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Unexpectedly High Levels of HIV-1 RNA and
Protein Synthesis in a Cytocidal Infection

M. SoMASUNDARAN AND H. L. ROBINSON

The expression of a laboratory strain of HIV-1 (HTLV-IIIB) has been studied in
mitogen-stimulated peripheral blood lymphocytes (PBLs) and in two lymphoid cell
lines (CEM cells and C8166 cells). HIV-expressing cells contained from 300,000 to
2,500,000 copies of viral RNA per cell. Near-synchronous expression of an active
infection could be achieved in C8166 cells. In these cells, the high copy numbers of
viral RNA used as much as 40% of total protein synthesis for the production of viral
gag protein, with high levels of viral RNA and protein synthesis preceding cell death by

2 to 4 days.

TUDIES OF HIV-1-INDUCED CELL

killing have shown that HIV-1-enve-

lope glycoproteins can kill cells by
inducing the formation of syncytia (1). Re-
cently we reported that HIV-1-induced cell
killing does not necessarily involve syncy-
tium formation, because mitogen-stimulat-
ed peripheral blood lymphocytes (PBLs) as
well as certain lymphoid cell lines undergo
HIV-1-induced cytolysis as single, mono-
nucleated cells (2). The current studies were
undertaken to determine whether the HIV-
1 life cycle might influence the cytopathicity
of this virus. The life cycles of cytopathic
viruses typically result in infections using
30% or more of the protein synthesis of the
host cell (3). This domination of host pro-
tein synthesis is achieved by viruses such as
adenovirus or poliovirus actively disrupting
the production or translation of host mes-
senger RNA (mRNA) or by viruses such as
vesicular stomatitis producing levels of viral
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RNAEs (several hundred thousand copies per
cell) that compete with host mRNA for
translation. In contrast, typical retrovirus
infections produce relatively low copy num-
bers of viral mRNAs (several thousand
copies per cell) and use only 1 to 2% of host

Fig. 1. Near synchronous A
expression of HTLV-IIIB in
C8166 cells. (A) Time course
of appearance of HTLV-IIIB
protein-expressing cells (O)
and dead cells (@). (B) Pho-
tomicrographs at 3 days after
infection: phase (top) and flu-
orescence (bottom) microsco-
py. C8166 cells were infected
at a multiplicity of infection of
=0.2 infectious units of
HTLV-IIIB. Leu3a (240 ng/
ml) (Becton Dickinson) was

Time after infection
s
o
1

204

protein synthesis (4). These moderate levels
of expression have been consistent with
retrovirus-infected cells continuing normal
growth and differentiation while producing
virus.

HIV-1 can undergo latent as well as active
phases of infection (5). In most commonly
used cell cultures, simultaneously infected
cells produce viral proteins and undergo
cytolysis at staggered times after infection.
The early stages of a typical retrovirus life
cycle (adsorption and penetration, uncoat-
ing, reverse transcription, and proviral inte-
gration) require between 12 and 24 hours in
growing cells (6). However, in growing H9
cells, CEM cells, and mitogen-stimulated
PBLs, very few infected cells express viral
proteins by 48 hours after infection (2).

Because it is difficult to study an infection
in which virus expression is not synchro-
nized, a series of cultures [H9 cells (7),

added 3 hours after infection. >
Cultures were maintained at
densities of 0.5 to 1.5 x 10°

T L]

4 6

o

Time (days)

cells per milliter in RPMI 1640 supplemented with 15% fetal bovine serum and 240 ng/ml of leu3a by

changing the culture medium at 2-day intervals. HTLV-

ressing cells were detected by indirect

immunofluorescence on fixed cells (2). Dead cells were defined as cells that failed to exclude trypan blue.
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CEM cells (8), mitogen-stimulated PBLs
(9), Jurkat cells and tat-expressing Jurkat
cells (10), T4" HeLa cells (11) and C8166
cells (12)] were tested for the ability to
express the HTLV-IIIB strain of HIV-1
within 24 hours of infection. One of these,
C8166 cells, had large numbers of virus-
expressing cells by 24 hours after infection.
Because C8166 cells are highly susceptible
to HIV-1-induced syncytia, leu3a, a mono-
clonal antibody (MAD) that inhibits syncy-
tium formation (13), was added to infected

cleated cells by 6 days after infection (Fig.
1). A 3- to 4-day lag occurred between the
expression of viral proteins and cytolysis.
To determine the steady-state levels of
HTLV-IIIB RNA in virus-expressing
C8166 cells, we prepared cytoplasmic ex-
tracts from infected cultures at 2 and 4 days
after infection. Serial dilutions of the ex-
tracts as well as of a known amount of a
standard RNA were hybridized on slot blots
with a **P-labeled RNA probe complemen-
tary to sequences present in all spliced as

cultures. When C8166 cells were infected
with =0.2 infectious units of HTLV-IIIB
per cell and then grown in the presence of
240 ng/ml of leu3a, the majority of cells
expressed viral proteins by 2 days after infec-
tion and underwent cytolysis as mononu-

well as unspliced HIV-1 RNAs (14) (Fig.
2). The amount of viral RNA in each extract
was then estimated by comparing autoradio-
graphic signals obtained for the extract with
those for the standard RNA. These esti-
mates were used to calculate the number of

A B
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1
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Fig. 2. Detection and quantitation of cytoplasmic HTLV-IIIB RNAs. (A) Regions of the HTLV-IIIB
genome used to detect and quantitate RNAs (B, Bam HI; X, Xho I; S, Sac I). Nomenclature is
according to Gallo et al. (21). The RNA probe contains 188 bases 5’ to the LTR, as well as the U3
region and 32 bases of the R region of the LTR. These sequences are found at the 3’ end of all HIV
mRNAs (14). R sequences (<5% of the probe) are also found at the 5’ end of all HIV mRNAs. The
RNA probe and standard were produced by using a subclone of pHXB-2 (18) in Bluescribe
(Stratagene) and standard RNA transcription protocols (20). Both probe and standard RNAs were
analysed on gels to verify that sizes were in agreement with the molecular weights predicted from
sequence analyses. (B) An example of a curve used to estimate copy numbers of HIV-1 RNA. Dilutions
of the RNA standard were done in the presence of uninfected C8166 cell lysates so that background
hybridization would be analogous to that in cytoplasmic extracts. Densitometric tracings of autoradio-
graphs of cytoplasmic blots were used to construct the curve.

Table 1. Steady-state levels of viral RNA in HTLV-IIIB-infected cells. Cells were infected at a
multiplicity of infection of =0.2. HIV-1—positive cells were determined by indirect immunofluores-
cence with a patient serum being used as the first antibody (2). RNA copy numbers were determined on
blots of cytoplasmic extracts prepared in the presence of 1% NP40 (19) and hybridized with 1 x 10°
cpm/ml of the radiolabeled RNA probe depicted in Fig. 2A (20). Blots were digested with RNase A (1
pg/ml) in 0.3M sodium citrate and 0.3M NaCl for 15 minutes at room temperature before
autoradiography. The amount of HIV-1—specific RNA in a sample was estimated by direct visualization
of slot intensities relative to the intensities of the standard RNA on the same blot as well as by
densitometric tracings (see Fig. 2B). The following calculation was then used: (grams of HIV-1 RNA
in the sample) (Avogadro’s number)/(molecular weight of the standard RNA) (number of productively
infected cells in the sample) = copy number of HIV-1 RNA/productively infected cell (15).

Cell Time after HTLV-IIIB- Copies of HTLV-IIIB RNA
infection (days) positive (%) per HTLV-IIIB—positive cell
Experiment 1
C8166 2 70 400,000
C8166 4 100 1,300,000
Experiment 2
C8166 2 80 2,500,000
CEM 9 46 300,000
PBLs 6 23 570,000
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HIV-1 RNAs per productively infected cell
(Table 1) (15). Estimates of the amount of
HTLV-IIIB RNA per virus-expressing cell
ranged from 400,000 to 2,500,000 copies
per cell. These values indicate that HTLV-
IIIB has the potential for producing viral
RNAs at levels comparable to those ob-
served for cytopathic viruses that compete
for host protein synthesis (3).

To determine whether high copy num-
bers of HTLV-IIIB RNA might occur in
other cultures that undergo HIV-1-induced
cytolysis, we infected CEM cells and mito-
gen-stimulated PBLs and analyzed them for
the steady-state levels of HTLV-IIIB RNA.
The MAb leu3a was not added to cultures
because under our conditions HTLV-IITB—
infected PBLs and CEM cells undergo cytol-
ysis as mononucleated cells (2). Cytoplasmic
extracts were prepared at times after infec-
tion when cultures contained peak numbers
of virus-positive cells. Extracts of the CEM
cells contained an estimated 300,000 copies
and extracts of the PBLs an estimated
570,000 copies of viral RNA per produc-
tively infected cell (Table 1). RNA blot
analyses confirmed the high levels of HIV-1
transcripts in CEM cells. Thus the expres-
sion of high copy numbers of HTLV-IIIB
RNA can occur in normal T cells as well as
in at least two different T cell lines.

The high copy numbers of HTLV-IIIB
RNAs in productively infected C8166 cells,
CEM cells, and PBLs suggested that cyto-
pathic HIV-1 infections might have the
potential to use a large portion of host
protein synthesis. To test for this, we ana-
lyzed total lysates from near synchronously
infected C8166 cells for newly synthesized
HTLV-IIIB proteins. Cultures were grown
in the presence of [*S]methionine and
[**S]cysteine for 30 min, and 3°S-labeled
proteins were analyzed by gel electrophore-
sis (Fig. 3). Uninfected, 12-hour—infected
and 24-hour—infected C8166 cells did not
reveal polypeptides above the background
of host cell proteins. By 48 hours after
infection, a polypeptide potentially repre-
senting the 55-kD precursor to the HIV-1
capsid (16) had appeared. By 60 hours, this
band as well as a 41-kD polypeptide repre-
sented 40% of newly synthesized protein.

Evidence that the 55-kD and 41-kD poly-
peptides represented full-length and partial-
ly processed precursors for gag proteins (16)
was obtained by analyzing immunopre-
cipitates. Both were immunoprecipitated by
MADbs to the p24 and pl7 gag proteins of
HIV-1 (Fig. 3). Neither was detected in the
absence of a MAb or by a MAD to the p24
gag protein of human T-lymphotropic virus
type 1 (HTLV-1). Thus, the HIV-1 life
cycle is like that of other lytic viruses in that
it has the potential to use a large portion of
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host protein synthesis. This potential was
not influenced by leu3a, because HTLV-
IIIB—infected C8166 cells grown in the
presence or absence of leu3a expressed simi-
lar levels of HTLV-IIIB gag protein.

To test whether the HIV-1 life cycle
might have the potential to actively inhibit
host protein synthesis, we examined the
apparent rate of protein synthesis at various
times after infection by comparing the
amounts of **S-labeled amino acids incorpo-
rated into protein by infected and uninfect-
ed C8166 cells during a 15-min incubation
period (Table 2) (17). Cultures of C8166
cells consistently showed 10 to 20% reduc-
tions in the apparent rate of protein synthe-
sis at 24 hours, and ~50% reductions in the
apparent rate of protein synthesis at 48
hours after infection. By 72 hours after
infection, the apparent rate of protein syn-
thesis had returned to normal. This “nor-

mal” rate of protein synthesis did not reflect -

normal levels of host protein synthesis be-
cause by this time, 40% of the newly synthe-
sized protein was viral gag protein (Fig. 3).
These results raise the possibility that HIV-
1 has the potential to actively inhibit as well
as compete for host protein synthesis. Proof
of this will require demonstration of the
mechanism by which HTLV-IIIB reduced
the apparent rate of protein synthesis in 48-
hour-infected C8166 cells.

Our results show that cytopathic HIV-1
infections produce high levels of viral RNAs
that can use large portions of host protein
synthesis (Table 1, Fig. 3). Our experiments
also suggest that HIV-1 infections have the
potential to actively interfere with host pro-
tein synthesis (Table 2). The udlization of a
large portion of cell protein synthesis by a
viral infection has always been correlated
with the infection killing the cell. Thus, our
results suggest that HIV-1-induced cell kill-
ing may in part be determined by a life cycle

Table 2. Analysis of protein synthesis in HTLV-IIIB—infected C8166 cells. Protein synthesis was
determined on’ duplicate samples of cells independently grown in the presence of 3*S-labeled amino
acids for 15 min as described in Fig. 3. Labeled cells were washed in phosphate-buffered saline (PBS),
adjusted to 0.1N NaOH and incubated at 37°C for 10 min to uncharge transfer RNA. Proteins in the
lysate were precipitated with trichloroacetic acid (TCA) in the presence of bovine serum albumin (0.2
mg/ml), collected on nitrocellulose filters (0.45 pm), dried under a heat lamp, and counted in a
scintillation counter with Ecolume (ICN Radiochemicals).

 Time after HTLV-TIB- Protein synthesis

infection (hours) positive (%) Inf /uninf * gaghoralt
12 0 1.1, 1.0 none detected
24 18 09, 0.7 none detected
48 75 0.5, 055 0.1
72 100 0.95,1.1 0.4

*The ratio of infected to uninfected cells was determined by indirect immunofluorescence (2). ~ 1The ratio of gag
protein to host cell protein synthesis was determined by using densitometric tracings of autoradiograms such as that

portrayed in Fig. 3.

Flg. 3. Autoradiograph of newly synthesized pro-
teins in HTLV-IIIB—infected C8166 cells. Cells
(0.5 x 10%) were washed in methionine- and
cysteine-free medium and then incubated at 37°C
for 30 min in 0.5 ml of the same medium
supplemented with 50 uCi of >*S-Translabel (SA
1013 Ci/mM, ICN Radiochemicals). Incorpo-
ration of 3*S was linear with time of incubation.
Washed cells were lysed in 0.25M tris-HCl, 2%
SDS, and 5% B-mercaptoethanol, incubated at

100°C for 3 to 5 min and aliquots containing

100,000 cpm of TCA-precipitable radioactivity
analysed by electrophoresis through a 10% SDS-
polyacrylamide gel. For immunoprecipitations,
washed cells were lysed in PBS containing
0.001M EDTA, 1% NP-40, and 0.5% sodium
deoxycholate. Aliquots (50 pl) of the lysate were
incubated at room temperature for 60 min with 1
ng of the designated MAbs (Dupont) and then
for an additional 60 min with rabbit antibody to
mouse immunoglobulin adsorbed to sepharose
beads. The beads were washed thrice with PBS
containing 0.5% NP40 and 0.4% SDS, resus-
pended in Laemmli sample buffer, boiled for 5
min, and the eluted proteins loaded on the gel.
The fixed gel was treated with En’hance (New
England Nuclear), dried, and exposed to x-ray
film in the presence of an intensifying screen.
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that allows the production of high levels of
viral RNA and proteins.

Such high levels of viral RNA and protein
synthesis have not been reported in previ-
ously studied retrovirus infections. L‘;nlikc
more moderate retrovirus infections, cyto-
pathic HIV-1 infections accumulate several
hundred copies of unintegrated viral DNA
(18). We suggest that HIV-1 has the ability
to actively express this DNA and that it is
the efficient expression of unintegrated
DNA that allows HTLV-IIIB to produce
unexpectedly high levels of viral RNA and
protein.
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Human T Cell Leukemia Viruses Use a Receptor
Determined by Human Chromosome 17

MajA A. SOMMERFELT, BRENDA P. WiLL1AMS,* PAUL R. CLAPHAM,
ELLEN SoLoMON, PETER N. GOODFELLOW, ROBIN A. WEISST

Human T cell leukemia viruses (HTLV-I and HTLV-II) can infect many cell types in
vitro. HTLV-I and HTLV-II use the same cell surface receptor, as shown by
interference with syncytium formation and with infection by vesicular stomatitis virus
(VSV) pseudotypes bearing the HTLV envelope glycoproteins. Human-mouse somatic
cell hybrids were used to determine which human chromosome was required to confer
susceptibility to VSV(HTLV) infection. The only human chromosome common to all
susceptible cell hybrids was chromosome 17, and the receptor gene was localized to
17cen—qter. Antibodies to surface antigens known to be determined by genes on 17q

did not block the HTLV receptor.

TLV-1 18 ETIOLOGICALLY ASSOCI-
Hated with adult T cell leukemia-

lymphoma (1) and tropical spastic
paraparesis (2), while HTLV-II is associated
with T cell hairy leukemia (1, 3). Although
only T cells appear to be sensitive in vitro to
transformation (immortalization) by HTLV
(4), many human and mammalian cells can
be infected including sarcoma cell lines, and
epithelial and endothelial cells (5, 6). The
only retroviral receptor molecule unequivo-
cally identified to date is the CD4 leukocyte
antigen, which is used by human and simian
immunodeficiency viruses (7).

For HTLV-I and HTLV-II, cell surface
receptors can be detected by assays of syncy-
tium induction (6), virion binding (8), and
VSV pseudotypes (9). VSV(HTLV) pseu-
dotypes acquire the host range and receptor
specificity of HTLV detected by VSV
plaque formation. Cells chronically produc-
ing retroviruses express viral envelope glyco-
proteins that mask or down-modulate recep-
tor expression at the cell surface. We made
use of this phenomenon, known as receptor
interference (1, 7, 9) to confirm that HTLV-
I and II used a common receptor and inves-
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tigated whether its determining gene or
genes could be mapped.

Human and hamster cells expressed
HTLV-I and II receptors, whereas mouse
cells, the bovine MDBK line, and the rat
NRK line were relatively resistant (Table 1).
Human cells productively infected with the
PL and PK isolates of HTLV-1 (HOS/PL,
HT1080/PK) showed receptor interference
with pseudotype plating and syncytium in-
duction of HTLV-I and HTLV-II. From
these results and previous findings with cat
cells (9), we conclude that HTLV-I and
HTLV-II bind to the same receptor, where-
as bovine leukemia virus (BLV) uses a dis-
tinct receptor. This accords with the anti-

GPT17/3 PCTBA1.8 P7A/2

Fig. 1. Regional lo-
calization of the
HTLYV receptor gene
on chromosome 17.
VSV(HTLV-I) and
VSV(HTLV-II)
pseudotypes  were
plated on somatic
cell hybrids (14-16)
containing  different
portions of human
chromosome 17.
Susceptibility ~ (+)
and resistance (—)
was scored as for
Table 2.

+

genic relation (9, 10) between the gp46
outer envelope glycoprotein of HTLV-I and
II, which is thought to interact with the
receptor.

Since plating efficiency of VSV(HTLV)
on murine cells was approximately 1% that
of human cells, we used human-mouse so-
matic cell hybrids to assign the receptor
gene or genes to a human chromosome.
VSV pseudotypes have previously been used
for the assignment of retrovirus receptor
genes to mouse chromosomes (11) and to
human chromosome 19 (12). The only hu-
man chromosome common to each of the
seven sensitive hybrid cell lines was chromo-
some 17 (Table 2). Among the fifteen insen-
sitive hybrid lines, however, two contained
human chromosome 17. The presence of
chromosome 17 in these two hybrids was
confirmed by expression of the MIC6 cell
surface antigen detected by flow cytometry
with monoclonal antibody H207 (13). The
receptor gene in these hybrids may either be
deleted or not expressed. Two cell hybrids,
PCTBA1.8 and GPT17/3, were indepen-
dently derived and carried chromosome 17
as the only htiman genetic contribution (13,
14). These hybrids were sensitive to both
VSV(HTLV-I) and VSV(HTLV-II). The
gene determining the HTLV receptor can
therefore be assigned to human chromo-
some 17.

The sensitivity of human-mouse somatic
hybrids containing fragments of chromo-
some 17, as shown in Fig. 1, was tested to
obtain a regional localization of the receptor
gene. Since the hybrid P7A/2 (15) lacking
the whole of the short arm of chromosome
17 other than the centromeric region, was
sensitive to VSV(HTLV-I and II), the re-
ceptor gene can be localized to 17cen—qter.
Furthermore, selection against chromosome
17 in this hybrid (15) conferred resistance to
these pseudotypes. Two hybrids, PJT2A1

HTLV PJT2A1 TRI D62
+ receptor - -

+
| gene
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