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Purification of Growth Hormone—Specific
Transcription Factor GHF-1 Containing Homeobox

Josg-Luis CASTRILLO, MORDECHAI BODNER, MICHAEL KARIN

Pituitary-specific expression of the growth hormone (GH) gene is governed by a
transcription factor, GHF-1, that binds to two sites within its promoter. Recently,
GHF-1 was shown to be a member of the homeobox family of DNA-binding proteins.
An important question is whether GHF-1 controls the expression of other pituitary
specific genes, such as prolactin (Prl), expressed in closely related cell types. To this
end, GHF-1 was purified from extracts of GH- and Prl-expressing pituitary tumor
cells and identified as a 33-kilodalton polypeptide. Although GHF-1 bound to and
activated the GH promoter, it did not recognize the Prl promoter. However, at least
one other factor in the same extracts, which was easily separated from GHEF-1, bound
to several sites within the Prl but not the GH promoter. Antibodies to GHF-1 did not
react with the Prl binding activity. These results imply that the pituitary-specific
expression of GH and Prl is governed by two distinct trans-acting factors.

HE PITUITARY-SPECIFIC EXPRES-

sion of the GH gene is due to the

recognition of its promoter region
by a specific transcription factor, GHF-1
(1). GHF-1 has, thus far, been detected only
in GH-expressing cell types (2-4). Extinc-
tion of GH expression in somatic cell hy-
brids appears to be caused by repression of
GHF-1 expression (3). However, when add-
ed to extracts of nonexpressing cells such as
HeLa, GHF-1 activates the GH promoter
(1). The analysis of recently isolated cDNA
clones encoding GHEF-1 has indicated that
GHEF-1 is a homeobox-containing protein
(4) and therefore is a member of a large
family of DNA-binding proteins that con-
trol development and differentiation (5).
Immunohistological localization indicates
that GHF-1 is expressed in cells of the
somatotropic lineage in the anterior pitu-
itary (4). GHF-1 may therefore be the major
determinant specifying expression of GH in
these cells.
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An unresolved question is whether GHE-
1 also controls expression of other anterior
pituitary specific genes, such as prolactin
(Prl). To address this question, we purified
GHE-1 from whole cell extracts of pituitary
tumor cells grown in suspension. These cells
express both the GH and Prl genes (6).

A whole cell extract of GC cells (7) was
fractionated by chromatography on heparin
agarose and then analyzed on a Sephacryl S-
300 gel filtration column (8). The GHF-1-
enriched fractions were pooled and applied
to a sequence-specific oligodeoxynucleotide-

‘Sepharose column containing a high-affinity

GHEF-1 binding site (9). Purification of

Table 1. Purification of GHF-1.

GHEF-1 was monitored by deoxyribonucle-
ase I (DNAI) footprinting. However, it was
important to determine whether the tran-
scriptional stimulatory activity of GHEF-1
copurified with its DNA-binding activity.
Furthermore, we wished to determine
whether GHF-1 was the only pituitary cell-
derived factor required for activating the
GH promoter in extracts of nonexpressing
HeLa cells. We therefore also monitored the
transcriptional stimulatory activity of GHF-
1 by adding a sample of each fraction to
HeLa whole cell extract and measuring the
level of transcripts initiated at the GH pro-
moter by primer extension (1, 10). Each of
the GHF-1-containing fractions stimulated
initiation from the correct start site of the
human GH (hGH) promoter in vitro, while
having no effect on initiation from an adja-
cent nonspecific site (Fig. 1). Both start sites
are used during transient expression of the
hGH—chloramphenicol ~  acetyltransferase
(CAT) vector, although the physiological
site is the dominant one (2). The ratio
between the footprinting activity of GHF-1
(Table 1) and its ability to stimulate tran-
scription was relatively unchanged during all
three purification steps. Both activities elut-
ed from the preparative S-300 column as a
single peak corresponding to an apparent
molecular mass of approximately 50 kD
(11). A summary of the purification scheme
is presented in Table 1.
SDS—polyacrylamide gel electrophoresis

. Protein Volume . Yield Relativet
Fraction (mg) (ml) Units* (%) purity
Whole cell extract 800 50 880,000 100 1
Heparin-agarose 250 30 750,000 85 3
$-300 27 54 450,000 51 17
DNA-affinity 0.21 10 150,000 17 700

*One footprinn'n% unit is the amount of GHF-1 required for full protection of the proximal GH site with the use of a 5

ng of probe.

To determine relative purity, we assumed that the whole cell extract contained the same amount of

GHE-1 as all of the heparin-agarose fractions, although it was never assayed directly by footprinting.
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(PAGE) of the affinity-purified GHF-1 indi-
cated that it was still composed of several
polypeptides (Fig. 2A). Further repetition
of the affinity chromatography step did not
result in a significant increase in the purity
of GHEF-1 even if the routinely used poly-
(dI-dC) competitor was replaced with poly-
(dA-dT). To identify which of the polypep-
tides corresponds to GHF-1, we subjected
affinity-purified GHF-1 to preparative SDS-
PAGE, and the polypeptides located within
three regions of the gel were eluted, rena-
tured (12), and examined by DNase I foot-
printing for GHF-1 binding activity. At
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Fig. 1. Copurification of GHF-1 DNA-binding
and transcriptional-stimulatory activities. A GC
whole cell extract was first fractionated by hepa-
rin-agarose (Hep-Ag) chromatography. Hep-Ag
fractions II and III were pooled and applied to a
Sephacryl $-300 column. (A) Elution of GHF-1
was monitored by DNase I footprinting. The
GHEF-1—containing fractions were pooled and
applied to a sequence-specific affinity column
(Aff). The input (IN) and the eluate (0.4) con-
tained GHEF-1 binding activity, whereas the flow-
through (FT) was depleted of this activity. (B)
Transcriptional stimulatory activity of these frac-
tions. A sample of each fraction was added to an
in vitro transcription reaction mixture (HeLa
whole cell extract and hGH-CAT template) (1,
10); the level of h\GH-CAT transcripts was deter-
mined by primer extension (1, 10). The activity of
GHEF-1 was assessed by its ability to stimulate the
formation of the correctly initiated hGH-CAT
transcript (GH), while having no effect on the
formation of an aberrant transcript initiated ten
nucleotides further upstream (NSI). dGHF-1,
distal GHF-1; pGHF-1, proximal GHF-1.
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least one of the three polypeptides that
migrated between 34 and 32 kD bound to
the hGH probe (Fig. 2B). In a subsequent
experiment, each of these three polypeptides
was separately eluted (Fig. 3) and renatured.
Only the 33-kD species that migrated in the
middle of the triplet exhibited significant
binding to the hGH, indicating it is GHF-1
(Fig. 2C).

Although only one member of the 33-kD
triplet had significant GHF-1 activity, the
occurrence of these polypeptides at similar
ratios in several different GHF-1 prepara-
tions and their similar molecular masses
suggested that they might be structurally
related. We therefore subjected them to
peptide mapping with V8 protease (13). All
three were composed of a common 19-kD
peptide and a second smaller peptide, which
added up to the size of the starting material.
This raises the possibility that the 34- and
32.5-kD species, although structurally relat-
ed to the 33-kD species, do not renature as
readily after elution from the gel, which
results in their failure to bind to the GH
promoter.

The present data suggest that GHF-1 is
the only pituitary-specific protein required
for activation of the GH promoter in ex-
tracts of nonexpressing cells. Most impor-

45 =

31—

216 =~

Fig. 2. Identification of GHF-1. (A)
GHF-1 conraining fractions, after one (1°)
or two (2°) cycles of affinity chromatogra-
phy, were analyzed by SDS-PAGE. M,
molecular weight markers in kilodaltons.
(B) A second lane of the gel shown in (A)
containing material after a second pass
through the affinity column was not
stained, but was sliced as indicated in (A).
The proteins in each slice were eluted,
renatured (12), and examined for GHF-1
binding activity by DNase I footprintin
analysis. In the lane labeled GHF-1, the

tant, the apparent molecular mass of the
transcriptional stimulatory and DNA-bind-
ing activity determined by gel filtration (50
kD) is close to the molecular mass of the
DNA-binding activity determined by SDS-
PAGE (33 kD). These findings, and the
specific localization of GHF-1 in vivo in
cells of the somatotropic lineage, suggest
that GHF-1 is the primary determinant of
GH expression. Although GH-synthesizing
(somatotropes) and Prl-synthesizing (lacto-
tropes) cells are derived from a common
precursor that expresses both genes (14),
many of the cells in the adult pituitary
express only one of the two (15). To deter-
mine whether the GH and Prl genes are
both controlled by GHF-1 or by two dis-
tinct factors, we examined the binding of
GHEF-1 to the rat Prl (rPrl) promoter. Even
though the rPrl probe was labeled to the
same specific activity as the hGH probe, it
was not significantly protected by GHF-1
(Fig. 4A). However, one or more factors
present in the flow-through fraction of the
affinity column protected five sites in the
rPrl promoter. Four of these sites were
identical to the ones previously assigned for
the pituitary specific factor, Pit-1 (16), also
known as LSF-1 (17). Since it was possible
that the Prl-specific activity was a modified

33 34
bl

B Slice
[4 2 3 |GHF-1

325

L

rints conferred by affinity-purified GHF-1 are shown for

comparison. To further localize the GHF-1 binding activity, the three polypeptides migrating at 34, 33,
and 32.5 kD were separated, eluted (Fig. 3), renatured, and examined for their ability to bind to the

hGH promoter.
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form of GHF-1 that no longer bound to
the GH site, we used antibodies to GHF-1
to examine the relation between the two ac-
tiviies. These antibodies were generated
against a synthetic peptide deduced from a
partial sequence of the GHF-1 protein (4).
These antibodies reacted strongly with the
GHF-1 polypeptide in the S-300 and affini-
ty-purified fractions but did not react with
the flow-through fraction (Fig. 4B) that
contained the Prl-specific binding activity.
These results differ from those of Nelson
et al. (16), who reported that a single factor,
Pit-1, binds to both Prl and GH. However,
their conclusion was based on competition
experiments and not on direct footprinting
studies. Because of the similarity between
the GH and Prl binding sites (Fig. 4C), a
large excess of a GH site will probably
compete for protection of the Prl sites. In
fact, when moderate amounts of these sites
were used, no cross-competition was ob-
served (18). In addition, Siddiqui et al. (17)
have found that unless it is first purified by a
passage through a GH-specific affinity col-
umn, the Prl-specific factor LSF-1 is con-
taminated with GHF-1. Whereas these bio-
chemical studies clearly support the exis-
tence of two separate factors controlling the
GH and Prl genes, Ingraham et al. (19) have
recently published the sequence of a cDNA
claimed to encode Pit-1. Surprisingly, the
sequence of this cDNA is identical to the
GHE-1 ¢DNA sequence (4). Furthermore,
although no direct binding of bacterially

+V8
33

ve | 34

325 | 34

_ Original
" protein

135

Fig. 3. V8 peptide mapping. To determine the
structural relations between the three proteins
migrating between 32.5 and 34 kD, they were
separated by SDS-PAGE and subjected to V8
peptide mapping (13). The lane marked V8 con-
tains V8 alone, whereas the lanes marked V8 +
34, 33, or 32.5 contain each of the isolated
proteins plus V8. The lane marked 34 contains
the original undigested 34-kD protein. The size
of the resulting peptides are indicated on the side
panel, in kilodaltons.
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expressed Pit-1 to Prl was demonstrated,
expression vectors containing the cDNA
were capable of trans-activating the Prl pro-
moter in a cotransfection assay (19). Since,
at levels that are sufficient for full protection
of both the high- and low-affinity sites of
the GH promoter, GHF-1 does not signifi-
cantly protect any of the previously assigned
Pit-1 sites within the Prl promoter, includ-
ing the proximal high-affinity site (Fig. 4),
we suggest that the transactivation of Prl
seen by the Pit-1 ¢cDNA (identical in its
sequence to GHF-1) is due to the vast
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FT GHF-1 S-3001GHF-1 5300 FT
GG+A IBSATZ5T0" 25170 251110 25170 25110 Z51BSAI G G+A

-e
-
T Mt e

| =
{ pGHF-1  |{dGHF-1}

SR R R T

* -
‘EEE:
it -
saf22:28- - -
cTE8:. 7
e e A
e
“- s LSl ew £
b -
- - -
o-i i =’- o
- . -
Cr el T eevsT
- -

Fig. 4. Different factors bind to the GH and Prl
promoters. (A) To determine whether the GH
and Prl promoters are recognized by either
distinct or similar factors, the hGH (labeled at
position +3) and rPrl (labeled at position —8)
probes were incubated with 10 or 25 ul of the
pooled §-300 fraction, affinity-purified GHE-1
or the flow-through (FT) of the GHF-1 affinity
column and were subjected to DNase I foot-
print analysis (7). The G and G + A sequencing
ladders were used as size markers, and the
position of the various protected sites are indi-
cated by the boxes. (B) To examine whether the
Prl-specific activity is immunologically related
to GHEF-1, the various protein fractions used
above were subjected to immunoblot analysis
with antibodies to GHF-1 (4). The S-300 (150
ng), 0.2 pg of the affinity-purified GHEF-1
(Aff), and 150 pg of the flow-through (FT)
fractions were precipitated with trichloroacetic
acid, resuspended in SDS sample buffer, sub-

overexpression of this protein in transiently
transfected cells. When present in amounts
far exceeding its physiological levels, it is
possible that GHF-1 will bind not only to
the GH promoter, but also to the structural-
ly related Prl promoter. Interestingly, re-
laxed binding specificity was demonstrated
for other homeobox proteins and appears to
be a common property of this class of
proteins (20). However, for proper regula-
tion to occur in vivo, such proteins must
interact with their targets in a highly specific

manner.
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hGH proximal (-83) CCATGCATAAATGTACA

rGH proximal (-88) CCATGAATAAATGTATA
hGH distal (-130) GAGCTTCTAAATTATCC
rGH distal (-143) GAGCTTCTAAATTATCC

Core TAAAT

rPrl 1P (antisense) (-44) TTCATGAATATATAT

TPl 2P (-102) TGACGGAAATAGATG
rPrl 3P (-130) ATGTTTAAAATTATT
rPrl 4P (-150) AATATGAATAAGAAA
rPrl 5P (-199) TTAATCAAAATCCTT

jected to electrophoresis on a 10% polyacrylamide-SDS gel, and transferred to Immobilon membrane.
The membranes were subjected to immunoblotting as described previously (4) with the use of affinity-
purified antibodies to GHF-1 (4). The migration position of the 33-kD form of GHF-1 is indicated.
(C) Sequence comparison of the various GHF-1 binding sites on the hGH and rGH promoters and the
sites protected on the rPrl promoter. We have no proof whether the five Prl sites are recognized by a
single factor; however, their sequences are quite similar and are shown only for comparison to the

GHE-1 sites.
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It will be of interest to isolate cDNA
clones encoding the Prl-specific factor and
determine whether this protein is also a
homeobox-containing transcription factor.
The analysis of the expression pattern of the
GH- and Prl-specific factors during the de-
velopment of the pituitary should help clari-
fy how a single ectodermal stem cell leads to
formation of an organ, the anterior pitu-
itary, composed of many endocrine cell
types expressing hormone genes.
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