
The Relationship Between High-Temperature 
Su~erconductivitv and the Fractional 

~uantu& Hall Effect 

The case is made that the spin-liquid state of a Mott 
insulator, hypothesized to exist by Anderson and identi- 
fied by him as the correct context for discussing high- 
temperature superconductors, occurs in these materials 
and exhibits the principles of fractional quantization 
identified in the fractional quantum Hall effect. The most 
important of these is that particles carrying a fraction of 
an elementary quantum number, in this case spin, attract 
one another by a powerful gauge force, which can lead to 
a new kind of superconductivity. The temperature scale 
for the superconductivity is set by an energy gap in the 
spin-wave spectrum, which is also the fundamental mea- 
sure of how "liquid" the spins are. 

I N THE FALL OF 1986, P. W. ANDERSON (1) MADE THE BOLD 

suggestion that superconductivity in La2Cu04 and related 
materials might be caused by the occurrence in these materials 

of the "resonating valence bond" state, a hypothetical magnetic 
liquid state proposed by him (2) in the early 1970s. While neither 
the resonating valence bond state nor the theory of high-tempera- 
ture superconductivity it engenders is very well defined at present, I 
am persuaded that the core of the idea, that the Fermi liquid 
principle fails in high-temperature superconductors, is right. This 
has led me to some new perspectives on this subject, which it is the 
purpose of this article to discuss. 

Fermi Liquids and the Resonating 
Valence Bond 

The most appropriate place to begin any discussion of high- 
temperature superconductivity is the Fermi liquid concept. A Fermi 
liquid is by definition any system with low-energy excitations similar 
to those of a noninteracting Fermi sea. It is an empirical fact that all 
known substances, except perhaps high-temperature superconduc- 
tors, which are metals in the sense of conducting electricity at zero 
temperature, are Fermi liquids. For this reason there is a deep-seated 
belief among solid-state physicists that metals should be Fermi 
liquids as a mattev ofpvinciple, even though there is no prima facie 
theoretical evidence for this. It is almost impossible to demonstrate 
from first principles that a given material is a Fermi liquid. The 
equations are simply too complicated. So central is the Fermi liquid 

The author is in the Deparunent of Physics, Stanford University, Stanford, CA 94305, 
and is also at Lawrence Livermore National Laboratory, Livermore, CA 94550. 

concept to our understanding of the solid state that it is implicit in 
the vocabulary we use and prejudices the questions we ask. The 
high-temperature superconductivity literature is filled with expres- 
sions such as "Fermi surface," "density of states," "Pauli susceptibil- 
ity," and "electron-phonon interaction," all of which require the 
context of a Fermi liquid even to make sense. 

In light of the overwhelming empirical evidence that all metals are 
Fermi liquids, it is not surpri$ng that the resonating valence bond 
concept, although widely respected, is not widely believed. This is 
unfortunate, for Anderson's reasons for thinking it to be at the 
bottom of high transition temperature (T,) supekonductivity are 
compelling (3). Let me paraphrase these as I understand them: 

1) High T, superconductivity occurs in a class of systems, the 
Mott insulators (4 ) .  that we have never understood. It is hard to , ,, 
understand how this could be a coincidence. There is probably some 
previously unknown property of these systems that causes the effect. 

2) The systems in question are inherently magnetic. Stoichiomet- 
ric La2Cu04 is an ordered spin-112 antiferromagnet (5 )  and also an 
insulator. Doping the material ( 6 )  by substituting Sr for about 3% 
of the La destroys the magnetic order and makes the material a 
"metal" in the sense of conducting electricity at zero temperature. It 
is hard to understand how doping at this level could have destroyed 
all the spins. A more reasonable guess is that the extra holes make 
ordering more difficult, and that the spins are still present in some 
sort of "quantum spin liquid" state. 

3) The only rotationally invariant spin-112 system for which we 
have an exact solution ( 7 ) ,  the linear Heisenberg chain with near- 
neighbor interactions, possesses a disordered ground state that 
might well be termed a quantum spin liquid. It is reasonable to 
adopt this state as a paradigm for the putative spin-liquid state in 
higher dimension. No one has proved that such states exist, but 
surely some Hamiltonians can be found in which quantum fluctua- 
tions prevent ordering. After all, magnetic ordering is physically 
similar to crystallization, and helium has both crystalline and fluid 
phases. 

4) The elementary excitations of the Heisenberg chain are known 
(8) to be neutral spin-112 particles possessing a linear energy- 
momentum relation. If the form of these excitations were generic to 
spin-liquid states, one would expect the charged excitations induced 
by doping to be very strange, at least within the context of metals as 
we know them. For example, one possible fate of a hole doped into 
the material would be to become attached to a neutral suin-112 
excitation to form a charged spinless particle. Anderson refers to this 
object, which was invented by Kivelson, Rokhsar, and Sethna (9), as 
a "holon." He calls the neutral particle a "spinon." Because the 
holon is spinless, one would guess it to be a boson, in which case it 
might cause superconductivity by Bose condensing. 
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Experimental Properties of High-Temperature 
Superconductors 

There are several significant factors reinforcing the skepticism 
toward the resonating valence bond idea. One of them is the 
reluctance of most scientists to abandon thinking that has served 
them well in the past unless it fails spectacularly. This may or may 
not have occurred, depending on which experiments one believes. It 
is regrettably the case that all but a handful of experimental 
properties of high Tc superconductors can be understood qualita- 
tively in terms of the traditional Fermi liquid theory of superconduc- 
tors. Let me mention a few of these (10):  

1) The spin susceptibility (11) is roughly consistent with Pauli 
paramagnetism of a Fermi sea containing the number of electrons 
believed from stoichiometry to have been doped into the material. 
This carrier density, in turn, is roughly consistent both with the 
Drude-like conductivity (12) observed in the far infrared and the 
plasma oscillation induced by it at higher energy. The consistency is 
only rough because the "band" effective mass of the electrons is not 
known. Estimates based on experiment range from one to ten 
electron masses. Attempts to calculate this mass by means of 
standard band structure techniques are difficult to interpret (13). 
Stoichiometric LazCu04 comes out to a metal, which it is not. 

2) The electrical resistivity (14) above Tc is the size expected of a 
semiconductor doped to the appropriate level. 

3) The transition to superconductivity is associated with a specif- 
ic heat anomaly ( 1 1 ,  15) related in approximately the right way to 
the Pauli susceptibility. 
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Fig. 1. If a spln liquid exists, so should spinons. This IS because a system with 
an even number of spins (top left) must be a singlet, while a system with an 
odd number of spins (top right) cannot be. Because the two systems cannot 
be distinguished when they are large, however, the latter must be viewed as a 
neutral spin-112 excitation of the former. Identification of the half-integral 
spin as a fractional quantum number suggests that the spin-liquid ground 
state (center and bottom rlght) is analogous to the fractional quantum 
Hall state (center and bottom left), and that the spinon is analogous to its 
fractionally charged quasiparticle. 

4) Energy gaps have been observed in both the optical absorp- 
tion (16) and tunneling spectra ( 1  7). These gaps are roughly equal 
and related in roughly the right way to T,. Both gaps disappear 
above Tc. 

5) The critical field (18) Hc collapses continuously as Tc is 
approached from below. There is evidence (19) that the tunneling 
gap also collapses continuously. 

6) The zero-temperature London penetration depth X is roughly 
consistent (20) with the density of carriers induced by doping. Both 
A and the coherence length ( diverge (18, 21) at Tc. 

7 )  The ac Josephson effect (22) observed in granular samples 
indicates the presence of a conventional charge-2 order parameter. 
This is consistent with Cooper pairs but not consistent with Bose 
condensation of holons. The latter would produce a charge- 1 order 
parameter. 

A related and somewhat distressing factor is the inability of the 
idea to credibly predict anything or, for that matter, even to account 
for the superconductivity. The most concrete prediction of the 
approach, namely, that the order parameter should have charge 1, 
was proved false within a few weeks of its proposition. The situation 
has become so grim that experimentalists have largely stopped 
listening to theorists. 

The Mott Insulator Problem 
By far the most serious impediment, however, is the unwilling- 

ness of most solid-state physicists to accept the hndamental intellec- 
tual problem a disordered Mott insulator (4) presents. The monox- 
ides of iron, cobalt, and nickel are insulators with similar properties 
(23). However, cobalt oxide cannot possibly be an ordinary insula- 
tor because it has an odd number of electrons per unit cell. All three 
oxides are, in fact, Mott insulators, materials that insulate solely as a 
result of Coulomb repulsions between electrons, but only in cobalt 
oxide is this conclusion inescapable. 

Mott insulators are very poorly understood. One frustrating 
consequence of this is that there are no agreed-upon criteria for 
identifying them. Thus, even though it is obvious to me that high- 
temperature superconductors are Mott insulators, it is impossible to 
convince my disbelieving colleagues that this is the case on purely 
phenomenological grounds. Lacking an understanding of Mott 
insulators, we usually assume them to be semiconductors, a well- 
understood class of materials that become metals when doped, and 
wait for the experiments to tell us otherwise. This would be a 
perfectly reasonable way to proceed if the experimental results were 
more clear-cut, for good experiments generally lead to the truth 
whether ideas ~notivating them are correct or not. However, it has 
been the case historically with Mott insulators, and is the case 
presently with high-temperature superconductors, that the experi- 
ments are plagued with materials problems and interpretation 
ambiguities, so that this strategy does not work well. There is, of 
course, no reason whatsoever to expect a disordered Mott insulator 
to be a semiconductor. It is certainly not true that Mott insulators 
are demonstrably semiconductors (24) described well by a cornrnensu- 
rate spin density wave ground state. 

Analogy with the Quantum Hall Effect 
Let us now ask why the resonating valence bond idea, if it is so 

insightful, is having so much difficulty accounting for the supercon- 
ductivity in these materials. The most obvious possibility is that 
there is a minor error somewhere in its logical development which 
has led us down a blind alley. Where could it be? The notion of a 



spin-liquid state seems sound enough. It is an experimental fact that 
high-temperature superconductors have no magnetic order. It is 
hard to understand how the spins could simply have vanished. There 
is certainly no reason to believe that quantum mechanical melting 
should occur only in one dimension. The most likely source of the 
problem, therefore, is the identification of the one-dimensional 
Heisenberg model as an appropriate paradigm. 

There are a number of reasons to be suspicious of the Heisenberg 
chain as a model spin liquid. The most obvious one is that it cannot 
be ordered, just as a matter of principle, whereas higher dimensional 
systems can. It is conceivable, for example, that the gaplessness of 
the spinon spectrum in one dimension simply reflects the system's 
tendency to be ordered and thus to have a gapless spin wave. Also, it 
is uniquely the case in one dimension that bosons can be converted 
to fermions and vice versa by means of canonical transformation 
(2.5). Thus, even if the excitations of the higher dimensional spin 
liquids are analogous to those of the Heisenberg chain, it is not clear 
what statistics to assign them. 

Even while suspecting the paradigm of the Heisenberg chain, one 
should probably believe in spinons. According to Dzyaloshinskii 
(26), Landau considered the notion of a liquid state with spin-112 
excitations so obvious that he did not believe ordered antiferromag- 
nets existed. While it is not completely clear why he thought this, an 
obvious possibility is illustrated in Fig. 1. Suppose it is established 
that the ground state of some Hamiltonian is a nondegenerate spin 
liquid. Then the ground state must be a singlet when the number of 
spins is even and a doublet when the number of spins is odd. Since 
there is no long-range order, however, the two systems must be 
physically equivalent. Therefore the doublet must actually be a spin- 
112 excitation of the singlet ground state. The existence of spinons is 

on much sounder footing than the analogy with the Heisenberg 
chain would suggest. 

This brings me to what I believe very strongly to be the key idea 
missing from Anderson's vision of the resonating valence bond. If a 
spin-liquid state exists, which it probably does, it is expected to have 
neutral spin-112 excitations. But how could this be? In the absence 
of interactions between the spins, the elementary excitations of the 
system consist of the act of flipping a spin from down to up. These 
obviously have spin 1 and are bosons. How could it be that these 
"elementary particles" of the problem could combine quantum 
mechanically to make spin- l12jvmions? In one dimension this point 
is moot because bosons and fermions cannot be distinguished. In 
higher dimension, however, the paradox is real. There are two 
established precedents (27) for turning bosons into fermions in 
higher dimension, both of which are improbable in the context of 
this problem. One involves borrowing the half-integral spin repre- 
sentation from isospin degrees of freedom. The other involves 
adding topological terms to the boson Lagrangian. The latter 
amounts to changing the laws of physics in a fundamental way. 
Thus, given that spinons occur in dimension greater than 1, their 
existence is properly considered miraculous. It implies that the 
elementary spin-1 excitations have been split in two, with half the 
excitation appearing in the sample interior and half at the boundary. 
There is only one identified case of behavior of this kind in nature of 
which I am aware: the fractionalization of electric charge that occurs 
in the fractional quantum Hall effect (28). This behavior is so 
unusual that I find it hard to understand how there could be two 
distinct phases of matter exhibiting it. I therefore believe that the 
fractional quantum Hall state is the only possible correct paradigm 
for the spin-liquid state. 

Fig. 2. Whether or not fractional quantization occurs in the quantum Hall 
problem is determined by the presence or absence of an energy gap in its 
collective mode spectrum (top left). This mode is a compressional sound 
wave in the fractional quantum Hall state and presumably a spin wave in the 
spin-liquid state. As the Hamiltonian is changed to induce crystallization 
(top rlght) the magnetoroton minimum of this mode softens, leading to a 
divergent susceptibility at the reciprocal lattice vector G of the crystal. 
Viewed in the reduced zone scheme of the crystal (bottom left) this 
spectrum is quite similar to that of a crystal (bottom rlght) except for the 
presence of a gap at the zone center and the absence of a gap at the zone 
edge. 

Properties of Incompressible Quantum Fluids 
Let us now explore the possibility that the spin-liquid state and 

the fractional quantum Hall state are one and the same. Here are the 
generic characteristics of the state as I see them (29): 

1) A featureless liquid-like ground state that is not degenerate. 
2) Elementary excitations above this ground state that carry 

fractional charge. This charge is quantized to a particular value 
characteristic of the state. 

3) An energy gap for making either fractionally charged excita- 
tions or collective modes. The collective mode may be thought of 
either as a pair of fractionally charged particles or  as a density 
fluctuation. Changes to the system's Hamiltonian that preserve this 
gap also preserve the fractional charge exactly. 

4) Long-range gauge forces between the fractionally charged 
particles. These appear in the fractional quantum Hall literature as 
fractional statistics of the particles. They are also preserved exactly by 
changes in the Hamiltonian that preserve the gap. 

That these are actually properties of the real fractional quantum 
Hall state is indisputable. We know such a state exists theoretically 
because a Hamiltonian has been found (30) for which the variational 
solution I proposed for the problem is exact. We know that 
excitations out of the state are fractionally charged because we have 
wave functions for these excitations that are exact (30) in this limit 
and can prove that their charge is unaffected by changes in the 
Hamiltonian that preserve the energy gap (29). We also know that 
the Hall conductance, which is a spectroscopic measure of this 
charge (31), is exact to within experimental uncertainty (32). We 
know that these quasiparticles obey fractional statistics both because 
it can be deduced from their wave functions (29,33) and because the 
Hall conductances of the fractional quantum Hall hierarchical states 
are the correct values (34) to within experimental uncertainty. 
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Like any liquid, the fractional quantum Hall state is difficult to 
distinguish from a crystal. In particular, it possesses a collective 
mode (36) that may be thought of either as a compressional sound 
wave or as an exciton (37) formed when two charged quasiparticles 
bind. The dispersion relation of this mode is known to have the 
general form illustrated in Fig. 2. Its deep minimum, named the 
"magnetoroton" by Girvin, MacDonald, and Platzman (36), who 
discovered it, occurs at a wave vector corresponding to the interpar- 
ticle spacing. This gap is a "measure" of how liquid the state is. If the 
Hamiltonian is tuned so as to induce crystallization, which we know 
must occur in certain limits, this gap should collapse continuously 
(38), as appropriate for a second-order phase transition. This has not 
been proved to be the case, but it is very reasonable, and it has 
certainly not been contradicted by any experiments (39). Three 
things happen as the gap gets smaller: 

1) The state gets increasingly susceptible at the crystallization 
wave vector. This susceptibility diverges at the crystallization point. 

2) The size of the quasiparticles grows. An apt analogy would be 
the growth of a Cooper pair that results from diminishing the gap of 
a Bardeen-Cooper-Schrieffer (BCS) superconductor. 

3) The energy cost to make a quasiparticle diminishes. The cost is 
zero at the transition. 

The quasiparticle charge maintains its integrity as these things 
occur as long as the gap is nonzero (29). Let me emphasize again 
that this behavior is expected on very general grounds and, in 
particular, is completely insensitive to what the Hamiltonian is. The large 
susceptibility, which is particularly significant for systems on the 
verge of crystallizing, must lead to intense inelastic scattering at the 
magnetoroton wave vector. As illustrated in Fig. 2, this could easily 
be mistaken for Bragg scattering. Since the Goldstone mode of the 
crystal and its ground-state degeneracy are really the same thing, the 

Fig. 3. (Left) Hartree-Fock densities of states for noninteracting particles 
obeying v fractional statistics. The fractions v = n/(n + 1)  are special cases in 
which a logarithmically divergent energy gap opens up between the occupied 
(hatched) and unoccupied (unhatched) states. (Right) Illustration of the 
phase associated with interchanging n particles obeying v fractional statistics. 
The special fractions are precisely the ones for which integral multiples of 
particles are bosons. 

difference between liquid and crystal is simply the presence or 
absence of the energy gap. 

It is reasonable to expect all of these features of the fractional 
quantum Hall state to have analogs in the spin-liquid state. Thus, 
the analog of the fractionally charged quasiparticle is the spinon, the 
analog of the compressional sound wave is an antiferromagnetic spin 
wave, the analog of Wigner crystallization is antifevvomagnetic ordering, 
and the analog of the magnetoroton gap is a magneticf7uctuation gap. 

The most obvious implication of the connection between these 
two states is that the spin-wave spectrum of the magnet must have a 
gap, as this is the measure of how "liquid" it is. Above this gap the 
fluctuations should be indistinguishable from those of an ordered 
antiferromagnet. Although the energy gap has not yet been seen 
experimentally, magnetic fluctuations similar to those in the ordered 
phase have been detected in superconducting samples with magnetic 
Raman scattering by Lyons et al. (40). Similar magnetic fluctuations 
in insulating samples have been seen with inelastic neutron scatter- 
ing by Endoh et al. (6). Since existing experiments do not have the 
resolution to see this gap, let us guess that it is comparable in size to 
the one measured in tunneling, or roughly 30 meV. Raman 
experiments show the maximum spin-wave energy to be roughly 
200 meV. 

The possibility that the Anderson resonating valence bond state 
might constitute another example of fractional quantum Hall 
behavior was suggested to me by D. H. Lee and J. D. Joannopoulos 
about a year before high-temperature superconductivity was discov- 
ered. V. Kalrneyer and I (35) investigated this idea numerically and 
succeeded in making a very strong case that it makes sense. I must 
emphasize that we did not prove it to be true. Indeed, no one has 
conclusively proved that a spin-liquid state even exists in any 
dimension higher than 1. In light of the present experimental 
situation, however, it seems a bit silly to worry about this. For 
reasons I have already stated I find the mere consistency of the idea 
adequate reason for believing it true. 

Fractional Statistics of Holons 
The most important consequence of the analogy between the 

fractional quantum Hall and resonating valence bond states is the 
prediction of a powerful gauge force between the spinons. In the 
fractional quantum Hall effect, this force, which causes the quasi- 
particles to obey fractional statistics (34), is known (29) to be a 
natural concomitant to the presence of fractional charge. A particle 
carrying electric charge ve moves dynamically as though it carried 
with it a solenoid containing magnetic flux vhc/e, no mattev what the 
Hamiltonian is, provided that this Hamiltonian can be adiabatically 
evolved into the "ideal" Hamiltonian without destroying the energy 
gap. The only thing affected by a change to the Hamiltonian is the 
size of the solenoid, or equivalently the size of the quasiparticle. 
Thus, given that the mechanism for quantum number fractionaliza- 
tion in the magnet is the same as that in the fractional quantum Hall 
effect, such forces are necessavily an attribute of spinons. Further- 
more, the fraction of the statistics must be 112 because the "charge" 
of the spinon (35) is 112 h. 

Fractional statistics only make sense in two dimensions. It is not 
clear to me what would happen in a three-dimensional spin liquid, 
assuming one exists, but a good guess is that the forces become so 
strong that they confine. 

Let us now consider the charged degrees of freedom (9). Whether 
or not excitations analogous to the holon exist in the fractional 
quantum Hall effect is not yet clear. The experimental discovery (41) 
of the "512" state and the subsequent confirmation (42) of its 
magnetic character do demonstrate that charge fractionalization can 
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occur in systems possessing both electric and magnetic degrees of 
freedom. The quantization of the Hall conductance shows that one 
of the excitations is a charge-112, spin-0 quasiparticle (43). I believe 
that a charge-0, spin-112 quasiparticle also exists, but this has not 
been demonstrated experimentally. 

The main reason to believe that holons exist, however, is that they 
make so much sense. In trying to conceptualize a charged excitation 
of a spin liquid, which we know exists because high T, supercon- 
ductors can be doped, one immediately runs into the following 
problem: In order to place an additional electron (hole) on a site it is 
first necessary to make sure that the electron (hole) already there has 
the opposite spin. However, because the electron already there is 
fluctuating quantum mechanically between the up and down states, 
this requires that one reach in and stop it from fluctuating. This 
could be accomplished, for example, by projecting the ground state 
onto the set of states with a given electron down. However, because 
this creates a large disturbance in the "vacuum," it should be more 
favorable energetically to create a spinon. Kalmeyer and I (35) found 
this to be the case when we tested both states using variational wave 
functions borrowed from the fractional quantum Hall problem. So 
let us make a spinon. With the spin of the electron in question thus 
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Fig. 4. Holes (top left) and particles (top rlght) in the fractional statistics 
gas may be thought of as charged vortices. The velocity field of the vortex 
(middle left) falls off as l l v  at large distances, as appropriate for a quantum 
of circulation (1 - v)n. The size of the vortex core is e = [27~(1 - v)p]-'I2, 
where p is the density of the fluid. The action of the density operator p, on 
the ground state (middle right) may be thought of either as a compressional 
sound wave or as an exciton (bottom left) formed from two vortices of the 
opposite sign. The separation of the vortices is proportional to the exciton 
momentum q and perpendicular to it. The dispersion relation (bottom 
right) crosses over from linear to logarithmic behavior when the vortex 
separation becomes comparable to e .  

sq lo> pq lo> Cks lo> 
Spin Wave Density Wave Hole 

Flg. 5. In the presence of a holon condensate, the "elementary particles" of 
the theory, spinons and holons, cannot be isolated. The physically observable 
particles must therefore consist of pairs of them. The three possible pairings 
may be thought of as the excitations S,(O), p,jO), and c:,(0). 

defined, it is possible to remove the electron in an unambiguous 
way, thus creating a holon. The holon is spinless because holding 
the electron down and then removing it is equivalent to holding it 
up and then removing it. The particle created in this way obviously 
obeys fractional statistics because it is constructed from a hole and a 
spinon. However, one can argue more generally that the absorption 
of the spin of the hole by the vacuum can only have occurred 
through the fractionalization of the spin quantum number, and 
therefore must have given rise to a long-range force. 

Superconductivity from Gauge Forces 
The fractional statistics obeyed by holons has the capacity to cause 

superconductivity. Unlike the pairing forces in an ordinary super- 
conductor, which are by most measures weak and which have no 
effect unless they are sufficiently strong to overcome Coulomb 
repulsions between electrons, the gauge force to which fractional 
statistics corresponds is strong and leads to charge-2 superfluidity 
under very general circumstances. 

The conclusion that fractional statistics causes superconductivity 
is based on a recent theoretical study by me (44) of a gas of holons 
obeying 112 fractional statistics and described by the free-particle 
Hamiltonian 

where V is a pair potential, nominally a Coulomb repulsion. The 
statement that an energy eigenstate P of this Hamiltonian obeys v 
fractional statistics means that it takes the form (45) 

where @ is a Fermi wave function and z = x + iy is the position of a 
particle expressed as a complex number. When written in terms of 
@, the equations of motion become those of fermions moving in the 
x - y plane and carrying with them a magnetic solenoid containing 
(1 - v)hc/e of magnetic flux. A Hartree-Fock solution of these 
equations (44) reduces the problem to a gas of noninteracting 
fermions moving in a uniform magnetic field of strength 

where p denotes the particle density. As illustrated in Fig. 3, such a 
system possesses an enevgy gap in its fermionic excitation spectrum 
whenever the particle density is an integral multiple of the quantity 
hc/eB, which occurs in this case when (1  - v)-' is an integer. In the 
fractional statistics gas, this gap turns out to be logarithmically 
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divergent with the sample size and thus effectively infinite. The 
energy grows logarithmically because adding a particle polarizes the 
surrounding fluid in a vortex of circulation (1  - v)h. The condition 
that a gap exist is precisely the condition that an integral number of 
particles be bosons. The Hartree-Fock solution thus indicates that 
the ground state of particles obeying v fractional statistics is a 
superfluid with a charge-(1 - v)-' order parameter. This charge is 
2, as appropriate for a superconductor, for v = 112 holons. 

The broken symmetry characteristic of a superfluid is not mani- 
festly present in the Hartree-Fock solution. This is a well-known 
pathology of variational solutions, which is remedied (46) by 
hybridizing longitudinal collective modes into the ground state. 
This collective mode, which is physically the same as a compression- 
al sound wave, appears formally in the Hartree-Fock description as 
an exciton (37) formed, as illustrated in Fig. 4, from a hole in the 
occupied Landau level and a hole in the lowest unoccupied one. It is 
physically similar to the purely magnetic collective mode shown in 
Fig. 2. It may be thought of as a vortex-antivortex pair separated a 
distance (hc/eB)q and possessing momentum hq. The dispersion 
relation of this excitation is linear at long wavelengths. 

The fractional-statistics gas will cease to be a superfluid when the 
interparticle repulsion V becomes too strong, for then the bosons 
must form a Wigner crystal. For Coulomb interactions this is 
thought to occur (47) at densities for which 

It has been noted by Peters and Alder (47) that this expression is 
very nearly an equality at the minimum doping density (3%) 
required to make La2Cu04 metallic. 

Gap Collapse and Confinement 
Having identified fractional statistics as a possible cause of 

superconductivity, one is placed in the awkward position of having 
explained too much. The pairing of holons as a result of fractional 
statistics is inevitable provided that the spinon gap is nonzero. Thus, 
in a universe containing only holons, superfluidity would be lost 
through thermal fluctuations of the order parameter, the transition 
would look something like the A-point of liquid helium, and 
superconducting tunneling would be impossible. Since this is clearly 
not the case experimentally, the theory can be correct only if spinons 
are central to the spectroscopy and thermodynamics of these 
materials. Let me now argue that this is expected to be the case. 

One of the most striking features of the high Tc experimental 
phenomenology is how well it fits the BCS theory. It is hard not to 
be comforted by this, for it indicates fairly strongly that much of the 
physics of high-temperature superconductors is the same as that of 
ordinary superconductors. A moment's reflection, however, reveals 
that this does not tell one very much. Most of the important 
properties of a superconductor, such as the Meissner effect, the 
Josephson effect, and the relation between H, and Tc, are direct 
consequences of the occurrence of spontaneous broken symmetry. 
Thus, experiments which measure all these things are in some sense 
the same experiment. Similarly, the fact that the kBTc and the energy 
gap measured in tunneling or by optical spectroscopy are compara- 
ble in size and the fact that Hc collapses in a roughly mean-field way 
as Tc is approached from below merely indicate that the destruction 
of superconductivity is a gap-closing transition. There is nothing 
inconsistent in this. Even in ordinary superconductors, thermal 
fluctuations of the order parameter will destroy superconductivity 
unless something else destroys it first. It is just an accident of nature 
that the gaps of ordinary superconductors are so small that they 

collapse at a relatively low temperatures. Now, given that the holon 
liquid has the properties I have ascribed to it, the only way to 
destroy its superfluidity, other than by the thermal fluctuation 
mechanism, is by destroying the fractional statistics. This, however, 
can only occur if one destroys the spinon gap. Thus the question we 
need to ask is whether raising the temperature destroys this gap. 

Before addressing this question it is necessary to consider the 
physical meaning of the spinon gap in the presence of a holon fluid. 
An isolated spinon is expected to induce a vortex in the condensate 
exactly the way an isolated holon does, because a spinon is simply a 
holon with an electron added to its center. This means that the 
energy to make an isolated spinon diverges logarithmically with the 
sample size, and this means that making an isolated spinon is 
impossible. One therefore has the strange situation, similar to that 
occurring in baryons, in which the fractionally charged particles of 
the theory, the holons and spinons, cannot be isolated. The freely 
propagating, and thus spectroscopically significant, excitations of 
the system consist of pairs of them. As illustrated in Fig. 5, there 
should be three of these: 

1) A spin wave, consisting of two spinons. This is the excitation 
illustrated in Fig. 2. 

2) A charged current, consisting of two holons. My present 
understanding is that this should be analogous to the action of the 
density operator on an ordinary superconductor, which is a longitu- 
dinal excitation that loses its identity by hybridizing strongly with 
the Goldstone mode. 

3) An electron, consisting of a holon "hole" and a spinon. This is 
the excitation created in a tunneling experiment. 

Each of these particles should be characterized at low energy by a 
spin and total momentum, as appropriate for a tightly bound state of 
two particles. Because the impossibility of isolating spinons is a 
property of the holon fluid and not of the underlying spin system, it 
does not invalidate the concept of a spinon gap. It merely requires 
that one detect collapse of the spinon gap through collapse of the 
spin-wave gap which is expected to occur simultaneously. 

Fig. 6. Hypothesized behavior of magnetic excitation S,/O) in a real high T, 
superconductor. Note the similarity to Fig. 2. The energy at r is comparable 
to the optical magnon of the antiferromagneticdy ordered state. The gap A, 
at f is comparable to the superconducting gap 2A,. 
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Let us now consider the question of gap collapse. It is known that 
disorder, and thus presumably thermally excited collective modes, 
can continuously collapse the magnetoroton gap in the fractional 
quantum Hall state to zero. This is known both from theoretical 
considerations (38, 48) and from the experimental observation (39, 
49) that increasing disorder lowers the activation energy for a,, 
continuously to zero and then destroys the fractional quantum Hall 
effect entirely. Because of the nature of self-consistent gap collapse, 
namely, that thermal excitation of particles across the gap lowers the 
gap, which allows even more particles to be excited, which lowers 
the gap still further, and so forth, one can say without knowing any 
details that the temperature of gap collapse must be comparable to 
the gap itself. Thus, for the superconductors we would have 

where A, denotes the spin-wave gap. The value of 30 meV that I 
estimated for A, gives a value for this ratio of 3, which is quite 
reasonable. It is therefore the case that self-consistent gap collapse of 
the type necessary to destroy superfluidity is expected at a tempera- 
ture that is about right. 

Consequences of Fractional Statistics Pairing 
In order to proceed further it will be necessary for me to make 

some educated guesses about the precise nature of the excitation 
spectra in a system of this kind. These "gedanken" calculations are a 
poor substitute for real ones, particularly because most of the 
significant questions about these materials are quantitative, but it is 
the best any of us can do at present. 

Undoped La2Cu04 is known (5) to be antiferromagnetically 
ordered along the [110] direction in the C u - 0  planes. Accordingly, 
the spin-wave spectrum of the magnetic liquid state should look 
something like Fig. 6, with the gap As occurring at the M point in 
the Brillouin zone. This gap is physically analogous to the magneto- 
roton minimum shown in Fig. 2. It is shown with a parabolic shape 
because this would be the outcome of a variational calculation based 

Momentum (arb. units) Density of States (arb. units) 

Fig. 7. Effect of quantum fluctuations on the spin-wave dispersion (left) and 
density of states (right). In the absence of fluctuations (dashed) the 
dispersion relation is quadratic and the density of states constant. In the 
presence of fluctuations (solid) both of these become linearized. Supercon- 
ducting fluctuations have the same effect on the electronic density of states. 

on the single-mode approximation. However, it is well known (50) 
that quantum fluctuations tend to linearize a mean-field dispersion 
relation of this kind in the limit that the gap is small. Let us therefore 
guess that the dispersion relation near the minimum is roughly of 
the form 

where v is an asymptotic spin-wave velocity. This dispersion relation 
and the density of states to which it corresponds are shown in Fig. 7. 

Let us now consider the behavior of the "electron." Whatever this 
excitation is, it should have a significant projection onto the state 
cislo), where 10) denotes the true ground state of the system. Thus, 
to calculate its properties, one could either compute the time- 
ordered Green's function Gks(7) = - ~ ( O ~ T { C ~ ~ ( ~ ) C ~ , ( O ) } ~ O )  Or use the 
state cis10) as a variational ansatz. Unless "electrons" and 
"holes" interact very anomalously, the Green's functions for spin and 
density fluctuations, namely, -i(OlT{S~(~)S~(0)}10) and 
-i(O1T{~k(7)~k(O))lO), with 

and 

must have large spectral weight at the energies of free electron hole 
pairs, as they do in ordinary superconductors. Thus the presence of a 
soft spin wave at M implies that there are also soft electron hole pair 
excitations with this momentum. Let us therefore guess that the 
electron spectrum looks something like that depicted in Fig. 8, with 
a small gap 2A, at the X point. This gap should be slightly greater 
than A, or equal to it, according to whether the electron hole 
interaction is attractive or repulsive. The fact that this gap is direct 
implies that it would produce a strong signal in optical reflectivity, 
as is experimentally the case. It should also be the gap observed in 
tunneling. 

I have assumed the electron spectrum to have its minimum at a 
point in the Brillouin zone because this is the most likely outcome of 
a variational estimate based on the wave function cLslO) or a 
projected version of it. This behavior, which is precluded by the 
Fermi liquid hypothesis, has also been suggested by Anderson (3) 
and by Kotliar (Sf), although on different grounds. It has the 
capacity to account for the linear-tunneling density of states (52) 
seen above the gap in most high T, superconductors. The quadratic 
minimum produced by the variational calculation would be expected 
to linearize, much the way the spin-wave dispersion linearizes, as a 
result of superconducting fluctuations, producing an electron densi- 
ty of states very similar to the spin-wave density of states shown in 
Fig. 7. 

Let us finally consider the electromagnetic response. The soft 
charged excitation at the M point should become a plasmon and 
thus effectively become invisible. A soft transverse excitation should, 
however, be visible at M as it is at T. There should not be a gap in 
the density fluctuation spectrum at q = 0. In a BCS superconductor, 
this can be shown to follow from "backflow" corrections (53) to the 
bare response function, which does have a gap, but it is actually a 
general consequence of broken symmetry. The measured density 
fluctuation spectrum must have a strong pole at the Goldstone 
mode. 

An extremely important consequence of the "confining" effect of 
the holon gas is that it can account for the stabilization of liquid 
state by doping. One way to understand the tendency to order, 
which occurs in the undoped limit, is that the magnetoroton 
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minimum depicted in Fig. 2 is negative. As illustrated in Fig. 8, 
however, this excitation may also be viewed as a pair of spinons 
bound together. In the presence of the holon gas, the energy of this 
excitation, and thus As, will be raised. If the separation of the 
spinons associated with this excitation is assumed to be pG/2, where 
p is the holon density and G is a reciprocal lattice vector, then the 
vortices in the holon fluid are farther apart than their core size, and 
we may write, up to an unimportant logarithmic term, 

where At is the (possibly negative) value of the gap at zero doping 
and o! is a coefficient of order unity. This is precisely the type of 
doping dependence of the gap proposed by Anderson (3) and found 
phenomenologically by Uemura et al.  (54) .  Assuming a value of 
loF2 for p and a bare electron mass, one obtains 40 rneV for 
this increase, which is of the correct order. 

I would like finally to make a remark about gaplessness. It is a fact 
that the energy gap or gaps of high-temperature superconductors 
are extremely difficult to measure. It is commonly the case, for 
example, that a tunnel junction (17) exhibits a smooth transfer 
characteristic with a small smooth bump where the gap ought to be. 
As a result, tunneling spectroscopists cannot agree on the value of 
the tunneling gap to within a factor of 2. Some deny that there even 
is a gap. Similarly, the value of the gap determined from infrared 
absorption (16) varies from sample to sample and does not agree 
very well with the value determined from tunneling. It is not yet 
clear why these difficulties occur. However, since gapless supercon- 
ductors are known to exist and to be caused by magnetic impurities, 
and since defects in the structure of materials with such low carrier 
densities are bound to be magnetic, it is quite conceivable that high- 
temperature superconductors are chronically gapless. In light of this 
possibility, it is important to make clear that gaplessness does not 
invalidate the fractional statistics concept. Fractional quantum Hall 
systems are always dirty and thus always in some sense "gapless." 

Fig. 8. Hypothesized behavior of "electronic" excitations &,lo) and ckslO). 
The gap A, is the one measured in tunneling. The energy at r is comparable 
to the Ferrni energy of a gas of electrons at the holon density. Because the 
gap is direct, it may be observed optically. 

Nevertheless we know experimentally that the quantum of Hall 
conductance, and thus the quasiparticle charge, is exactly quantized 
so long as the effect is not destroyed entirely. 

Conclusion 
The purpose of considering the experimental implications of the 

equivalence of the fractional quantum Hall effect and high-ternpera- 
&re superconductivity in thii cursory way is not to pro& it correct 
but rather to show that it is not obviously wrong. I am in agreement 
with Anderson that the mathematical tools required to accurately 
calculate properties of this state probably do n i t  yet exist. ~ e f o r e  
malung the effort to invent them it is obviously a good idea to find 
out if the approach makes sense. The existence of a spin-liquid state 
and the occurrence of charge fractionalization in such a state are. in " 
my opinion, on firm ground. The ability of fractional statistics or its 
three-dimensional analog to cause superconductivity is less clear-cut, 
but probably right. Whether or not such things occur in real high- 
temperature superconductors is problematical. I am persuaded that 
they do, but this remains to be demonstrated. 
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How Do Enzymes Work? 

The principle of transition-state stabilization asserts that 
the occurrence of enzymic catalysis is equivalent to saying 
that an enzyme binds the transition state much more 
strongly than it binds the ground-state reactants. An 
outline of the origin and gradual acceptance of this idea is 
presented, and elementary transition-state theory is re- 
viewed. It is pointed out that a misconception about the 
theory has led to oversimplification of the accepted 
expression relating catalysis and binding, and an amended 
expression is given. Some implications of the transition- 
state binding principle are then explored. The amended 
expression suggests that internal molecular dynamics may 
also play a role in enzymic catalysis. Although such effects 
probably do not make a major contribution, their magni- 
tude is completely unknown. Two examples of recent 
advances due to application of the transition-state bind- 
ing principle are reviewed, one pertaining to the zinc 
protease mechanism and the other to the generation of 
catalytic antibodies. 

E VEN A CASUAL SURVEY OF THE CURRENT BIOCHEMICAL 

literature reveals a rising interest in enzymes. This upsurge is 
due in part to the advent of site-directed mutagenesis 

methods, which have now been reduced to an almost standardized 
collection of laboratory procedures (1) whereby the amino acid 
sequence of a given enzyme molecule (or any other kind of protein 
molecule) may be altered by deliberately and precisely mutating the 
cloned gene encoding that molecule. As a tool for investigating 
structure-function relations, site-directed mutagenesis is made still 
more powerful by the use of x-ray crystallography to redetermine 
the three-dimensional structure of the mutated enzyme molecule 
and thereby define exactly what has been changed. The large amount 

The increasingly widespread application of site-directed mutagenesis 
techniques, together with steady advances in methods for preparing 
hybrid enzymes, semi-synthetic enzymes, and even totally synthetic 
enzyme-mimetic compounds, and most recently for the production 
of catalytically active antibodies (3) ,  has given birth to a burgeoning 
new discipline with the optimistic name of enzyme engineering. 

Reasons for this growing interest are not hard to find. Among 
them are the practical possibilities of putting engineered enzymes to 
work in industrial and medical applications. Also, since most drugs 
act by modifying or blocking the activity of some enzyme or 
another, a deeper understanding of suitably chosen target enzymes 
should lead to major advances in rational drug design. But most 
compelling is our sheer curiosity about these ingenious molecular 
machines, operating at the boundary where chemistry just becomes 
biology. 

The phenomenal rate accelerations and specificities of enzymes 
have intrigued investigators ever since the 1830s when enzymic 
activity was first observed [see page 8 of ( 4 ) ] .  Over the years 
numerous hypotheses and ad hoc explanations have been advanced 
to account for enzymic catalysis, many of them tagged with 
imaginative names by their proponents. Page lists no fewer than 21 
hypotheses ( 5 ) .  But only gradually has it come to be accepted that 
the most profitable way to think about the problem is the one first 
clearly stated by Pauling some 40 years ago (6). The basic idea, as 
simple as it is elegant, results from a straightforward combination of 
two fundamental principles of physical chemistry: absolute reaction- 
rate theory and the thermodynamic cycle. In this view an enzyme is 
essentially a flexible molecular template, designed by evolution to be 
precisely complementary to the reactants in their activated transi- 
tion-state geometry, as distinct from their ground-state geometry. 
Thus an enzyme strongly binds the transition state, greatly increas- 

The author is a rofessor of chemisuy and biochemistry at the University of California, 
San Diego, La folla, CA 92093. 

ARTICLES 533 28 OCTOBER 1988 




