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Induction of K Transcription by 1ntederonn-y 
Without Activation of NF-KB 

The induction of immunoglobulin K light chaiu erprrssion in 70213 prc-B cells treated 
with bactakl lipopolysaaharidc (LPS) req- the activation of the B ceII-spccif~c 
factor NF-KB, which b i d  to the K enhancer motif, GGGACMTCC. This sequence 
done can Man as a tissue-specific enhancer b r  LPS-induced gene eqmssion. A 
potent inhibitor of B lymphopoieris [trulsfbrming growth fa- Cn;P-$)I was 
used to explore the mech?nisms in the activation of K tramaiption by LPS and by 
interferon-y (IPN-y). TGP-$ inhibited LPS-iduced K amscription but not the 
activation and in vitro binding of NF-KB. This indiatw that NF-KB activation, while 
necessary, is not sdiacnt h r  LPS-induced K tanscription. TGF-$ had no &ect on 
IPN-y-hduccd K mmdpt ion ,  and NF-KB was not activated by IPN-y. T h c ~  d t s  
reveal that LPS and IPN-y activate -on through diffmnt maduaisms. 

T HB 70213 CELL LINE RBPRBSBNTS A 

useful system for studying the events 
in the development of pre-B cells 

into early B cells. Thcse cells express K light 
chains and produce surface immunoglobulin 
M in response to a variety of mitogens and 
lymphokines. The induction of K light chain 
expression in 70213 pre-B cells treated with 
lipopolysaccharide (LPS) is associated with 
the activation of the B cell-specific DNA 
binding factor, NF-KB, which interacts with 
the KB motif in the K enhancer (1). Alter- 
ations in this sequence abolish K enhancer 
function, which indicates that the KB motif 
is essential for enhancer activity (2). This KB 
scquence alone can function as an enhancer 
for B ceIl-spccilic uansaiption and LPS 
induction (3). 

Activation of NF-KB binding is induced 
by LPS in the presence of protein synthesis 
inhibitors and by phorbol esters [such as 
phorbol myristate acetate (PMA)], which 
suggests that this factor is activated through 
posttranslational mechanisms, possibly in- 
volving protein kinase C (4). Recently, it has 
been reported that active NF-KB can be 
generated by treatment of cytoplasmic ex- 
tracts h m  uninduced 70213 cells with dis- 
sociating agents that presumably release in- 
hibitors blacking NF-KB DNA binding ac- 

tivity (5). Phorbol esters also release the 
inhibitors of binding and promote NF-KB 
translocation to the nudeus (5). It is unclear 
if other pmceses beyond the activation and 
nudear translocation of NF-KB binding ac- 
tivity are required for the induction of K 

transaiption. 
In analyzing the mechanisms controlling 

the activation of K amscription, we recently 
discovered that TGF-f3 selectively inhibited 
the induction of K expression by LPS, inter- 
leukin 1, or NZB serum factor, but not 
induction by interferon-y (IFN-y) (6). To 
distinguish whether TGF-f3 affected K tran- 
scription or acted at another point in the 
production of K chains, we analyzed the 
&ect of TGF-0 on the induction of K 

d p t i o n  in run-on transcription assays 
with nudei prepared h m  LPS-induced 
70W3 c&. TGF-0 inhibited the LPS-in- 
d u d  increase in K uansaiption by 65% 
(Fig. 1). This approximates the reduction in 
K mRNA previously observed (6), suggest- 
ing that TGF-f3 directly affects K gene aan- 
scription. TGF-f3 had no dfect on IFN-y- 
induced K tranxription in 70213 pre-B cells 
(Fig. 1). This suggests that IFN-y and LPS 
(as well as the other inducers whose activity 
is inhibited by TGF-f3) activate K uansaip 
tion through different molecular mecha- 
nisms. 
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taining the complete KB motif) was ana- 
lyzed by gel retardation assays (1). TGF-P 
had no detectable effect on NF-KB activa- 
tion and biding was seen even after a 2 4  
hour treatment (Fig. 2), whereas K mRNA 
induction by LPS was substantially inhibit- 
ed (6). 

Indistinguishable electrophoretic mobi- 
ities were seen for NF-KB DNA-factor com- 
plexes obtained h m  either TGF-$-treated 
or untreated LPS-induced 70213 cells. The 
DNA-factor complexes h m  both cell ex- 
tram were abolished by competitor NF-KB 
DNA (Fig. 2). The DNA factor complexes 
from TGF-$-treated or untreated cells also 
gave identical NF-KB binding sites when 
analyzed by gel footprints (7) with the 
chemical nudcascs 1,lO-phenanthroline- 
copper (OP-Cu) (8) and methidiumpropyl- 
EDTA-Fe(I1) (MPE) (9). These findings 
indicate that TGF-f3 does not &kt the 
activation or binding specificity of NF-KB. 

Since K induction by IFN-y is not inhibit- 
ed by TGF-P (6) (Fig. l) ,  it seemed likely 
that NF-KB might not be induced by this 
lymphokine. The induction of K transcrip 
tion by IFNy exhibits similar kinetics to 
those reported for LPS, resulting in a 10- to 
20-fold increase after 24 hours (Fig. 3). The 
activation of NF-KB by IFN-y was assayed 
in gel retardation assays as desuibed in Fig. 
2. During the 24hour induction, in which 
K d p t i o n  was stimulated 16-fold by 
IFN-y (Fig. 3), no demonstrable NF-KB 
activation was observed (Fig. 4). This con- 
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Flg. 1. EtFcct of TGF-p on LPS or IFN-y induc- 
tion of K transaiption. The p, K, or pUC gene 
pmbcs were immobilized on nitrocellulose and 
hybridid with labeled RNA fiom nuclear tran- 
scription assays. Preparation of nuclei and tran- 
scription reactions were carried out as previous1y 
dcscribcd (21). DNA (3 e ~ &  an amount experi- 
mentally dctcnnined to bc in excess of the RNA 
hybridization input) was hybridized to labeled 
RNA (5 x Id cpmlml) for 48 hours at 65°C. 
Hybridization intensities were determined by 
densitomenic scanning with an LKB Ultrascan. 
Levels of K were determined by notmalization of 
K intensities to values of b. (Neither LPS nor 
IFN-y have any cfFcct on @ mRNA Icvels.) The 
70D3 cells were treated for 24 hours as follows: 
lanc 1, uninducad; lanc 2, LPS at 10 @ml; lane 
3, LPS at 10 &ml and TGF-p at 2 Ulml; lanc 4, 
IFNy at 50 Ulml; and lanc 5, IFN-y at 50 Ulml 
and TGF-f3 at 2 Ulml. 
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firms that IFN-y induction of K transcrip- 
tion does not involve NF-KB activatioi or 
binding to the K enhancer. The failure to 
detect NF-KB binding in IFN-y-induced 
nuclear extracts was not due to generalized 
protein degradation, since the binding of 
another K enhancer binding factor, NF- 
pE3, was unchanged in either treated or 
untreated extracts (1 0). 

These results indicate that different tran- 
scription control signals and nuclear factors 
mediate the induction of K transcription by 
LPS and IFN-y. Two other lines of evidence 
support this conclusion. (i) Mutant cells 
lines of 70W3, selected for loss of respon- 
siveness to LPS, retain inducibility of K 

expression by IFN-y (11). (ii) The 70U3 
pre-B cells, stably transformed with pSV2- 
neo, show increased levels of neo mRNA 
afier induction by LPS, but not by IFN-y 
(12). The SV40 enhancer controlling the 
expression of the neo gene contains a NF-KB 
site identical to that in the K enhancer (1). 

These findings raise the possibility that 
IFN-y induction may be mediated by se- 
quences located outside the K enhancer. One 
candidate is the octamer motif in the K 

promoter, which binds factors found in all 

Fig. 2. Effect of TGF-fl on 
LPS induction of NF-KB 
binding. Electrophoretic 
mobility shift assays were 
performed with nudear ex- 
tracts prepared h m  70213 
cells (1). Binding reactions 
were done with a 70-bp Dde 
I-Hae III fragment [desig- 

cells and an LPS-induced factor restricted to 
B cells (13, 14). However, the B cell oc- 
tamer-binding factor is not increased by 
IFN-?I treatment (15). The region 5' of the 
octamer in the rearranged 70U3 K gene (16) 
contains several stretches with 719 nudeo- 
tide similarity to conserved nucleotide se- 
quences in the 5' region of major histocom- 
patibility complex class I1 genes reportedly 
involved in IFN-y induction (17, 18). It 
remains to be determined if these stretches 
are involved in IFN-y induction of K tran- 
scription in 70W3 pre-B cells. 

The inhibition of K transcription, but not 
NF-KB activation by TGF-P was unexpect- 
ed. Several possibilities can be envisioned 
for the inhibitory effect of TGF-P. First, 
TGF-P could affect the factor binding in the 
K enhancer at a site distinct from the NF-KB 
site. The K enhancer contains three elements 
homologous to the E motifs in the heavy 
chain enhancer first reported by Ephrussi et 
al. (19). These elements contribute additive- 
ly to the functional activity of the K enhancer 
and bind ubiquitous nuclear factors that are 
not restricted to B lineage cells (1,2). How- 
ever, we think it is unlikely that these other 
enhancer sites are affected by TGF-P. The 

faaor binding to these K enhancer sites is 
unchanged by LPS induction (2), and we 
observed no effect of TGF-P on the binding 
of one of these factors (that is, NF-pE3) 
(11). 

Second, TGF-P may block K transcription 
by affecting certain effector functions of 
activated NF-KB that are distinct from its 
DNA binding domain. In this case, TGF-P 
might prevent the interaction of NF-KB 
with other regulatory proteins required for 
K transcription. 

Finally, changes in K enhancer chromatin 
structure [that is, deoxyribonuclease I 
hypersensitivity] are known to occur with 
the LPS activation of K transcription (20). It 
is conceivable that TGF-B mav block K 

manscription by preventing alterations in 
enhancer chromatin structure that make the 
KB motif accessible for activated NF-KB 
binding. This reopens the possibility that 
negative regulatory factors bound to the K 

enhancer may control K transcription (21). 
These findings reveal a high degree of 

complexity still to be resolved in the regula- 
tory circuits and mechanisms in K gene 
activation and transcription. TGF-P is a 
useful reagent for fither deciphering the 
processes in K gene activation. 
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with polynucleotide kinase. 
Nudear extracts for binding 
were prepared according to 
Dimam et 01. (22). Sam~les 
areareas follows: 1, noasextract; lane 2, uninduced 70213; lanes 3 and 4,70213 induced with LPS at 10 
~glrnl fbr 4 hours; lanes 5 and 6, LPS at 10 (~glrnl and TGF-fl at 2 Ulml for 4 hours; lanes 7 and 8 are 
the same as lanes 3 and 4, respectively, except that cells were treated for 24 hours; and lanes 9 and 10 are 
the same as lanes 5 and 6, respectively, but cells were treated for 24 hours. Competitor oligonucleotide 
NF-KB DNA 5'-GCTGGGGACT"ITCG3' was added at 100 ng per biding assay to 3'- 
CCCTGAAAGGCGAC-5' samples analyzed in lanes 4, 6, 8, and 10. 
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Fig. 3. Kinetics of IFN-y induction of K transuip 
tion in 70213 cells. Nuclear transcription assays 
were performed as described in Fig. 1. The 70213 
cells were induced with IFN-y at 50 Ulml as 
indicated: lane 1, uninduced, lane 2 , l  hour; lane 
3 ,2  hours; lane 4,4 hours; lane 5 , 6  hours; and 
lane 6, 24 hours. Induced K transuiption is 
normalized to p values. 

Fig. 4. Effect of IFN-y on the induction of NF- 
KB binding in 70W3 cells. DNA-factor binding 
reactions and electrophoresis were carried out as 
described'in Fig. 2. Nuclear extract (6 pg) was 
used in each reaction. Lane 1, no extract; lanes 2 
and 4, uninduced; lane 3, LPS at 10 pg/ml for 4 
hours; lanes 5 to 8, IFN-y at 50 Ulml for 1,2,4, 
and 24 hours, respectively. 
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