
PCs Factor a "Most 
Wanted" Number 
Mathematicians at Univenity of Georgia mobilize 
phalanx of personal computers to fdctor a 95-digit number 

A NETWORK OF COMPUTERS grabbed head- " 
lines recently by factoring a 100-digit num- 
ber, but a group at the University of Geor- 
gia at Athens has had significant success of 
another sort: a 95-digit-factorization done 
on a small army of personal computers. 
William Alford, Carl Pomerance, and Jeffrey 
Smith implemented a new variation of a 
factoring algorithm known as the "quadratic 
sieve" on 140 Zenith microcomputers to 
attack the 95-digit number which remains 
when the "small" factors 1 7  and 11,953 are 
divided out of the number of 2332 + 1. 

Factoring numbers, such as 105 = 

3 x 5 x 7,-sounds easy enough-but then 
most things that computers do are basically 
easy. It is the size of the problem that causes 
trouble. For factoring; the obvious ap- 
proach of trial-and-error division rapidly 
exceeds the capacity of even imaginary com- 
puters, with run times dwarfing the age of 
the universe. 

Nevertheless, factoring numbers in the 
90-digit range is becoming routine. Mark 
Manasse of the Digital Equipment Corpora- 
tion and Arjen Lenstra of the University of 
Chicago recently became the first to reach 
the 100-digit mark, breaking the number 
(11 lo4 + 1)/118 + 1) into factors of 41 and 
60 digits respectively (Science, 21 October, 
p. 374). They did so by parceling out the 
work to hundreds of computers in a dozen 
locations in the United States, Holland, and 
Australia. The Georgia project now shows 
that big machines are not crucial-the key is 
in the algorithm. 

Improvements on trial-and-error factor- 
ing have been around for ages. The quadrat- 
ic sieve is based on a method introduced in 
the 17th century by Pierre Fermat, whose 
clever ideas in number theorv continue to 
haunt the subject. Fermat's approach to 
factoring a number N was to find two 
numbers X and Y such that N equals x2 - 
Y2, which factors as (X  - Y)(X + Y). A 
significant modification of Fermat's ap- 
proach is to require only that N divide, not 
necessarily equal, x2 - Y2. The idea is that 
the distinct prime factors of N will "random- 
ly" choose to divide (X  - Y) or (X  + Y). 
Unless all of the primes dividing N acciden- 
tally make the same choice, computing the 

greatest common divisor of X - Y (or X + 
Y) and N will produce a factor of N. 

If N is the product of two primes, there is 
something like a 50:50 chance of succeeding 
with any given choice of X and Y; and odds 
go up if N has more than two prime factors. 
It thus suffices to have a handhl of "inde- 
pendent" choices for X and Y for which N 
divides x2 - Y2. The odds that, say, ten 
choices of X and Y would fail to produce a 

The obvious approach of 
trial-and-error division 
rapidly exceeds the 
capacity of even 
imaginary computers . 
factorization are comparable to the odds of 
flipping a coin ten times and always getting 
tails. 

The obvious problem, of course, is how 
to find the numbers X and Y. In the 1920s 
Maurice Kraitchik suggested piecing togeth- 
er X and Y out of numbers x for which the 
remainder of x2 divided by N factors easily 
into small primes belonging to a preestab- 
lished "factor base" for N. Given enough 
such x, some combination of the remainddrs 
can likely be found whose product has only 
even powers of the small primes, and hence 
has the form Y2. (For example, if N = 22, 
then 52 has remainder 3, 72 has remainder 5, 
and 92 has remainder 15 = 3 x 5, and one 
can form Y2 = 3 X 5 x 15 = 3252.) Letting 
X be the product of the corresponding x's, it 
is an elementary fact in number theory that 
N divides the difference x2 - y2. 

The cnut of the problem now shifts to 
finding numbers x for which the remainder 
of x2 factors nicelv over the factor base. 
Several methods exist, but currently the 
most efficient is the quadratic sieve, which 
Pomerance introduced around 198 1. The 
quadratic sieve operates by repeatedly scan- 
ning a range of x's slightly in excess of VN. 
For each prime p in the factor base, the sieve 
finds the first x for which p divides the 
remainder x2-N. This involves only a small 

amount of trial and error. The sieve then 
skips to the locations x + p, x + 2p, and so 
forth, until it reaches the end of thc range; 
these are the only values for which p divides 
the remainder. Once this has been done for 
all primes in the factor base the sieve easily 
finds the x's whose remainders have been 
completely factored. (The exact operation of 
the sieve is slightly different from this sche- 
matic description. Also, numerous modifica- 
tions have &en made to speed up the proce- 
dure; see accompanying article.) 

The quadratic sieve is not the only factor- 
ing algorithm currently in use, but it is 
currently the best for numbers that are the 
product of two primes of roughly the same 
size. A randomly produced number will 
generally have several small prime divisors 
which can be found by trial-and-error. Two 
methods introduced by John M. Pollard in 
the mid-1970s are useful for finding prime 
factors in the 15-digit range and prime 
factors with a special property (the "Pollard 
p - 1 test" finds prime factors p for which p 
- 1 factors completely into small primes). A 
few years ago Hendrik Lenstra, Jr. (a broth- 
er of Arjen Lenstra), introduced an "elliptic 
curve method" which generalizes Pollard's 
p - 1 test. The elliptic curve method has 
proved highly successful at finding prime 
factors in the 20- to 30-digit range. 

Rigorous estimates are hard to come by, 
but heuristic arguments indicate that the 
amount of computation done by the qua- 
dratic sieve grows like N ~ ( ' "  '" N'n M, 
where In N is the natural logarithm of N. 
This estimate compares very favorably to 
Nl/2 , which is the corresponding estimate 
for trial-and-error factoring. For numbers in 
the 100-digit range, the quadratic-sieve esti- 
mate roughly doubles with each three digits 
added, whereas the trial-and-error estimate 
increases by a factor of 10 with each two 
digits. 

Implementing the quadratic sieve on mi- 
crocomputers was proposed a year ago by 
Alford, who wrote code in assemblv Ian- 
guage-which he had learned by program- 
ming video games for his children-in order 
to get the sieve operating in the microcom- 
puters' limited memory. (The sieve used a 
factor base with more than 32,000 primes.) 
The machines sieved at night, weekends, 
and during holidays from June to Labor 
Day. The factorization was finally complet- 
ed on 23 October at 8:05 p.m. (factoriza- 
tions have come to be timed to the minute, 
somewhat like the birth of a child): In 
addition to 1 7  and 11,953, 2332 + 1 con- 
tains two factors of 44 and 52 digits. 

When Alford began, 2332 + 1 was the 
largest "hard" number to be attempted on 
any system, and the 32,000-prime factor 
base was the largest of its kind. Manasse 
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Lenstra's factorization of Illo4 + 1, which 
contains a 100-digit "hard" part when the 
"small" factor 11' + 1 is removed, claimed 
the record for raw size on 11 October, with 
a factor base of 50,000 primes. 

Alford's result has been registered with 
Samuel Wagstaff of Purdue University, who 
maintains the "ten most wanted" list of 
numbers to be factored. These are mostly 
numbers remaining from a project begun in 
1925 to completely factor numbers of the 
form bn + 1. 

Alford's number had been third on the 
list. Currently at the top is the 148-digit 
number that remains when 2'12 + 1 is 
divided by 2,424,833. Five years ago the 
most-wanted list consisted of numbers 
ranging from 53 to 71 digits. Most of these 
causes were by the elliptic method. 

How is it that mathematicians know in 
advance that the numbers on the most- 
wanted list actuallv do have factors and are 
not simply large primes themselves? The 
answer to this also originates with Fermat. 
Fermat proved that if N is a prime, then for 
any number b, N divides the number bN - 
b. For instance, 5 divides 25 - 2 = 30, 
whereas 6 does not divide 26 - 2 = 62. 
Fermat's test will not Drove that a number is 
prime-more elaborate tests are required to 
certify primality-but failing it even once 
immediHtely nonprimality. In general 
a nonprime number will fail Fermat's test for 
almost all b's. 

Pomerance and Smith are working on " 
another implementation of the quadratic 
sieve that promises to eclipse all others: a 
special-purpose, breadbasket-sized comput- 
er that does nothing but sieve. When com- 
pleted and hooked up with a Sun worksta- 
tion to handle other parts of the algorithm, 
the sieving device should be able ti factor a 
100-digit number in 2 to 3 weeks. Smith, 
who is actually building the machine, says 
that the device will be "most efficient" for 
numbers up to 115 digits. 

Pomerance emphasizes cost-effectiveness 
as a criterion for evaluating factoring pro- 
jects. Given $10 million (roughly the cost of 
a supercomputer), what sort of factoring 
system should you invest in and how large a 
number could such a system factor in one 
year? The sieving device should cost about 
$25,000 to duplicate, Pomerance says. He 
estimates that $10 million would buy the 
factorization of a 144-digit number in 1 
year. The extrapolated cost of factoring a 
200-digit number in a year would be about 
$100 billion--or, Pomerance points out, 
"onlv" about 6 months' interest on the 
national debt. BARRY A. CIPRA 

Bawy A. Cipra is a mathematician and writer 
based in Northfield, Minnesota. 

Souping up the Sieve 
Hot-rodders call it boring and stroking: making small changes in the diameter (bore) 
of an engine's cylinders and the length of the piston stroke in order to gain power to 
make the car run faster. Factoring enthusiasts have proved equally resourceful in 
modifying their implementations of the quadratic sieve. 

The most radical change, equivalent to adding more cylinders, is the use of more 
than one polynomial to produce the square numbers which are sieved over the factor 
base. Pomerance's "Model T" sieve used the single expression P(x) = (x + [ V W ) ~  
and sieved through "small" values of x. ( [ d v  denotes the integer part of VN.) The 
problem is that the "small" values of x actually get quite large, resulting in large values 
of P(x), which are less likely to factor completely over the factor base. 

Around 1983, James A. Davis at Sandia National Laboratories and Peter Mont- 
gomery at the System Development Corporation in Los Angeles independently 
discovered that it was helpful to change polynomials. The basic idea is to use 
polynomials of the form (ax + b12, where b is chosen so that a divides b2 - N. The 
polynomial ax2 + 2bx + (b2 - N)la is then sieved over a much shorter range. The use 
of many polynomials makes possible the distributed processing employed by Manasse 
and Lenstra and the Georgia project--each processor is given a separate batch of 
polynomials to sieve through. 

There is a price to pay, however: each polynomial requires an "initialization" which 
involves a computation with the coeficient a that must be done for each prime p in the 
factor base. With factor bases having tens of thousands of primes, sieve initialization 
becomes a substantial fraction of the overall effort. 

Pomerance's group has found a way to get more than one polynomial out of a 
single initialization, and employed it in the factorization of 2332 + 1. The idea is to use 
a's which are the product of several smaller primes. It turns out that each additional 
prime factor in a doubles the number of b's (less than a) for which b2 - N is divisible 
by a, thus doubling the number of polynomials without affecting the initialization 
step. For 2332 + 1, the a's were taken to have three prime factors (giving four 
polynomials per a). 

Sieve initialization could be virtually eliminated by forming all a's as products of, 
say, 10 primes taken from a fixed set of 20 primes. There is a huge number of such 
combinations, and each choice yields over 500 polynomials. Doing so would use a lot 
of memory, however: it would require storing the results of computations pairing 
each of the 20 fixed primes with each prime in the factor base. 

Another modification that most implementations use is known as the large prime 
variation. The problem with using a factor base is that a lot of numbers do not quite 
factor completely over it. The large prime variation keeps track of numbers that leave 
one extra ("large") prime factor when they are raked over the factor base. If enough 
such numbers are accumulated, examples can usually be found of numbers having the 
same extra prime, in the same way that a group of 25 or so people usually has at least 
one pair of matching birthdays. Alford found 25,000 matches out of roughly 900,000 
numbers having an extra prime. (He also found 14,000 numbers that factored 
completely over the factor base.) 

The latest modification coming out of Georgia is to the part of the algorithm that 
finds combinations of remainders whose product is a square. That step is best cast as a 
matrix reduction problem. Each row of the matrix corresponds to a number x, and 
each column to a prime p in the factor base. The entry in "row x" and "column p" is a 
1 if the exponent of p in the remainder of x2 is odd, and a 0 if the exponent is even. 
The matrix turns out to be rather sparse: there are many more 0's than 1's. This much 
is old hat. The modification is to exploit the fact that the matrix is not uniformly 
sparse. Andrew Odlyzko of Bell Labs introduced what Pomerance calls an "intelligent 
Gaussian elimination" scheme in 1984 for reducing sparse matrices with a small 
number of "heavy" columns. The Georgia group has found a variant that works for 
matrices that are not quite as sparse, as typically occur in factorization problems. 

Researchers will continue tinkering with the quadratic sieve. But just as race cars do 
not go appreciably faster than 200 miles per hour, it is unlikely that the quadratic sieve 
will factor numbers much in excess of 200 digits, if that many. What is needed, 
researchers agree, is an entirely new mode of transportation. 

Beam me up, Scotty. B.A.C. 
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