Letters

Collaboration and Responsibility

I wish to comment on the preposterous suggestion, being seriously advanced in some quarters, that *all* of the authors of a given paper are responsible for *all* of the material that appears in that paper. If that rule were adopted, it would bring multidisciplinary research to a virtual halt.

"Multidisciplinary" means that scientists with very different areas of expertise collaborate to solve a problem. The recent case in my own institution (News & Comment, 4 Nov., p. 659) was typical of such collaboration. Analytical chemists who measured the concentrations of substances in the spinal fluid of psychiatric patients would have been presumptuous, indeed, to "monitor" the assignments of patients to diagnostic categories—just as presumptuous as the clinicians would have been to "monitor" the gaschromatographic mass-spectrometric procedures.

So let's have more common sense here. Collaboration must continue to rest on trust between colleagues. Yes, sometimes the trust will be misplaced. As in every field of human activity, there will be occasional lapses of judgment, lapses of due care, even lapses of rectitude. But the scientific research establishment and its procedures are fundamentally sound and self-correcting, and such lapses have been very few in relation to the magnitude and productivity of the enterprise. We do need to deal with each occasional problem, always in a manner appropriate to its importance. But we do not need new committees to invent new regulations, a new layer of administrative bureaucracy to monitor and enforce them, and yet more mountains of paper to attest to a university's assiduousness.

That approach may sound good to politicians, and it may look good on paper, but it makes no sense to working scientists. Such proposals can hamstring research of just the kinds most likely to serve society by generating the understanding that leads to cure, amelioration, and prevention of disease.

The argument that we must harm our research effort, because otherwise "they" will harm it for us, should be recognized for what it is—the invention of those (especially administrators) who are willing to sacrifice principle for expediency. We scientists should try harder to educate our legislators about how best to nurture scientific research for the benefit of society. Having done that, we will have fulfilled our ethical responsibil-

ity. If we fail, and crippling restrictions are nevertheless imposed, it is better not to have participated ourselves in a destructive attack on the scientific enterprise.

AVRAM GOLDSTEIN
Department of Pharmacology,
Stanford University,
Stanford, CA 94305

Having recently spent a considerable share of my time as Chair of an investigation which found scientific misconduct on the part of Stephen Breuning, I had an opportunity to ascertain firsthand the importance of the authorship issue. I have concluded that attempting to establish categories of authorship or other arbitrary definitions of "who is an author?" will not work. Modern science, including the relationship of individuals to a scientific work, is too complex.

There is a workable solution, however. Journals should return to the old-fashioned practice in which all authors, or any other participants, designate the role that they played in bringing a study to completion and a paper to publication. In addition to the fair apportionment of credit, this approach would have another benefit. It would help in the evaluation of the work to know, for instance, if the skilled laboratory scientist with his name on a paper actually did the experiments or only served as an adviser or supervisor. Peer reviewers would have access to this information in evaluating a paper and could also determine that the role of each author was not vaguely or ambiguously described.

ARNOLD J. FRIEDHOFF
Millhauser Laboratories,
Department of Psychiatry,
New York University Medical Center,
550 First Avenue,
New York, NY 10016

Eliminating NO_x

Milton Russell, in his Policy Forum "Ozone pollution: The hard choice" (9 Sept., p. 1275), considers only half the problem when he concludes that there have to be "hard choices." Russell is correct that hydrocarbons reacting with nitrogen oxides (NO_x) in sunlight, after a variety of chemical reactions, produce ozone. However, if unburned hydrocarbons cannot be eliminated, as they cannot because of a fraction coming from natural sources, what about the NO_x?

Two techniques exist for the elimination of NO_x pollution (smog). One way breaks up the NO_x after its formation by means of catalyst-type reactions. Only two materials have been found, and neither is satisfactory.

Rhodium is a rare strategic mineral, and we simply do not have enough to do the job. The other material, ammonia, only reacts to eliminate NO_x over a temperature range from about $1650^{\circ}F$ to $1725^{\circ}F$.

At present, the only possible approach that appears to work is eliminating nitrogen from the combustion process and recirculating 80% of the exhaust gases, thereby creating a nitrogen-free synthetic atmosphere. The additional fuel cost for electric-generating facilities would be about 1 cent per kilowatt-hour; an increase in utility rates from about 10 cents per kilowatt-hour to about 11 cents per kilowatt-hour is possible with near-zero NO_x . As for vehicles, a mobile air reduction system needs to be developed. No fundamental principles are violated and it may be possible, with concerted effort, to reduce the volumetric requirements to something satisfactory. Needless to say, this synthetic atmosphere approach has not been attempted, even though it appears to be the only possible way to solve the ozone-smog problem and requires no "hard choice."

> SHELDON C. PLOTKIN 3318 Colbert Avenue, Suite 200, Los Angeles, CA 90066

IIASA and Modeling

The difficulties in the work of the International Institute for Applied Systems Analysis (IIASA), as discussed in my letter of 2 September, have brought two responses (28 Oct., p. 495). Keyfitz observes correctly that "many of the most difficult problems we have to face" cannot be precisely formulated. I agree that we should tackle these problems and that they require much more than, say, just algebra; but I doubt that they should be tackled by making models "that in the first instance are not verifiable." I saw too much nonsense of this sort in the 8 years I spent as chairman of the report review committee of the National Academy of Sciences (NAS), including, for example, a fictitious model predicting that it would take 100 years to regenerate the mangrove swamps of South Vietnam from the effects of herbicides. Problems are not solved and science is not helped by unfounded speculation about unverifiable models.

Harvey Brooks and Alan McDonald, as guardians of the orphaned IIASA, say that the IIASA "global modeling conferences" helped diminish the initial enthusiasm for the Forrester-Meadows style of system dynamics. They offer no references, except for an unspecified note of some NAS global models of the 1970s (at least one of these, as

23 DECEMBER 1988 LETTERS 1623