pieces are put together that the 
resulting solid has a measurable volume-and strange as it seems, there's no 
contradiction in concluding that this can be done in two different ways resulting in 
two different volumes. 

The Banach-Tarski paradox does not exist as such in two dimensions: Banach 
proved that any rearrangement of a figure in the plane must have the same area as the 
original. The reason lies in a difference between plane and solid geometry: two- 
dimensional objects can only rotate clockwise or counterclock~vise, while three- 
dimensional objects have many possible ayes of rotation. It remained to prove, or 
disprove, that plane figures of the same area could be rearranged one into the other. 

Laczkovich's result goes far beyond what Tarski asked for. For one thing, 
Laczkovich shows that not only can the circle be squared, but so can any figure that 
has a suitably nice boundary. More surprisingly, he shows that it is not necessary to 
rotate any of the pieces-the rearrangement can be done using only rigid translations 
left or right and up or down. The result even applies to polygons: it is possible to take 
apart a triangle and fit the pieces back together as a square without rotating any of 
the pieces. 

If you're reaching for your scissors, though, relax. As in the Banach-Tarski paradox, 
Laczkovich's pieces are not the sort of thing you can cut out of paper. Lester Dubins, 
Morris Hirsch, and Jack Kamsh proved in 1963 that you can't square the circle if the 
pieces have any kind of ordinary boundary. And even if the pieces could be cut with 
scissors, you probably wouldn't want to do it: Further analysis may bring the number 
down, but for now Laczkovich estimates that his method of squaring the circle 
requires something like 10'' pieces. r BARRY A. CIPRA 

ADDITIONAL READING 

M. Laczkovich, Equidrcotnposabiiiiy and Discrrpancy; A So i r r t~o~~  o/' Torski's Circle-Squaring Problrrn (in press). 
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