
On Finding All Suboptimal 
Foldings of an RNA Molecule 

An algorithm and a computer program have been pre- 
pared for determining RNA secondary structures within 
any prescribed increment of the computed global mini- 
mum free energy. The mathematical problem of deter- 
mining how well defined a minimum energy folding is can 
now be solved. All predicted base pairs that can partici- 
pate in suboptimal structures may be displayed and ma- 
lyzed graphically. Representative suboptimal foldings are 
generated by selecting these base pairs one at a time and 
computing the best foldings that contain them. A distance 
criterion that ensures that no two structures are "too 
close" is used to avoid multiple generation of similar 
structures. Thermodynamic parameters, including free- 
energy increments for single-base stacking at the ends of 
helices and for terminal mismatched pairs in interior and 
hairpin loops, are incorporated into the underlying fold- 
ing model of the above algorithm. 

T HE RNA SECONDARY STRUCTURE MODEL HAS BEEN IN 

existence since Fresco et a l .  (1) first showed that single- 
stranded RNA folds back onto itself in structures stabilized 

by hydrogen bonds between complementary bases. This model is 
not concerned with three-dimensional aspects of structure, but 
focuses solely on which hydrogen bonds form. This approach is 
appropriate, because while detailed three-dimensional structure data 
exists only for transfer RNA ( 2 ) ,  three-dimensional modeling is 
premature for general RNA molecules. 

This folding model is an example of what mathematicians call a 
discrete model. There are no continuously varying parameters such 
as bond lengths, angles, or interatomic distances. Instead, either a 
hydrogen bond exists between two complementary bases or it does 
not. One of the principal advantages of dealing with such a 
structural model is that mathematical tools exist to compute an 
optimal folding based on free-energy minimization. The pitfalls of 
becoming trapped in local energy minima that are encountered in 
models with a large number of continuous parameters can be 
avoided. 

The model, however, has the mathematical property that there 
can be numerous foldings within 5 or 10 percent of the computed 
minimum free energy. Moreover, these foldings can be topologically 
very different from one another. For example, an alternative folding 
to the computed minimum free-energy folding of the 5.8s RNA 
from Crypthecodinium cohnii has an energy within 5 percent of the 
global minimum and yet shares not a single base pair with the 
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optimal folding (3). The uncertainties inherent in the model and in 
the thermodynamic data on which folding is based can be mitigated 
if a means of predicting suboptimal foldings is available. 

Two types of RYA folding algorithms have the ability to find a 
minimum ene rp  secondary stnlcture. The "combinatorial" method, 
first introduced by Pipas and McMahon ( 4 ) ,  forms structures by 
combining all potential helices in all possible ways. By their nature, 
combinatorial algorithms predict alternative foldings. The program 
developed by Ninio and co-workers (5-7) is based on a time-saving 
tree search method, but it does not escape from combinatorial 
reality. The number of possible foldings, and hence the computation 
time, grow exponentially with the size of the sequence ( 8 ) ,  and it is 
not surprising that this and similar programs are limited to folding 
about 150 to 200 bases. 

Minimum energy foldings can also be computed with recursive, 
or dynamic programming, algorithms. They were first used in the 
RNA folding problem by Nussinov et al.  (9) to maximize base 
pairing. This method was subsequently extended to energy minimi- 
zation (10, 11). These programs work in two stages. The first part, 
called the fill algorithm, computes and stores minimum folding 
energies for all fragments of the sequence. The process begins with 
all pentanucleotides and builds up to larger fragments in a recursive 
fashion. The second algorithm, called the traceback, computes a 
minimum energy stnlcture by searching systematically through the 
matrix of stored energies. The main advantages over combinatorial 
algorithms are speed and the ability to fold relatively large mole- 
cules. By examining possible base pairs in the context of what 
neighboring base pairs might be, the algorithm escapes the tyranny 
of an exponentially growing number of structures. If the treatment 
of multibranched loops is suficiently simple (12), a recursive folding 
algorithm can execute in time proportional to the cube of the 
sequence length. My own algorithm (1 1 )  can fold about 2000 bases 
on a VAX 111750. 

The main weakness of many recursive-folding algorithms (9-1 1) 
is that by design they yield only a single solution. The entire folding 
process can be repeated with slightly perturbed energy rules, but this 
is a prohibitively expensive way to generate alternative foldings. 
Williams and Tinoco (13) have extended a dynamic programming 
algorithm similar to others (11, 14) so that multiple foldings are 
predicted. However, its selection of computed foldings is arbitrary 
in that it depends on the idiosyncrasies of the algorithm, which must 
choose from a myriad of possibilities. These foldings do not provide 
a total picture on how much variation is possible and on how robust 
the predictions are. 

The previously described recursive-folding algorithm (11) com- 
putes and stores the minimum folding energy for each subsequence 
of the given RNA sequence. Also, for each subsequence, we calculated 
the minimum folding energy for the fragment with the ends con- 
strained to form a base pair with each other if possible. For a fragment 
stretching from ribonucleotides i to j, this number is denoted by V ( i  J)  
and is needed for proper function of the algorithm. 
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The first step toward this multiple folding algorithm came with 
attempts to extend the algorithm- to fold circular RNA such as 
viroids (15). In a circular RNA, the choice of an origin is arbitrary. 
The key observation is that, in a circular molecule composed of 
ribonucleotides r,, r2, . . ., r,, a base pair linking ri and rj divides the 
secondary structure into two parts. There is a folding of the 
"included fragment" from ri to rj, and another folding of the 
"excluded fragment" from rj through the origin to ri. In a linear 
molecule, this symmetry is lost since the "excluded fragment" is 
broken into two linear segments, rl to ri and rj to r,. The additivity 
assumption characteristic of recursive algorithms implies that the 
total fblding energy is the sum of the energies of the -two foldings. 
Steger et al. (16) extend the algorithm of Zuker and Stiegler (11) by 
computing additional numbers V(j,i), analogous to V(i,j), but 
referring to the "excluded fragments" instead. These numbers can 
also be computed recursively. They observe that V(i, j )  + V( j, i) is 
the minimum free energy of a structure containing the base pair ri-rj, 
and that the minimum value of V(i,j) + V(j, i) over all possible 
base pairs is the minimum folding energy, Emin, for the circular 
RNA molecule. A similar extension to folding circular RNA was - 
made subsequently (1 7) .  

The above extension provides all that is necessary for the realiza- 
tion of a multiple folding algorithm, at least for circular RNA. The 
time-consuming fill algorithm is executed normally, although the 
circular algorithm requires twice as much time and computer 
storage as the regular algorithm for a sequence of the same size. 
Instead of merely iden*ng a base pair ri-rj that gives Efi, and 
computing an optimal folding, the strategy is to identify all base pairs 
for which V(i, j) + V( j,i) is "close" to Efi,. If P is a number between 
0 and 100, then a "P-optimal" base pair is a base pair r,-rj for 
which V(i,j) + V(j, i) r (1 - Pl100) x Efi,. Thus a P-optimal 
base pair is contained in at least one folding within P percent of the 
minimum free energy. Such a folding is-defined as a P-optimal 
folding. The collection of all P-optimal base pairs is the mathemati- 
cal union of all P-optimal foldings. This information must then be 
displayed and interpreted. Also, the actual number of foldings 
within 5 or 10 percent of the optimal energy might be very large. 
We can first plot each P-optimal base pair ri-rj as a point at the ith 
row and jth column of a triangular half-matrix and thus produce a 
picture of the superposition of all P-optimal foldings. Such plots are 
called energy dot plots (18). An examination of which regions are 
empty and which are full of dots and the comparison of energy dot 
plots as P increases reveals how well determined the various motifs 
of the RNA structure are. An optimal or suboptimal folding can be 
generated by choosing an optimal or suboptimal base pair and 
computing the best folding containing that base pair. This proce- 
dure does not generate all possible foldings, but local motifs that can 
be part of P-optimal foldings are found. 

The procedure for circular RNA generalizes to linear RNA. The 
linear molecule is handled as if it were circular, provided that the 
first and last bases, now regarded as adjacent, be allowed to pair with 
each other if necessary. In addition, loops containing the origin 
must be treated as special cases. For example, a hairpin loop 
containing the origin becomes two single-stranded regions at the 5' 
and 3' ends of the molecule. This artificial circularization would bias 
the results in a dynamic simulation of folding, but causes no 
problems with this algorithm in which foldings are computed 
independently of folding pathways. 

The choice of P-optimal foldings, rather than foldings within a 
fixed energy of the global minimum, is deliberate. If the folding 
rules and energy parameters were well determined, it would suffice 
to look within 3 kcalimole from the optimal energy to find all 
structures that occur 99.5 percent of the time. This guideline is the 
result of the Boltzmann energy distribution at 300 K. A deviation of 

Fig. 1. Two foldings of the same 
oligonucleotide fragment that are a 
distance of 1 apart. The base pair 
U5-AZ0 of (A) does not occur in (B), 
but its base numbers (5, 20) are both 
within 1 of the base numbers of G4- 
CZ1 in (B). Similarl%, U6-AZO of (B) 
is equally close to C -GI9 of (A). All 
other base pairs are common. 

A I U  A I U  

5 or 10 percent from an optimal folding of - 100 kcalimole would 
correspond to rare events with probabilities 2 x lop4 and 
6 x respectively. These large energy increments are chosen 
not for thermodynamic reasons, but because of the large uncertain- 
ties in the energy data; thus the biochemically correct folding should 
be within a 5 or 10 percent energy increment. 

Implementation. The multiple folding algorithm is programmed 
in Fortran 77 and runs in a VAXIVMS environment; energy rules 
used are those set by Freier, Turner, and colleagues (19, 20). They 
differ from the rules summarized by Salser (21) in a number of ways: 
(i) They are computed for folding at 37°C rather than 25°C. (ii) The 
new rules add single-base stacking energies for dangling bases 
adjacent to helices. Mismatched pairs adjacent to the closing base 
pair (or pairs) of interior and hairpin loops are also taken into account. 
(iii) Ninio's correction for lopsided interior loops is used (6). Multiple 
branched loops are assigned a fixed penalty of 4.7 kcalimole plus 0.4 
kcaUmole per single-stranded base and 0.1 kcdmole per closing base 
pair. These are adjustable constants. Single-base stacking is computed 
in these loops where applicable. 

There are two modes of operation. In the first, energy dot plots 
appear on the screen to any desired percent from the minimum 
energy. Base pairs can be selected with the use of the cross-hair 
feature of Tektronix-type terminals, and optimal or suboptimal 
foldings can be computed containing the chosen base pair. In the 
second mode of operation, foldings are generated automatically and 
sorted by energy. The automatic procedure may generate a large 
number of foldings within 5 or 10 percent of the minimum free 
energy, many of which are similar. For this reason, a distance 
function was developed as a way of measuring topological differ- 
ences between two structures. The distance between two foldings is 
the smallest whole number d such that for every base pair ri-rj of one, 
there is a base pair rh-rk of the other satisfying ti - hl 5 d and 
- kl 5 d. This dimensionless quantity is zero if and only if the two 

structures are identical (12). The automatic procedure to generate P- 
optimal foldings can be adjusted so that the distances between all 
pairs of computed structures are greater than a preassigned d. This 
procedure decreases the number of computed structures. Setting 
d = 0 rules out one of the two nearly identical foldings in Fig. 1. 

Folding of a viroid. The 359-base potato spindle tuber viroid 
(PSTV) was folded with the circular version of the new program. 
The viroid is known to fold into a long rodlike structure (15), as 
predicted by the Zuker-Stiegler algorithm (11). The energy dot plot 
of this structure is a jagged diagonal of points (base pairs) compris- 
ing the helices of the rodlike folding, which are interrupted by 
single-stranded regions (Fig. 2A). We call this collection of points 
the rod. An examination of alternative structures shows that the 
optimal rodlike folding is well determined (Fig. 2, B and C). Within 
10 percent of the minimum free energy, there will be deviations, but 
these would be minor perturbations of the basic rodlike structure. 
The rod gradually thickens as the degree of suboptimality is 
increased (Fig. 2, B and C). Points near the rod correspond to base 
pairs that migrate lengthwise along the structure. Points close to the 
diagonal (upper left to lower right) correspond to small hairpin 
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structures that have been "pinched out" from the rodlike folding 
(Fig. 3, A and B). 

The computed folding of PSTV is well determined in a mathe- 
matical sense. Significant deviations from the optimal folding are 
not observed within 5 or 10 percent of the minimum free energy. A 
significantly different structure does not emerge until 20-optimal 
foldings are computed, when a highly branched folding totally 
different from the rod is found. These results for PSTV, in which 
small changes in the energy parameters are unlikely to perturb 
significantly the predicted folding, are not typical. 

Folding of a class I intron. The folding analysis of the self- 
splicing intervening sequence (IVS) from the 26s ribosomal RNA 
of T e t ~ a h y m e n a  theymophila (22, 23) is more complicated than that for 
PSTV. It is similar to the analysis by Jacobson et al .  (18) using a 
prototype version of the multiple folding program with the old 
energy rules. This work assessed bacteriophage folding predictions 
in regions of structural stability as indicated by electron microscopy. 
At first glance, the optimal folding drawn in Fig. 4 seems quite 
different from the computed folding in Cech et a l .  (24), but this 
difference is mostly due to the absence of some long-range base pairs 
in the former. These computer-generated foldings differ because the 
energy rules have been updated.-~he folding in Fig. 4 is closer to the 
more recent model (25, 26) based on phylogeny and biochemical 

Fig. 2. (A) The 0-opt~mal energv 
200 dot plot for the (PSTV) foldlng 

The minimum computed folding en- 
. erm IS -121 8 kcdmole (B) The 
-300 5-Ydpt~mal PSTV energy dot plot. 

(C) The 10-optlmal PSTV energy \ dot plot. 

C  A 

6 u u C> G U C  c 

15 I I, u G$* 
Flg. 3. (A) A portion of the optimal 

I . . rodlike structure of PSTV RNA. (B) 
G L G G U U C C -  j4 The same region in a 3-optimal fold- 

C C A A G G  ' 7  347 ~ G c G ~ % A  the ing, rodlike which destroys structure 12 to create base pairs a local of 
cruciform. Although there are many 

C  G 
A G U G  

3 (8U 3-optimal foldings, there are only 
u two different cruciform motifs at this 
u uG level of suboptimality. 

evidence, containing 89 out of its 121 base pairs (74 percent). 
Sequence comparison with homologous introns from five closely 

related ~ e t r a h ~ ~ e n a  species (27) reveals that hairpin structures 
homologous to regions A, B, and C (Fig. 4) can form in all of the 
compared species, even though sequence heterogeneity is greatest in 
these regions. In addition, there are two pairs of sequence elements 
and a double-stranded region that are conserved in a number of 
nuclear and mitochondrial introns (24). Using the nomenclature of 
Burke et a l .  (26), the first pair of elements is P (ulo6 to GI1') and Q 
(cZo7 to A2l3). These form an imperfect helix, P4, with AZo9 bulging 
out. Elements R ( G * ~ ~  to A ~ ~ ~ )  and S (u306 to C310) form a helix, 
denoted b; P 7  The conserved double-stranded region occurs 
between G to A''* and uZ7O to C277 and is called P3. Both P4 and 
P7 are found in the optimal folding, whereas P3 is not (Fig. 4). All 
three of these double-stranded regions are in the model of Burke et 
al .  (26). However, the presence of P3, P4, and P7 in a secondary 
structure creates a pseudo-knot (28, 29), and these are excluded by 
all energy-minimizing secondary structure prediction programs in 
use today (30). Including pseudo-knots in structure prediction 
algorithms would require a revised model, a new set of energy rules, 
and a much more complicated and slower algorithm. By finding two 
out of three conserved regions, the new program did as well as it 
could. It was also successful in finding the three regions A, B, and C 
in an o~t imal  folding. " 

The program detects two optimal foldings: the one shown in Fig. 
4, and an almost identical folding in which the u ' * ~ - A ' ~ '  base pair is 

Fig. 4. A minimum-energy folding (- 106.1 kcdmole) of the 413-base self- 
excising Tetrahyme~a IVS. The folding required 4.25 hours of CPU time 
on a VAX 111750 computer. Regions A (G226 to U246), B (G279 to CZ9'), and 
C (A368 to U401) are local hairpin structures for which there is phylogenetic 
evidence. Three pairs of (almost) complementary segments whose base 
pairing is conserved in a number of related nuclear and mitochondrial 
introns are shown in lower case. 
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replaced by U'~O-A'~' and in which u'~' is single-stranded. The 
distance criterion introduced earlier was designed to eliminate the 
prediction of two such close structures. Thirty separate runs were 
made with the automatic feature to select foldings (Table 1). It is 
remarkable that so many trivially different 10-optimal foldings are 
found. When the distance between these foldings is forced to be 
greater than 2, the number falls dramatically. The 96 10-optimal 
foldings with d = 10 were examined in some detail. All of the 
structural motifs in the model of Burke et a l .  (26) occur in this 
collection, as do the structural elements contained in the model of 
Cech et al.  (24). The P3 region is found without the two base pairs 
after the U-U mismatch. This entire motif appears only when d 5 2. 
The reason is that those two base pairs are energetically unfavorable 
even when the rest of the motif forms. The entire P3 motif occurs in 
an 8.2-optimal structure (Fig. 5). 

In the 5- and 10-optimal energy dot plots for the IVS (Fig. 6, B 
and C), the added lines create three triangular regions above the 
diagonal, corresponding to base pairs within the segments from 1 to 
105, 106 to 213, and 214 to 413. In the 5-optimal plot, there are 
very few dots outside these triangular regions, which means that, 
within 5 percent of the minimum energy, base pairing between the 
three segments is unlikely. Alternative structures most likely occur 
from alternative foldings within these segments. The third and 
largest triangle is the most cluttered, implying that the greatest 
variability is in the last segment. In the 10-optimal dot plot, the 
number of possible long-range base pairs is considerable. However, 
the rectangles above and to the right of the middle triangle contain 
relatively few dots, which means that the segment from nucleotides 
106 to 213 is likely to base pair only with itself in 10-optimal 
foldings. The growth of dots in the middle triangle from 0- to 5- to 
10-optimal suggests a blurring of the branched motif formed by 
bases 106 to 213 (Fig. 4). The conclusion is that this branched motif 
is well determined and is likely to occur in 10-optimal structures. 
Nevertheless, it can partially disappear even within 5 percent of the 
minimum energy. The 5-optimal dot plot (Fig. 6B) contains three 
consecutive helices that intrude on the rectangle to the right of the 

Fig. 5. Part of a subopti- 
mal folding of the IVS 
containing the entire P3 
structural motif not 
found in the optimal 
structure (Fig. 4). The 1 & c c ~  

A 
G~ A~ 50 

P4 region is retained in * U A  A U U U C A *  

this folding while P7 is C%G 

lost. The gases of these GP 
structural features are k ' Y ,  

shown in lower case. G" 
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middle triangular region. Selecting a base pair (such as 1 '  in 
the region results in a 4.6-optimal folding that eliminates 13 base 
pairs in the stem region of the branched motif (Fig. 7) .  Similar 
analyses of the energy dot plots for the IVS show that motif A (Fig. 
4) is also well determined, as is the hairpin on A30 to u ~ ~ .  In 
contrast, bases 75 to 105 of the IVS can participate in many 
alternative structures within 10 percent of the minimum energy. 

This qualitative image analysis can be made more precise by 
introducing a new kind of plot. If ri is the ith ribonucleotide in a 
sequence, then P-Num(i) can be defined as the total number of 
different base pairs in which ri can participate in all P-optimal 
foldings. Thus P-Num(i) is the number of points in the ith row and 
column of the P-optimal energy dot plot. In plots of 5-Num and 10- 
Num for the IVS (Fig. 8), the 10-Num lot forms a trough in the P . .  region of the branched motif (u'O6 to A 13), indicating a relatively 
well-defined structure. The average value of 10-Num is 15.9 for this 
segment. However, the P-Q base pairing at the base of this region is 
not well defined, with average 10-Num values of 44.5 and 29.0 for 
P and Q, respectively. At the 10-percent-level of suboptimality, P 
and Q  can take part in numerous alternative foldings. Thus a study 
of the 10-Num plot leads to the more conservative prediction that 
only the middle portion of the branched motif (bases 11 5 to 204) is 
well defined. The average value of 10-Num for the segment from 75 
to 105 is high (41.1), confirming the earlier observation based on a 
visual inspection of the 10-optimal dot plot. The best defined 
regions are the A30 to uS5 hairpin and the A motif (bases 226 to 
246), with 10-Num averages of 4.8 and 6.2, respectively. At the 5 
percent level, more precise statements can be made. There are 20 
bases that are always single-stranded and 42 base pairs that always 

Table 1. The number of foldings computed for the Tetrahymena IVS at 
different percentages from the minimum folding energy P for various 
minimum painvise-distance criteria d. 

Fig. 6. (A) The 0-optimal energy 
dot plot for the IVS folding. The 
minimum computed folding energy 
is -106.1 kcallmole. (B) The 5-  
optimal IVS energy dot plot. (C) 
The 10-optimal IVS energy dot 
plot. The horizontal lines in rows 
106 and 213 and the vertical lines in 
columns 106 and 213 (R and C) 
have been added to aid the discus- 
sion. 
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occur in 5-optimal structures. In particular, the hairpin G31 to C54 
and the A motif without the bottom two base pairs must always 
form in 5-optimal structures. 

Suboptimal foldings versus dot plot analysis. The automatic- 
traceback procedure is not intended to generate all nearly optimal 
foldings. Even with the distance constraint, there can be too many 
structures to examine within 10 or even 5 percent of the minimum 
energy. For example, within 5 percent of the minimum energy, the 
three segments 1 to 105,106 to 213, and 214 to 413 ofthe IVS fold 
more or less independently of one another (Fig. 6B). Selecting a 
suboptimal base pair in one of the segments produces a suboptimal 
structure in that segment, whereas the folding in the rest of the 
sequence is optimal. If ten suboptimal base pairs are chosen in each 
triangular region, a total of 30 structures would be generated by the 
existing program. However, it is possible to combine each subopti- 
mal folding in each segment with every other suboptimal folding 
found in the other nvo segments. This procedure yields 
10 x 10 x 10 = 1000 suboptimal structures. In general, this sort 

Fig. 7. Part of a 5-optimal folding in which the branched structural motif 
from Fig. 4 (bases Uto6 to AZt3) is partly lost. This folding also contains 
long-range base pairs not found in the optimal structure. 

0 60 120 180 240 300 360 420 

Base number 

Fig. 8. The 5- and IO-Num plots for the N S  shown in solid and dashed 
h e s ,  respectively. The total number of base pairs in which the ith base can 
take pan in 5- or 10-optimal foldings (ordinate) is plotted against 1 

(abscissa). Plotted ordinates are the averages over three consecutive bases. 

of combinatorial argument can be used to increase the output of the 
program by many orders of magnitude. Thus the algorithm was 
designed to find the best structures containing single given base . - -  

pairs, instead of proceeding to compute structures containing two 
or more prescribed base pairs. 

The selection of a single suboptimal base pair usually results in the 
discovery of a novel local folding motif including that base pair. The 
rest of the folding often contains base pairs that have been found in 
previous foldings. Occasionally, selecting a base pair produces a 
folding that is different from previous structures not only near the 
selected base pair, but farther away as well. At the very least, the 
procedure of selecting P-optimal base pairs not too close to base 
pairs that have alread~occu~red in a fol&ng should yield all possible 
local motifs that can take part in P-optimal foldings. At the 10- 
optimal level, this procedure predicts 96 percent of phplogenetically 
determined helices in 141 transfer RNA sequences and 88 percent 
of the corresponding helices for 67  5 s  LVA sequences (31). 

The analysis of the energy dot plot and the derived P-Num 
function is an effective way of viewing and appreciating the entire 
range of solutions within a given percentage of the minimum 
folding energy. This approach makes it possible to assign a confi- 
dence to a secondary structure, or to decide that it is very unlikely 
that one segment base pairs with another. The alreadi 
allows for the incorporation of nuclease data indicating single- or 
double-stranded regions, so that only base pairs compatible with 
such data would beiiewed in the dot plot. automat& procedure 
to compare energy dot plots of two or more homologous sequences 
in the search for a common folding that would combine energy 
minimization and phylogeny remains to be developed. 
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