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A Direct Repeat Is a Hotspot for Large-Scale 
Deletion of Human Mitochondrial DNA 

Kearns-Sayre syndrome (KSS) and progressive external ophthalmoplegia (PEO) are 
related neuromuscular disorders characterized by ocular myopathy and ophthalmople- 
gia. Almost all patients with KSS and about half with PEO harbor large deletions in 
their mitochondrial genomes. The deletions differ in both size and location, except for 
one, 5 kilobases long, that is found in more than one-third of all patients examined. 
This common deletion was found to be flanked by a perfect 13-base pair direct repeat 
in the normal mitochondrial genome. This mult suggests that homologous recombi- 
nation deleting large regions of intervening mitochondrial DNA, which previously had 
been observed only in lower eukaryotes and plants, operates in mammalian mitochon- 
drial genomes as well, and is at least one cause of the deletions found in these two 
related mitochondrial myopathies. 

EARNS-SAYRE SYNDROME (KSS) IS 

a multisystem mitochondrial disor- 
der defined by the presence of 

ophthalmoplegia and pigmentary retinopa- 
thy with onset before age 20 and at least one 
of the following: high cerebrospinal fluid 
(CSF) protein content, blockage in heart 
conduction, or ataxia (1). Morphologically, 
KSS patients display "ragged red fibers" 
(RRF) in muscle sections; RRF are a mor- 
phologic hallmark of proliferating mito- 
chondria in muscle and are seen in muscle 
sections stained with modified Gomori 
mchrome as red patches (2). KSS is ulti- 
mately fatal. Progressive external ophthal- 
moplegia (PEO) and, frequently, RRF are 
also seen in ocular myopathy, but there is no 
systemic involvement and the disease is rare- 
ly fatal. Biochemically, both KSS and PEO 
often show reduced respiratory chain en- 
zyme activity, particularly that of cyto- 
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chrome c oxidase (CO) (3, 4). 
We found that 13 of 15 patients with 

KSS and about half of all patients with PEO 
had large-scale deletions of mitochondrial 
DNA (mtDNA), ranging in size from 1.3 to 
7.6 kb (4). Similar results have also been 
obtained by others (5). The size and location 
of the deletions, and the number of deleted 
mtDNA relative to the number of normal 
mitochondrial genomes, differed among pa- 
tients and did not appear to be correlated to 
the presentation or the severity of the dis- 
ease phenotype. 

The 29 deletions we studied were mapped 
by analyzing each deleted genome for the 
absence of known restriction sites on the 
mtDNA map (6). Using this method, how- 
ever, we were unable to specify the precise 
breakpoint of any deletion. Nevertheless, we 
showed that all the deletions were in regions 
of the mitochondrial genome containing 
structural components of the respiratory 
chain; no deletions were found in the ribo- 
somal RNA genes, or in the region of either 
the origins of heavy- or light-strand replica- 
tion, or of heavy- and light-strand transcrip- 
tion (7). Of the 29 deletions, 11 (3 in 
patients with KSS and 8 in patients with 
PEO) mapped to an identical location in the 
mtDNA, with deletion bre&points about 5 
kb apart, extending from the ATPase8 gene 
(8) of complex V on the left, to the gene 

encoding a subunit of NADH dehydrogen- 
ase (ND5) of complex I on the right. We 
have now found a 12th patient (with KSS) 
who also harbors this common deletion. 

Using the polymerase chain reaction 
(PCR) (9),  we amplified selectively the re- 
gion of the deleted genome spanning the 
deleted mtDNA in a number of patients 
with this common deletion and determined 
the exact site of the deletion breakpoint by 
DNA sequencing (10, 11). 

We sequenced mtDNA from two patients 
with KSS and three patients with PEO who 

G A T C  - 
- w  

in. - 

Fig. 1. Autoradiogram of a DNA sequencing gel 
in the region of the deletion breakpoint. The 
sequence (dideoxy reactions G, A, T, and C) is of 
the L-strand, reading 5' to 3' from bottom to top 
(arrows). The single 13-bp direct repeat (boxed) 
in the deleted mtDNA is downstream of the 5' 
portion of the ATPase8 gene and upstream of the 
3' portion of the ND5 gene; the intervening 4977 
bp are deleted (Fig. 2). 
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had the identical deletion breakpoint (Fig. 
1). The deletion was 4,977 bp long, with 
the breakpoint on the left side at nucleotide 
position 8,483 [numbering of (6)] within 
the ATPase8 gene, and on the right side at 
position 13,460 within the ND5 gene. The 
deletion was flanked by a perfect 13-bp 
repeat (Fig. 2); one repeat was found imme- 
diately prior to the left deletion breakpoint, 
whereas the other 13-bp repeat was found 
(in normal, undeleted mtDNA) at the ex- 
treme 3' end of the deleted region, just prior 
to the right deletion breakpoint. The fusion 
gene thus created encodes an mRNA that is 
out-of-frame in the ND5 portion of the 
predicted transcript, resulting in a prema- 
ture termination codon 12 nucleotides be- 
yond the deletion breakpoint. Rather than 
encoding an ATPase8 protein of 68 amino 
acids [deduced molecular weight of 7.9 kD 
(6)], this mRNA, if translated, would en- 
code a truncated protein 42 amino acids 
long (that is, about 5 kD). 

Although we did not sequence the dele- 
tion in the mtDNA of the other 7 patients 
harboring the common deletion, PCR anal- 
ysis showed that all 12 contained a deleted 
mtDNA genome. When the mtDNA was 
amplified with the same oligonucleotide 
primers as used for the five sequenced dele- 
tions, it displayed an identically sized DNA 
fragment on agarose gels (Fig. 3), Indicating 
that all 12 patients most likely carry the 
identical deletion. 

The presence of 12 patients with KSS or 
PEO who have the identical deletion implies 
that the 13-bp repeat found at mtDNA 
positions 8,470 to 8,483 and 13,447 to 
13,460 is a preferred target, or hotspot, for 
deletion. A computer search (12) of the 
mitochondria1 genome for the presence of 
other long, perfect direct repeats showed the 
presence of four 13-bp repeats and one 15- 
bp repeat. (There are also 253 different 10- 
bp repeats, 58 1 1-bp repeats, and 16 12-bp 
repeats, which are surprisingly high num- 
bers for a 16.5-kb genome.) Of the largest 
repeats, the three 13-bp repeats not associat- 
ed with the common deletion (at mtDNA 

map positions 1012275, 53514430, and 
2210110614) and the 15-bp repeat (at posi- 
tions 367411 1748) have left ends in the area 
between the D-loop region and the origin of 
light-strand replication, and would thus be 
piedicted to be nonviable for the propaga- 
tion of deletions. Only the 13-bp repeat 
found in the common deletion is in a region 
representing a viable target for deletion. 

The presence of a large-scale deletion 
flanked bv direct reDeats in the mtDNA 
implies that this deletion was caused bv a 
homologous recombination event. More- 
over, the fact that 12  of 30 examined dele- 
tions in mtDNA of patients with KSS or 
PEO are flanked by this particular direct 
repeat implies that homologous recombina- 
tion is a significant source of deletion in 
these diseases. 

The involvement of direct repeats in the 
creation of microdeletions, on the other 
hand, has been observed. Wrischnik et al. 
(13) found a deletion of one of two tandem 
9-bp repeats in the 3' untranslated region of 
the human CO I1 gene. This particular 
polymorphism was found in 12 individuals; 
since it was in the 3' untranslated region of 
CO 11, it did not result in any overt patholo- 
gy. The D-loop region has also been found 
to be a region containing small heterogene- 
ities among human and bovine mtDNA; in 
this case the area of individual variation 
involved only a few nucleotides within a 
polypyrimidine stretch on the L strand lo- 
cated within a conserved sequence region 
(14). 

Although large-scale deletions of mtDNA 
had not been observed previously in mam- 
mals, they have been well documented in 
other eukarvotes. Mitochondria1 recombina- 
tion has been observed in yeast rho- petite 
mutants, often, but not always, involving 
repeated elements (15). Similar types of 
deletions involving repeated elements in 
mtDNA have also been observed in stopper 
(stp) mutants of Neurospora crassa (16) and in 
DNA associated with the senescence pheno- 
type of Podospora anserina (1 7). Large-scale 
deletions flanked by repeats have also been 

found in the mtDNA of plants, usually 
involving intragenomic homologous recom- 
bination (18). Although no clearly identified 
recombination machinery has been identi- 
fied in mammalian mitochondria (19), re- 
combination of mtDNA has been inferred 
from the analysis of interspecific somatic cell 
hybrids (ZO), and an endonuclease associat- 
ed with recombination has been found in 
mouse cell mitochondria (21). Our results 
imply that there is a mechanism for rear- 
ranging human mtDNA, apparently via ho- 
mologous recombination. 

We can only speculate as to how the 5-kb 
deletion arose. Even though dimeric 
mtDNA circles have been identitied in 
mammals ( 7 ) ,  it is unlikely that this deletion 
arose as a result of intergenomic recombina- 
tion by unequal crossing-over. An unequal 
crossing-over event between two mtDNAs 
at one of the 13-bp repeats, followed by 
resolution of the double-length dimer 
mtDNA, would result in one genome with 
three repeats (21.5 kb rather than 16.5 kb) 
and one with only one repeat (1  1.5 kb). 
Since the three-repeat mtDNA contains all 
the origins of replication and transcription, 
it ought to be viable and segregate into adult 
tissues, much in the same way the one- 
repeat (deleted) mtDNA has been amplified 
in the muscle tissues of the patients in our 
study. When digested with Pvu I1 (which 
cuts only once in human mtDNA) one 
would expect to see three mtDNA frag- 
ments in DNA blots, 21.5, 16.5, and 11.5 
kb in size. However, in more than 30 KSS 
and PEO patients with deleted mtDNAs, 
including the 12 described here, we have 
never observed any mtDNA larger than 
16.5 kb after Pvu I1 digestion. 

A more likely possib~lity is that the dele- 
tion arose by means of an intragenomic 
recombination event. In this case, homolo- 
gous recombination at the 13-bp repeats 
would generate the 11.5-kb deleted mtDNA 
containing one repeat plus a small (presum- 
ably circular) 5-kb subgenomic fragment, 
the deleted region, containing the other 13- 
bp repeat. Since the 5-kb deleted region 

Fig. 2. DNA sequences (read- < - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  4 9 7 7  bp ------ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  > 
ing 5' to 3' on the L-strand) in AT- 2 0 13 b 
the region of the common dele- AAGcccATAAAAATAAAAAATTATAAcAAAcccTGAGA. . . . . . . . A c T c A A A A c c A T A c c T c T c A c T T c ~ d ~  

tion. The DNA sequence found 
in the deleted genome is on the 
lower line, with the intervening 
deleted DNA shown on the uo- 
per line (bracket). The s'e- AT-13 

repeats(boxed)areshown,in- L A A *  

cluding the AT-rich regions 1 I 
ATPase8 (8,482) (1 3,460) N D 5  

flanlune the left-side reueat 
(overliKed). The amino aci2 se- 
quence (one-letter code) deduced from the ATPaseSND5 fusion gene is shown below the DNA sequence. Abbreviations for the amino acid residues are as 
follows: A, Ala; H,  His; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; S, Ser; T, Thr; and Y, Tyr. 
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' . ' * * (24). DNA sequences in the polypyrimidine 
block in the D-loopconserved sequence 
region that display length heterogeneity (5 ' -  

1 C C C C C C C T C C ~ = C ~ C T - ~  on the 
I L-strand), the deleted 9-bp repeat in the CO Em E I1 gene (5'-CCCCCTCTA-3'), and the core 

of the KSSIPEO 13-bp repeat itself (5'- 
CCTCCCTC-3') all have the potential to 

deletion was amplified by the PCR (9). with a pair 
of synthesized single-stranded oligonudeotide prim- 
ers (Genetic Designs) comsponding to mtDNA 
sequences located upsacam and downsacam of the 
breakpoint. The upsacam oligonucleotide, called 
XBA-8289F. had the sequence 5'-CCCTmACC- 
CCCTCTAGAGCCCAmGTAAAGC-3' (corre- 
sponding to nucleotides 8274 to 8305) and the 
downstream oligonucleotide, called SlW-13705B, 
had the sequence 5'-GGClTCCGGCTGCCA- 
GGCCTITAATGGGG-3' (correswndine to nu- 

Fig. 3. Ethidium bromide staining of a 1% 
agarose gel containing PCR-amplified mtDNA 
from one patient with the common deletion 
analyzed by DNA sequence analysis as in Figs. 1 
and 2 (lane l), compared to that for seven other 
patients whose amplified DNA was not se- 
quenced (lanes 2 to 8). About 10% of the total 
PCR reaction was loaded in each lane. The size of 
the amplified fragment, in bp, predicted tiom the 
sequence analysis, is at the left. M, markers of 
pBR322 digested with Hae 111. 

contains only structural genes and no ori- 
gins of replication, it almost certainly was 
lost soon after the initial rearrangement 
occurred. An intragenomic event deleting 
this region via nonhomologous recombia- 
tion w d d  also produce noiviable subgeno- 
mic fragments. That we found no remnants 
(that is, a 5-kb circular or linear fragment) of 
such a putative initial recombination event 
in the adult skeletal muscle mtDNA of our 
patients is consistent with this interpreta- 
tion. 

Intragenomic rearrangement via slipped 
mispairing (22) was suggested as a likely 
mechanism for the generation of the small 
deletions in the D-loop and CO I1 3' un- 
translated regions (13, 14). Since slipped 
mispairing requires regions of single-strand- 
ed DNA on both the donor and target 
strands, it is a plausible model for removing 
a tandem repeat or for eliminating a few 
adjacent repeated bases. In our situation, 
however, slipped mispairing would have to 
operate over a span of 5 kb. Since there are 
two displaced origins of replication in mam- 
malian - r n t D ~ ~ ,  -daughter-strand synthesis 
is continuous on both strands (7); thus, 
neither repeat on the displaced (single- 
stranded) parental H-strand originating 
from the origin of replication on the H- 
strand has a partner on the complementary 
m t a l  L-strand with which to hvbridize. 

form bent DNA. Furthermore, ;he I& side 
13-bp repeat at position 8470 to 8482 in 
the ATPase8 gene is flanked by two AT-rich 
regions, 13 and 20 nucleotides long (Fig. 
2), which also have the potential to form 
bent DNA (25). Such altered DNA struc- 
tures may not be confined to the polypur- 
indpolypyrimidine tract, but may extend on 
the 5' side of the polypurine-containing 
strand for at least 200 bp (25). Since puta- 
tive bent-DNA regions may form a triple 
helix with a displaced single-stranded loop, 
called H-DNA (26), homologous recombi- 
nation in the region of the 13-bp repeat, 
perhaps via slipped mispaiting, now be- 
comes a distinct possibility. Thus, both the 
repeat sequence itself and the sequence con- 
text in which it lies may render this region 
particularly susceptible to the formation of 
single-stranded DNA on supercoiling, ei- 
ther by bending at the polypyrimidine 
stretch or by bending or melting out at the 
flanking AT-rich regions. Since supercoils 
are introduced into mammalian mtDNA 
only after replication has ended (7), any 
putative recombination event that occurs via 
a mechanism invoking the m i o n  of sin- 
gle-stranded DNA under torsion might oc- 
cur in two phases: slipped mispairing before 
replication, and resolution of mispaired in- 
termediates during replication. - 

A detailed analysis of the other deletions 
in KSS and PEO may enable us to clarify the 
exact mechanism of deletion of large regions 
of human mitochondrial DNA. 
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Two Molecular Transitions Influence Cardiac Sodium 
Channel Gating 

Sodium channels from diverse excitable membranes are very similar in their structure, 
yet surprisingly heterogeneous in their behavior. The processes that govern the 
opening and closing of sodium channels have appeared diflicult to describe in terms of 
a single, unifying molecular scheme. Now cardiac sodium channels have been analyzed 
by high-resolution single-channel recordings over a broad range of potentials. Chan- 
nels exhibited both complex and simple gating patterns at different voltages. Such 
behavioral diversity can be explained by the balance between two molecular transitions 
whereby channels can exit the open state. 

OLTAGE-DRIVEN CONFORMATION- 
al changes that control the opening 
and closing of Na' channels form 

the molecular basis for membrane excitabil- 
ity. Despite the remarkable structural simi- 
larity of Na' channels from diverse sources 
(I), their functional gating properties have 
proven quite heterogeneous. Although Na' 
channels in some neuronal cells open briefly 
and only once with depolarization (2), the 
gating behavior in otheE neural preparations 
(3, 4) and heart (5-8) and skeletal muscle (9) 
is considerably more complex: channels 
open, close, i d  reopen m k y  times before 
finally entering a long-lived inactivated 
state. We now report that single Na' chan- 
nels from heart ceils can exhibz either s im~le  
or complicated patterns of gating, both of 
which can be explained by a single gating 
paradigm. 

To overcome the difficulties presented by 
inevitable recording system noise and di- 
minishing open channel flux at voltages 
positive to -20 mV, we increased the Na' 
concentration in our pipettes ([Na'],) from 
the usual 140 to 425 mM and therebv raised 
open channel conductance from -10 to 25 
pS. This enabled the resolution of brief 

unitary currents at voltages up to +20 mV 
(10, 11). We increased the osmolarity of the 
bath solution 1.5-fold to prevent patch rup- 
ture. Na' channel gating was not apprecia- 
bly changed by the increase in permeant ion 
concentration, as judged by comparison of 
individual sweeps, ensemble current aver- 
ages, and open time histograms. We used 
cell-attached patches to avoid modifications 
of gating behavior known to develop with 
patch excision (12). 

The improvement in resolution reveals 
two prominently distinct patterns of gating 
at different membrane potentials. During 
depolarizing pulses to -50 mV (Fig. lA), 
representative sweeps demonstrate the com- 
plicated pattern of multiple reopenings de- 
scribed previously in heart cells (5-8). The 
time to first channel opening is rather dis- 
persed, and the lifetime of single openings 
does not parallel the decay of ensemble 
average current (Fig. lA, bottom row). In 
contrast, voltage steps to -20 mV, or great- 
er, elicit simple gating behavior (Fig. 1, B 
and C). Channels appear to open almost 
immediately on depolarization and once per 
depolarizing pulse. Consequently, the dura- 
tion of single openings generally tracks the 
time course of declining: ensemble current. 
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the predictions of the standard gating model 
shown below (2, 3, 14) are considered in 
very different voltage ranges. 

In this scheme there is a single open state 
(0), as required (1.5) by the predominantly 
single-exponential nature of open time his- 
tograms shown here and elsewhere (2, 3, 5- 
9, 12). In keeping with arguments presented 
elsewhere (2, 3, 6, 16), two principal path- 
ways of exit from the open state are consid- 
ered: one leading to a group of closed but 
available states (C) with rate constant kd 
(deactivation) and the other to a group of 
absorbing, inactivated states (I) with rate 
constant ki (inactivation). 

Eyring rate theory enables us to predict 
the interaction of voltage with this model. 
This theory provides a simple link between 
the rate constants in Eq. 1 and the chemical 
and electrical components of the energy 
barriers encountered by channels leaving the 
open state (1 7). Thus, 

ki = ki(0) exp(+ (Qi V)l(RT)) (2b) 

where V is the transpatch voltage; kd(0) and 
ki(0) are the values of the respective rate 
constants at V = 0; Qd and Qi are the 
equivalent charge movements across the 
membrane (inside -+ outside) that occur as 
channels shift conformation from the open 
state to the transition state corresponding to 
deactivation or inactivation, respectively. 
Then, from Eq. 2 and elementary Markov 
theory (1.5), we can predict that the time 
constant of open time histograms (To) 
should be related to a biexponential function 
of V (14): 

l lTo = kd(0) exp(+(QdV)l(RT)) + 

ki(0) exp(+(Qi V)I(RT)) (3) 
This first prediction of the gating scheme 

describes well the experimentally observed 
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