
From Real Numbers to 

Talks at the joint mathematics meetings of the Amevican Mathematical Society and the 
Mathematics Association of Amevica, held 11 to 14 January in Phoenix, Arizona, vanged 
jiom information-based complexity in numevical analysis to pvimitive vecuvsive &nctions in 
avithmetic. Heve is a sample of topics covered. 

I better measured by the number of variables 

Computing over the Reals 

Real computers do not really deal with real 
numbers. There is something intrinsically 
infinite about the real numbers-their un- 
ending decimal expansions, for instance- 
that goes against the grain of finite-state 
automata. However, mathematicians are 
finding it useful to imagine abstract ma- 
chines that store and operate on real num- 
bers--or, more generally, the elements of 
any number system, called a "ring," that 
permits addition, subtraction, multiplica- 
tion, and, sometimes, division. The theory 
of such "machines" provides a convenient 
framework for studying problems in numer- 
ical analysis, optimization, and other areas 
of computational mathematics. 

Computability and computational com- 
plexity are twin questions for any comput- 
ing machine, actual or imaginary. Roughly 
speaking, computability concerns whether a 
given problem can be solved at all; complex- 
ity worries about how much work is neces- 
sary. Lenore Blum, at the International 
Coniputer Science Institute in Berkeley, 
California, Michael Shub, at the IBM Wat- 
son Research Center in Yorktown Heights, 
New York, and Stephen Smale, at the Uni- 
versity of California at Berkeley, have devel- 
oped a theory of computation for arbitrary 
ordered rings, with particular attention to 
the real numbers. (An ordered ring is one 
that includes a comparison of elements, such 
as 2 < 3.) 

Computability and complexity theory are 
usually studied over the ring of integers, 
reflecting the discrete nature of digital com- 
puters. In particular, the bit size (that is, the 
number of digits) of a number is a standard 
measure of complexity: as any fourth grader 
will agree, multiplying four-digit numbers is 
more work than multiplying two-digit num- 
bers. In complexity over the reals, however, 
the "cost" of multiplication--or any algebra- 
ic operation-is taken to be independent of 
the size of the numbers involved. This is a 
natural viewpoint for scientific computa- 
tion, where the complexity of a problem is 

involved. 
Some problems that are undecidable over 

the integers turn out to be computable over 
the reals. The "4-Feasibility problem" is a 
case in point. The problem is to determine 
whether or not a polynomial of degree four 
in any number of variables has a zero. When 
the problem is posed over the ring of inte- 
!gers-that is, when integer zer& are re- 
quested-the problem is undecidable: there 
is no algorithm that guarantees a yes-or-no 
answer for the existence of zeros. 

Over the reals, however, the 4-Feasibility 
problem is known to be decidable. It is also 
in the curious class of "NP problems" over 
the reals. An NP problem is one whose 
answer is easy to verify, provided you are 
lucky enough to guess a solution. 'The 
notion of NP is very peculiar," Blum says. 
"God gives you an answer, and you check it 
out." 

Recent work by D. Yu. Grigortv in the 
Soviet Union, which has been followed up 
by John Canny at the University of Califor- 
nia at Berkeley and by James Renegar, of 
Cornell University, has shown that the 4- 
Feasibility problem over the reds can be 
solved &"e&onential time": each addition- 
al variable increases by a constant factor the 
amount of computation required to deter- 
mine if there is ; zero. It would be nice to 
find a "polynomial-time" algorithm: in that 
case, the amount of computation increases 
like a Dower of the number of variables. 
rather than exponentially (compare, say, n2 
with 2n when n = 100). However, Blum et 
al. have made this doubtful; they have 
shown that the 4-Feasibility problem is "NP 
complete" over the reals. This means, essen- 
tially, that any other NP problem over the 
reals can be rephrased to sound like the 4- 
Feasibility problem, so that a fast algorithm 
for solving the 4-Feasibility problem would 
translate into a fast algorithm for solving any 
other NP problem over the reals. 

There are thousands of NP-comulete 
problems over the integers, including irn- 
portant problems in scheduling and sorting. 
It would be a stunning advance either way if 
any of these were shown to have a polyno- 

mial-time algorithm, or if any NP problem 
were shown not to have such an algorithm. 
Blum and her co-workers hope that study- 
ing a more general theory of complexity will 
shed light on the nature of NP problems. 

Blum, Shub, and Smale have also shown 
that some of the familiar objects in dynami- 
cal systems involve an element of undecida- 
bility over the reals. A Julia set is a geometric 
region in the complex plane, defined by 
iterating a function such as a polynomial 
(for example,Jz) = z2 + 1). For polynomi- 
als, values of x that eventually become large 
are said to be outside the Julia set; the Julia 
set consists of z's that never get large. There 
is a clear-cut criterion for what "large" 
means, so that any point not in the Julia set 
will eventually identify its status. 

Points in the Julia set, however, only 
indicate their status by never getting large. 
One might hope that there would be some 
other way of characterizing these points- 
say by showing that a point belongs to the 
Julia set if after 100 iterations it still has not 
gotten large. In some cases this is possible. 
For instance, the Julia set for the function 
f(z) = x2 is the unit circle in the complex 
plane. But Blum and her colleagues have 
shown that, in general, there is no clear-cut 
characterization. 

Information-Based Complexity 

As the lyric says, you can't always get what 
you want-but if you try sometimes, you 
just might find you get what you need. 

How do you solve a computational prob- 
lem when the information available is par- 
tial, approximate, or  hard to come by? Re- 
searchers in information-based complexity 
(IBC) look for general results on the diffi- 
culty of solving problems with these fea- 
tures. Such uroblems are common in numer- 
ical analysis, physics, economics, robotic and 
human vision, signal processing, decision 
theory, and control theory, says Joseph 
Traub, a computer scientist at ~o lumbia  
University. Traub and Edward Packel, of 
Lake Forest College in Illinois, outlined the 
current status of IBC at a session on founda- 
tions of complexity theory for numerical 
analysis at the math meetings in Phoenix. 

There are two basic types bfcomputation- 
a1 problems, Traub notes: discrete combina- 
torial problems where the information avail- 
able iicomplete, exact, and free; and contin- 
uous algebraic or analytic problems where 
the information is ~artial. contaminated. 
and priced. An example of the former is the 
well-known Traveling Salesman Problem: 
given a map showing exact distances be- 
tween a set of cities, find the shortest circuit 
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that passes through every city. 
A typical IBC-type problem is that of 

numerically integrating a continuous func- 
tion (that is, computing Jo'f(x)dx) when it 
is possible to know only finitely many values 
of the function--often only approximately. 
What is the best information to ask for, and 
what is the worst error that can occur with 
the best algorithm? A general theory of 
information-based complexity gives guide- 
lines for what can and cannot be done, and 
suggests algorithmic approaches for specific 
problems. 

Many IBC problems, including the inte- 
gration example, are "linear" in nature: if the 
problem is split into pieces, the whole prob- 
lem can be solved by adding up the solutions 
of the pieces [in symbols, S(P1 + P2) = 
S(Pl) + S(P1)]. If a linear problem can be 
solved at all, it can be solved by a linear 
algorithm, Packel notes. [An algorithm is 
linear if its answer to a sum is the sum of its 
answers-that is, if A(P1 + P2) = A(P1) + 
A(P2). Keep in mind that A(P) is, in gener- 
al, only an approximation to the true solu- 
tion S(P).] But does that mean that linear 
algorithms are best? Not necessarily, Packel 
says. Although linear algorithms are optimal 
in a wide class of linear problems, research- 
ers have created exam~les where nonlinear 
approaches are bett'er. ' 

Until recently, these examples have been 
contrivances unlikely to occur in practice. 
However, in 1986, Arthur Werschulz of 
Fordham University and Henryk Wozhia- 
kowski of the University of Warsaw and 
Columbia Universitv found a class of coun- 
terexamples with real-world overtones. 
Their result includes a "naturally occurring'' 
problem of inverting a Laplace transformia 
familiar task in many engineering applica- 
tions. (The exact mathematical problem, 
though, is still purely theoretical.) Wers- 
chulz and Wozniakowski found that all lin- 
ear algorithms for this problem necessarily 
have infinite error. but that the problem can 
be solved by nonlinear algori&s. 

On the other hand, researchers, including 
Packel, have found general conditions under 
which linear algorithms are optimal. "Our 
faith in linear algorithms for linear problems 
is alternately strengthened and shaken, leav- 
ing us in a state of tantalizing mathematical 
ambiguity," Packel says. 

Progress in Progressions 

Few things are simpler than an arithmetic 
progression: a string of integers, such as 7, 
10,13,16, in which each number exceeds its 
predecessor by a constant amount. But sim- 
ple ideas often lead into surprisingly difficult 

problems. Ron Graham, of Bell Labora- 
tories, described some recent progress in 
arithmetic progressions. 

Suppose the natural numbers are separat- 
ed into two sets-for convenience, imagine 
coloring each number, say, either red or 
blue. An old theorem of B. L. van der 
Waerden says that at least one of the sets 
must contain arithmetic progressions of any 
length you care to ask for. In fact, van der 
Waerden's theorem, proved in 1927, holds 
no matter how many "colors" you use. 

A simple question is this: How far do you 
have to look in order to be sure of finding, 
say, three terms of the same color that are in 
arithmetic progression? To put it another 
way, how many natural numbers can you 
paint without creating an arithmetic pro- 
gression of a given length? 

It is easy to check that coloring 1, 3, 6, 
and 8 red, and 2,4, 5, and 7 blue avoids any 
three-term progression. But if you include 
9, it is impossible to avoid creating a three- 
term progression. How about four-term 
progressions? It turns out that the numbers 
1-35 cannot be painted red and blue with- 
out creating a four-term progression. For 
five-term progressions, unavoidability be- 
gins at 178. For six-term progressions, no 
one knows. 

Van der Waerden's proof provides an 
upper bound on how far you can paint 
before creating an arithmetic progression of 
a given length, but the upper bound is 
ridiculously large. The bound grows so rap- 
idly as a function of the length of the 
progression that it falls outside of the nor- 
mal class of functions that logicians call 
"primitive recursive." In some axiomatic 
models of arithmetic, in fact, the only func- 
tions are the primitive recursive ones (which 
include polynomials and exponentials). Van 
der Waerden's proof uses a technique called 
double induction, which is responsible for 
the explosive growth of the bound. Some 
mathematicians suggested that the actual 
growth might be non-primitive recursive, 
which would point to the double induction 
as an unavoidable step in proving that arith- 
metic progressions exist. 

Saharon Shelah of the Hebrew University 
in Jerusalem has shown that they were 
wrong. In an article in the July 1988 issue of 
the Journal of the American Mathematical Soci- 
ety, Shelah shows that van der Waerden's 
upper bound can indeed be replaced by a 
primitive recursive function. Shelah's result 
applies, in fact, to a more general problem, 
and includes the multi-coloring case of van 
der Waerden's theorem. The upper bound is 
still enormous (it is not explicitly written 
out in Shelah's article), but, Graham says, it 
is a "fantastic improvement" over what was 
known. 

Zeta Zero Update 

The 1020th zero of the Riemann zeta func- 
tion is ?h + 15202440115920747268.6290299. . . 
a. Andrew Odlyzko of Bell Labora- 
tories in Murray Hill, New Jersey, has re- 
cently completed a statistical analysis of 
more than 78 million consecutive zeros on 
either side of the 1020th. These zeros lie 
nearly a hundred million times higher than 
those of previous computations (see Science 
11 March 1988, p. 1241). 

The Riemann zeta function, and especial- 
ly its zeros (points in the complex plane 
where the function vanishes), contain a 
wealth of number-theoretic information. 
Aside from a well-understood set of "trivial" 
zeros, all the zeros of the zeta function are 
known to lie in a thin vertical strip in the 
complex plane. The famous Riemann Hy- 
pothesis asserts that they all lie on a line 
running up the middle of the strip. The 
zeros in Odlyzko's study all satisfy the Rie- 
mann Hypothesis. 

More importantly, Odlyzko's zeros pro- 
vide evidence favoring another conjecture 
on the spacing between consecutive zeros. It 
has been proposed that the distribution of 
spacings between zeros of the zeta function 
is similar to that of eigenvalues of random 
matrices that are studied in many-particle 
systems in physics. This hypothesis, which 
implies the Riemann Hypothesis, suggests 
that the zeta function could be used as a 
model of quantum chaos. 

Brian Conrey, at Oklahoma State Univer- 
sity, has taken a different tack on statistics of 
the zeta function. Writing in the January 
1989 issue of the Bulletin of the American 
Mathematical Society, Conrey says that, what- 
ever else happens, at least two-fifths of the 
zeros of the zeta function lie on the line 
where they are supposed to be. This im- 
proves the previous lower bound of one- 
third, which was proved in 1973 by Nor- 
man Levinson at the Massachusetts Institute 
of Technology. 

To understand what the lower bound 
means, imagine cutting off the vertical strip 
at a finite height, and counting the zeros 
inside the resulting rectangle. There will be 
only finitely many zeros, so the fraction that 
lie on the line can be computed. Now 
increase the height of the rectangle and 
recompute the fraction. Conrey's result says 
that, as the rectangle is taken taller and taller, 
the fraction will eventually exceed two- 
fifths. BARRY A. CIPRA 

Bawy A. Cipra is a mathematician and writer 
based in Novthjeld, Minnesota. 
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