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Purification of Growth Hormone-Specific 
Transcription Factor GHF- 1 Containing Homeobox 

Pituitary-specific expression of the growth hormone (GH) gene is governed by a 
transcription factor, GHF-1, that binds to two sites within its promoter. Recently, 
GHF-1 was shown to be a member of the homeobox family of DNA-binding proteins. 
An important question is whether GHF-1 controls the expression of other pituitary 
specific genes, such as prolactin (Prl), expressed in closely related cell types. To this 
end, GHF-1 was purified from extracts of GH- and Prl-expressing pituitary tumor 
cells and identified as a 33-kilodalton polypeptide. Although GHF-1 bound to and 
activated the GH promoter, it did not recognize the Prl promoter. However, at least 
one other factor in the same extracts, which was easily separated from GHF-1, bound 
to several sites within the Prl but not the GH promoter. Antibodies to GHF-1 did not 
react with the Prl binding activity. These results imply that the pituitary-specific 
expression of GH and Prl is governed by two distinct trans-acting factors. 

T HE PITUITARY-SPECIFIC EXPRES- 

sion of the G H  gene is due to the 
recognition of its promoter region 

by a specific transcription factor, GHF-1 
(1). GHF- 1 has, thus far, been detected only 
in GH-expressing cell types (2-4). Extinc- 
tion of GH expression in somatic cell hy- 
brids appears to be caused by repression of 
GHF-1 expression (3). However, when add- 
ed to extracts of nonexpressing cells such as 
HeLa, GHF-1 activates the G H  promoter 
(1). The analysis of recently isolated cDNA 
clones encoding GHF- 1 has indicated that 
GHF-1 is a homeobox-containing protein 
(4) and therefore is a member of a large 
family of DNA-binding proteins chat con- 
trol development and differentiation (5 ) .  
Immunohistolo~ical localization indicates 

An unresolved question is whether GHF- 
1 also controls expression of other anterior 
pituitary specific genes, such as prolactin 
(Prl). To address this question, we purified 
GHF- 1 from whole cell extracts of pituitary 
tumor cells grown in suspension. These cells 
express both the GH and Prl genes (6 ) .  

A whole cell extract of GC cells (7) was 
fractionated by chromatography on heparin 
agarose and then analyzed on a Sephacryl S- 
300 gel filtration column (8). The GHF-1- 
enriched fractions were pooled and applied 
to a sequence-specific oligodeoqmucleotide- 
'Sepharose column containing a high-affinity 
GHF-1 binding site (9). Purification of 

Table 1. Purification of GHF-1. 
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GHF-1 was monitored by deoxyribonucle- 
ase I (DNA I) footprinting. However, it was 
important to determine whether the tran- 
scriptional stimulatory activity of GHF-1 
copurified with its DNA-binding activity. 
~Ghermore ,  we wished to determine 
whether GHF-1 was the only pituitary cell- 
derived factor required for activating the 
GH promoter in extracts of nonexpressing 
HeLa cells. We therefore also monitored the 
transcriptional stimulatory activity of GHF- 
1 by adding a sample of each fraction to 
HeLa whole cell extract and measuring the 
level of transcripts initiated at the GH pro- 
moter by extension (1, 10). ~ a c h  of 
the GHF- 1-containing fractions stimulated 
initiation from the correct start site of the 
human G H  (hGH) promoter in vitro, while 
having no effect on initiation from an adja- 
cent nonspecific site (Fig. 1). Both start sites 
are used during transient expression of the 
hGH-chloramphenicol acetyltransferase 
(CAT) vector, although the physiological 
site is the dominant one (2). The ratio 
between the footprinting activity of GHF-1 
(Table 1) and its ability to stimulate tran- 
scription was relatively unchanged during all 
three purification steps. Both activities elut- 
ed from the preparative S-300 column as a 
single peak corresponding to an apparent 
molecular mass of approximately 50 kD 
(1 1). A summary of the purification scheme 
is presented in Table 1. 

SDS-polyacrylamide gel electrophoresis 

that GHF-1 isvexpressed in cells of the 
Fraction Protein Volume Yield Relative" Units* somatotropic lineage in the anterior pitu- (mg) (ml) (%) purity 

itary (4). GHF- 1 may therefore be the major 
determinant specifying expression of G H  in ~~~~~~~g~~ 800 50 880,000 100 1 250 30 750,000 85 3 
these cells. S-300 27 54 450,000 5 1 17 

DNA-affinity 0.21 10 150,000 17 700 
- -- - 

Dcparunent of Pharmacology, M-036, School of Medi- *One footprintin unit is the amount of GHF-1 required for full protection of the proximal GH site with the use of a 5 
cinc, University of California, San Diego, La Jolla, CA ng of probe. $TO determine relative purity, we assumed that the whole cell extract contained the same amount of 
92093 GHF-1 as all of the heparin-agarose fractions, although it was never assayed directly by footprinting. 
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(PAGE) of the affinity-purified GHF- 1 indi- 
cated that it was still composed of several 
polypeptides (Fig. 2A). Further repetition 
of the a&ty chromatography step did not 
result in a significant increase in the purity 
of GHF-1 even if the routinely used poly- 
(dI-dC) competitor was replaced with p l y -  
(dA-dT). To identify which of the polypep- 
tides corresponds to GHF-1, we subjected 
afbity-purified GHF- 1 to preparative SDS- 
PAGE, and the polypeptides located within 
three regions of the gel were eluted, rena- 
tured (12), and examined by DNase I foot- 
printing for GHF-1 binding activity. At 

least one of the three polypeptides that 
migrated between 34 and 32 kD bound to 
the hGH probe (Fig. 2B). In a subsequent 
experiment, each of these three polypeptides 
was separately eluted (Fig. 3) and renamed. 
Only the 33-kD species that migrated in the 
middle of the triplet exhibited significant 
binding to the hGH, indicating it is GHF- 1 
(Fig. 2C). 

Although only one member of the 33-kD 
triplet had significant GHF-1 activity, the 
occurrence of these polypeptides at similar 
ratios in several different GHF-1 prepara- 
tions and their similar molecular masses 
suggested that they might be structurally 
related. We therefore subjected them to 
peptide mapping with V8 protease (13). All 
three were composed of a common 19-kD 
peptide and a second smaller peptide, which 
added up to the size of the starting material. 
This raises the possibility that the 34- and 
32.5-kD species, although structurally relat- 
ed to the 33-kD species, do not rename as 
readily after elution from the gel, which 
results in their failure to bind to the GH 
promoter. 

The present data suggest that GHF-1 is 
the only pituitary-specific protein required 
for activation of the GH promoter in ex- 
tracts of nonexpressing cells. Most impor- 

tant, the apparent molecular mass of the 
transcriptional stimulatory and DNA-bind- 
ing activity determined by gel filtration (50 
kD) is close to the molecular mass of the 
DNA-binding activity determined by SDS- 
PAGE (33 kD). These findings, and the 
specific localization of GHF-1 in vivo in 
cells of the somatotropic lineage, suggest 
that GHF-1 is the primary determinant of 
GH expression. Although GH-synthesizing 
(somatotropes) and Prl-synthesizing (lacto- 
tropes) cells are derived from a common 
primor that expresses both genes (14), 
many of the cells in the adult pituitary 
express only one of the two (1.5). To deter- 
mine whether the GH and Prl genes are 
both controlled by GHF-1 or by two dis- 
tinct factors, we examined the binding of 
GHF-1 to the rat Prl (rPrl) promoter. Even 
though the rPrl probe wai labeled to the 
same specific activity as the hGH probe, it 
was not significantly protected by GHF-1 
(Fig. 4 4 .    ow ever, o n e  or more factors 
present in the flow-through fraction of the 
af i i ty  column protected five sites in the 
rPrl vromoter. 'Four of these sites were 
identical to the ones previously assigned for 
the pituitary specific factor, Pit-1 (14, also 
known as LSF-1 (17). Since it was possible 
that the Prl-specific activity was a modified 

A B Slice 
l o  M 2" I .  2 S f - . ' - -  32.5 33 34 

B 
I nfr 1 19 37 - 

NSI- 

Fig. 1. Copurification of GHF-1 DNA-binding 
and transcriptional-stirnulatory activities. A GC 
whole cell extract was first fractionated by hepa- 
rin-agarose (Hep-Ag) chromatography. Hep-Ag 
fractions I1 and I11 were pooled and applied to a 
Sephacryl S-300 column. (A) Elution of GHF-1 
was monitored by DNase I footprinting. The 
GHF-l-containing fractions were pooled and 
applied to a sequence-specific aftinity column 
(AfT). The input (IN) and the eluate (0.4) con- 
tained GHF-1 binding activity, whereas the flow- 
through (FT) was depleted of this activity. (6) 
Transcriptional stimulatory activity of these fiac- 
tions. A sample of each fraction was added to an 
in v i m  transcription reaction mixture (HeLa 
whole cell extract and hGH-CAT template) (1, 
10); the level of hGH-CAT transcripts was deter- 
mined by primer extension (1, 10). The activity of 
GHF-1 was assessed by its ability to stimulate the 
formation of the correctly initiated hGH-CAT 
transcript (GH), while having no effect on the 
formation of an aberrant transcript initiated ten 
nucleotides fureher upstream (NSI). dGHF- 1, 
distal GHF- 1; pGHF- 1, proximal GHF- 1. 

Fig. 2. Identification of GHF-1. (A) 7 
GHF- 1 containing fractions, after one (1") 
or nvo (2") cycles of affinity chromatogra- 
phy, were analyzed by SDS-PAGE. iM, 
molecular \\eight markers in kilodaltons. 
(B) A second lane of the gel shown in (A) 
containing material after a second pass 
throug!l the affinity column was not 
stained, but was sliced as indicated in (A). 
The protcins in each slice were eluted, r 
renatured (12), and examined for GHF-1 
binding activity by DNase I footprinting 

7 
analysis. In thc lane labeled GHF-1, the ~ o c ~ ~ . ~ ~ ~ ~ ~  ,,,,ferred by at,,,.,,-ru.u,ed GHF-1 are sho\vn for 
comparison. To furti- .he GHF-1 binding activity, the thrcc ~olppeptides migrating at 34,33, 
and 32.5 kD were se xed (Fig. 3), renamred, and examined for their ability to bind to the 
hCH promoter. 

ler localize t 
,parated, ell 

I 0  FEBRUARY 1989 REPORTS 815 



fbrm of GHF-1 that no longer bound to 
the GH site, we used antibodies to GHF-1 
to examine the relation between the two ac- 
tivities. These antibodies were generated 
against a synthetic peptide deduced from a 
partial sequence of the GHF-1 protein (4). 
These antibodies reacted strongly with the 
GHF-1 polypeptide in the S-300 and alKni- 
ty-purified fractions but did not react with 
the flow-through fraaion (Fig. 4B) that 
contained the Prl-specific binding activity. 

These results differ from those of Nelson 
et al. (16), who reported that a single factor, 
Pit-1, binds to both Prl and GH. However, 
their conclusion was based on competition 
experiments and not on direct footprinting 
studies. Because of the similarity between 
the GH and Prl binding sites (Fig. 4C), a 
large excess of a GH site will probably 
compete for protection of the Prl sites. In 
fact, when moderate amounts of these sites 
were used, no cross-competition was ob- 
served (18). In addition, Siddiqui et al. (1 7) 
have found that unless it is first purified by a 
passage through a GH-specific atlinity col- 
umn, the Prl-specific factor LSF-1 is con- 
taminated with GHF-1. Whereas these bio- 
chemical studies clearly support the exis- 
tence of two separate factors controlling the 
GH and Prl genes, Ingraham et al. (19) have 
recently published the sequence of a cDNA 
claimed to encode Pit-1. Surprisingly, the 
sequence of this cDNA is identical to the 
GHF- 1 CDNA sequence (4). Furthermore, 
although no direct binding of bacterially 

expressed Pit-1 to Prl was demonstrated, 
expression vectors containing the cDNA 
were capable of trans-activating the Prl pro- 
moter in a cotransfection assay (19). Since, 
at levels that are su6cient for full protection 
of both the high- and low-ahity sites of 
the GH promoter, GHF-1 does not signifi- 
cantly protect any of the previously assigned 
Pit-1 sites within the Prl promoter, includ- 
ing the proximal high-atlinity site (Fig. 4), 
we suggest that the transactivation of Prl 
seen by the Pit-1 D N A  (identical in its 
sequence to GHF-1) is due to the vast 

overexpression of this protein in transiently 
transfected cells. When present in amounts 
far exceeding its physidlogical levels, it is 
possible that GHF-1 will bind not only to 
the GH promoter, but also to the structural- 
ly related Prl promoter. Interestingly, re- 
laxed binding specificity was demonstrated 
for other homeobox proteins and appears to 
be a common property of this class of 
proteins (20). However, for proper regula- 
tion to occur in vivo, such proteins must 
interact with their targets in a highly specific 
manner. 

hGH rPrl 

Fig. 4. D 
promoter 
and Prl .. . 

ifferent fact 
.s. (A) T o  c 
promoters 

. .. ,- 

ors bind to  
ietermine u 
are recogr . , 

the GH ant 
thether the 
1i7xd bv e -.- ,. , . 

d Prl C 
G H  hG, 

ither -- 

- Original 
protein GCATAMTGTACA I proximal 

alstlnct or slmllar ractors, tne n l r n  (labelea a t  rtiti ~roximal GMTAMTGTATA 

position +3)  and rPrl (labeled at position 
probes were incubated with 10 or 25 ~1 o :cc 
pooled S-300 fraction, affinity-purified GF :CC 
or the flow-through (FT) of the GHF-1 aff 
column and wcrc subjected to DNase I 1 TAMT 
print analvsis ( 1 ) .  The G and G + A sequen 
ladders were used as size markers, and 
position of the various protected sites arc 

:he boxes. (0)  To examine whether me 
ic activity is immunologicallv related rpr c 
1, the various protein fractions used 
:re subjected to immunoblot analysis rPT 

with antibodies to GHF-I (4). The S-300 I 
- -  

'1 3~ LTAAMlTATT 
Fig. 3. V8 peptide mapping. T o  determine the pg), 0.2 pg of the affinity-purified GF 
structural relations between the three proteins (A@, and 150 kg  of thc flow-through I .I 4~ EMTMGAAA 

migrating between 32.5 and 34 kD, they were fractions were precipitated with trichloroa 
separated by SDS-PAGE and subjected to V8 acid, resuspended in SDS sample buffer, auv- 

.1 5P (-19s) I IAAEMAATCCTT 

peptide mapping (13). The lane marked V8 con- jected to electrophoresis on a 10% polyacrylamide-SDS gel, and transferred to Immobilon membrane. 
tains V8 alone, whereas the lanes marked V8 + The membranes were subjected to immunoblorting as described previously (4) with the use of affinity- 
34, 33, or 32.5 contain each of the isolated purified antibodies to GHF-1 (4). The migration position of the 33-kD form of GHF-1 is indicated. 
proteins plus V8. The lane marked 34 contains (C) Sequence comparison of the various GHF-1 binding sites on the hGH and rGH promoters and the 
the original undigested 34kD protein. The size sites protected on the rPrl promoter. We have no proof whether the five Prl sites are recognized by a 
of the resulting peptides are indicated on the side single factor; however, their sequences are quite similar and are shown onlv for comparison to the 
panel, in kilodaltons. GHF-1 sites. 
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It will be of interest to isolate cDNA 
clones encoding the Prl-specific factor and 
determine whether this protein is also a 
homeobox-containing transcription factor. 
The analysis of the expression pattern of the 
GH- and Prl-specific factors during the de- 
velopment of the pituitary should help clari- 
fy how a single ectodermal stem cell leads to 
formation of an organ, the anterior pitu- 
itary, composed of many endocrine cell 
types expressing hormone genes. 
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