
limited amount of work in eukaryotes, it 
appears that the heat shock proteins, and in 
particular the hsp70 members, serve func- 
tions during normal cell growth and in cells 
subjected to stress. Our results indicate that 
functional 70K hsps are required for mam- 
malian cells to survive conditions of brief, 
but severe, heat shock treatment. It has been 
suggested that, because of their relatively 
high abundance in normal and stressed cells, 
their intracellular localization, and their abil- 
ity to bind and perhaps hydrolyze adenosine 
triphosphate (ATP) the 70K hsps might 
serve a general role in stabilizing proteins 
against denaturation or in promoting the 
renaturation of proteins in cells that have 
been exposed to protein denaturing (stress) 
agents (6, 7, 21). This role could be fulfilled 
by an unfoldase activity similar to that pro- 
posed for a constitutively produced member 
of the hsp70 family in the transport of 
different protein species across intracellular 
membranes during normal cell growth (16). 
These experiments, as well as those present- 
ed in (26), provide strong evidence that the 

activitv of h s ~ 7 0  is required for the survival 
of cells during and after thermal stress. 
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Parallel Integration of Vision Modules 

Computer algorithms have been developed for several early vision processes, such as 
edge detection, stereopsis, motion, texture, and color, that give separate cues to the 
distance from the viewer of three-dimensional surfaces, their shape, and their material 
properties. Not surprisingly, biological vision systems still greatly outperform comput- 
er vision programs. One of the keys to the reliability, flexibility, and robustness of 
biological vision systems is their ability to  integrate several visual cues. A computation- 
al technique for integrating different visual cues has now been developed and 
implemented with encouraging results on  a parallel supercomputer. 

A L T H O U G H  IT IS R E A S O N A B L E  THAT 

combining the evidence provided by 
multiple visual cues-for example, 

edge detection, stereo, and color-should 
pro~~ide a more reliable map of the objects in 
a visual scene than any single cue alone, it is 
not obvious how to accomplish this integra- 
tion. One of the most important constraints 
for recovering surface properties from each 
of the individual cues is that the physical 
processes underlying image formation, such 
as depth, orientation, and reflectance of the 
surfaces, change slowly in space (adjacent 
points on a surface are not at random 
depths, for instance). Standard regulariza- 
tion (1-3), on which many examples of the 
early vision algorithms are based, captures 
those smoothness properties well. The phys- 
ical properties of surfaces, however, are 
smooth almost everywhere, but not at dis- 
continuities. Reliable detection of discontin- 

uities of the physical properties of surfaces is 
critical for a vision system, since discontinui- 
ties are often the most important locations 
in a scene: depth discontinuities, for exam- 
ple, normally correspond to the boundaries 
of an object. Thus, the output of each vision 
module has to be smoothed and interpolat- 
ed (that is, "filled-in"), since it is iloisp and 
often sparse; at the same time discontinui- 
ties must be detected. 

Discontinuities can also be used effective- 
ly to fuse information between different 
visual cues (4-7) and the image data [see 
also (8-lo)]. For instance, a depth disconti- 
nuity usually produces a sharp change of 
brightness in the image (usually called a 
brightness edge); and a motion boundary 
often corresponds to a depth discontinuity 
(and a brightness edge) in the image. The 
idea is thus to couple different cues-stereo, 
motion, texture, color, and motion-to the 

image data (in particular, to the sharp 
changes of brightness in the image) through 
the discontinuities in the physical properties 
of the surfaces (see Fig. 1) [for early work in 
this direction, see (I l)] .  The final goal of 
this approach is to use information from 
several cues simultaneously to refine the 
initial estimation of surface discontinuities. 
In this report we will describe a first step in 
this direction that combines brightness 
edges with discontinuities in each of the 
modules separately. 

How can this be done? We have chosen to 
use the machinery of Markov random fields 
(MRFs), initially suggested for image pro- 
cessing by Geman and Geman (12) [for 
alternative approaches see (13-16)]. Consid- 
er the prototypical problem of approximat- 
ing a surface ( f )  given sparse and noisy data 
(depth data), on a regular two-dimensional 
lattice of sites (Fig. 2). We first define the 
prior probability of the class of surfaces in 
which we are interested. The probability of a 
certain depth at any given site in the lattice 
depends only upon neighboring sites (the 
Markov property). Because of the Cligord- 
Hammerslep theorem, the prior probability 
has the Gibbs form: 

where Z is a normalization constant, T is a 
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quantity analogous to temperature in statis- 
tical mechanics, and U( f )  = ;CCrz( f )  is an 
energy function that can be computed as the 
sum of local contributions from each lattice 
site i. The energy at each lattice site Ui( f )  is, 
itself, a sum of the potentials, Uc( f ) ,  of 
each site's cliques. A clique is either a single 
lattice site or a set of lattice sites such that 
any two sites belonging to it are neighbors 
of one another (5, 17). As a simple example, 
when the surfaces are expected to be smooth 
(like a membrane), the prior energy can be 
given in terms of 

where j is a neighboring site to i (that is, i 
and j belong to the same clique). 

If a model of the observation process is 
available (that is, a model of the noise), then 
one can write the conditional probability 
P(gl f )  of the sparse observation g for any 
given surface$ Bayes's theorem then allows 
one to write the posterior distribution: 

In the example of Eq. 2, we have (for 
Gaussian noise) : 

where yi = 1 only where data are available, 
and otherwise yi = 0. More complicated 
cases can be handled in a similar manner (5). 

The maximum of the posterior distribu- 
tion or other related estimates cannot be 

computed analytically, but sample distribu- 
tions with the probability distribution of 
Eq. 3 can be obtained by means of Monte 
Carlo techniques such as the Metropolis 
algorithm (18). These algorithms sample the 
space of possible surfaces according to the 
probability distribution P( f ig) that is deter- 
mined by the prior knowledge of the al- 
lowed class of surfaces, the model of noise, 
and the observed data. In our implementa- 
tion, a highly parallel computer generates a 
sequence of surfaces from which, for in- 
stance, the surface corresponding to the 
maximum of P( fig) can be found. This 
corresponds to finding the global minimum 
of U( f ig) (simulated annealing is one of the 
possible techniques). Other criteria can be 
used: Marroquin (19) has shown that the 
average surface funder the posterior distri- 
bution is often a better estimate, which can 
be obtained more efficiently simply by find- 
ing the a~lerage value o f f  at each lattice 
site. 

One of the main attractions of MRF 
models is that the prior probability distribu- 
tion can be made to embed more sophisti- 
cated assumptions about the world. Geman 
and Geman (12) introduced the idea of 
another process, the line process, located on 
the dual lattice (see Fig. 2), and representing 
explicitly the presence or absence of discon- 
tinuities that break the smoothness assump- 
tion (Eq. 2). The associated prior energy 
then becomes: 

where 1: is a binary line element between site 
i andj. The term vc(l() reflects the fact that 

Fig. 1. A sketch of the over- 
all organization of the inte- 
gration stage (5, 26). The 
outputs of the early visual 
cues (or algorithms)-ste- 
reo, motion, texture, and 
color-are coupled to their 
own line process (the cross- 
es), that is, their discontin- 

Line 
uities. They are also coupled and 
to the discontinuities in the c o n t i n i ~ o ~ i s  

processes surface properties-occlud- 
ing edges (both extremal 
edges and blades), orienta- 
tion discontinuities, specu- 
lar edges, texture marks (in- 
cluding albedo discontinui- ysicai discontinuities 
ties), and shadow edges. 
The image data, especially the sharp changes in brightness labeled here as edges, are input to the lattices 
that represent the discontinuities in the physical properties of the surfaces. The brightness edges may be 
completed before integration (in some cases this may lead to "subjective contours") by the equivalent of 
a higher order MRF that reflects long-range constraints of colinearity and continuation and even 
hypotheses from the recognition stage, which is then expected to use the set of discontinuities at the top 
as its main input. Our present implementation does not couple the differcnt types of physical 
discontinuities: sharp changes in brightness are directly coupled to the line processes of each ofthe cues. 
The individual modules are therefore integrated with each other only indirectly, through the brightness 
edges. 

certain configurations of the line process are 
more likely than others to occur. Depth 
discontinuities are usually themselves con- 
tinuous, nonintersecting, and rarely isolated 
points. These properties of physical discon- 
tinuities can be enforced locally by defining 
an appropriate set of energy values Vc(l() 
for different configurations of the line pro- 
cess (5, 12, 17). 

It is possible to extend the energy func- 
tion of Eq. 5 to accommodate the interac- 
tion of more processes and of their discon- 
tinuities. In particular, we have extended the 
energy function to couple several of the early 
vision modules (depth, motion, texture, and 
color) to sharp changes of brightness in the 
image. This is a central point in our integra- 
tion scheme: here we assume that changes of 
brightness guide the computation of discon- 
tinuities in the physical properties of the 
surface, thereby coupling surface depth, sur- 
face orientation, motion, texture, and color 
each to the image brightness data and to 
each other. The reason for the primary role 
of the gradient of brightness, as conjectured 

- -- 

MRF lattice 

Depth process 
neighborhood 

I 
Line process 

vertical neighborhood 

Fig. 2. (a) Coupled MRF lattices: the circles 
represent the continuous process (depth, motion, 
color, or texture) and the crosses [the lines in (b)] 
represent the associated line process, that is, the 
discontinuities. The neighborhoods of the contin- 
uous process and of the line process are shown in 
(c). The cost of an isolated line process is much 
higher than that of a continuous line. 
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Fig. 3. (a) Grey level imagl 
brightness edges as compute 
implementation of Canny's 
(b) Stereo data (left), recor 
depth (center) and depth alscontln 
found by the MRF integration scheme 
brightness edges (right). (c)  Motion da 
the same scene (left), the MRI; reconstr 
flow (center) and its discontinuities. (d) 
ture data (left), reconstructed uniform tt 
regions (center) and texture discontim 
(e) Color data (hue), the MRF segmenl 
in terms of constant reflectance regions 
ter) and their boundaries. 
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here, is that changes in surface properties 
usually produce large brightness gradients in 
the image. 

The coupling to high brightness gradients 
may be done by replacing the term vc(l{) in 
the last equation with the term: 

with b! representing a measure of the 
strength of the brightness gradient (that is, 
of a brightness edge) beGeen site i and j. 
The term g has the effect of modifiing the 
probability of the line process configuration 
depending on the brightness edge data [for 
instance, g(b!,l!) = bf(l - I:)]. This term 
facilitates formation of discontinuities (that 
is, 1: = 1) at the locations of sharp bright- 
ness changes, without restricting them only 
to brightness edges. High values of the 
brightness gradient (together with image 
data in the neighborhood) activate with 
diBkrent probabilities the different types of 
surface discontinuities (see Fig. 1) which, in 
turn, are coupled to the outiut of stereo, 
motion, color, texture, and possibly other 
early vision algorithms. 

We have been using the MRF machinem " 
with prior energies like that given in Eqs. 5 
and 6 (see also Fig. I )  to integrate edge 
brightness data with stereo, motion, color, 
and texture information on the MIT Vision 
Machine System. The system consists of a 
nvo-camera eye-head input device and a 
16K Connection Machine. All the early 
vision algorithms-edge detection, stereo, 
motion, color, and texture-as well as the 
LMRF algorithm, now run on the Connec- 
tion Machine several hundred times faster 
than on a con\lentional machine. The results 
of integrating brightness edges with a paral- 
lel stereo algorithm (20) are shown in Fig. 3. 
In a similar way, the optical flow and its 
boundary from the same scene are computed 
from motion data (21) and brightness edges 
(5, 6, 22, 23). Simple examples of a similar 
integration performed with texture and col- 
or data are shown in Fig. 3, d and e. The 
texture algorithm is a greatly simplified par- 
allel version of the texture algorithm devel- 
oped by Voorhees and Poggio (24). It mea- 
sures the level density of "blobs" extracted 
from the image throigh a filtering process 
involving center-surround filters with ap- 
propriate size and threshold. The color algo- 
rithm provides a local measure of hue, 
H = RI(R + G),  where R and G are the 
measurements in the red and green channels, 
respectively, of a digital color camera. Under 
certain conditions [A. C. Hurlbert, see 
(2511, this ratio is independent of illumina- 
tion and three-dimensional (3-D) shape. An 
MRF model that enforces local constancy of 
the hue H uses these dense but noisy data to 

segment the image into regions of different 
constant reflectance (26). The coupling with 
brightness edges facilitates finding the 
boundaries: usually sharp changes in the 
ratio H correspond to a subset of the bright- 
ness edges. 

The union of the discontinuities in depth, 
motion, and texture for the scene of Fig. 3 
gives a "cartoon" of the original scene. 
Notice that this "cartoon" represents discon- 
tinuities in the physical properties of 3-D 
surfaces that are well defined, whereas 
brightness "discontinuities" are not well de- 
fined in terms of surface properties. Our 
integration algorithm achieves a preliminary 
classification of the edges in the image, in 
terms of their physical origin. A more com- 
plete classification may be achieved by im- 
plementing the full scheme of Fig. 1; the 
lattices at the top classifji the different types 
of discontinuities in the scene: depth discon- 
tinuities, orientation discontinuities, albedo 
edges, specular edges, and shadow edges. 
The set of such discontinuities in the various 
physical processes seems to represent a good 
set of data for later recognition. In some 
preliminary experiments we have successful- 
ly used a parallel, model-based recognition 
system (27) on the discontinuities (stereo 
and motion) provided by our MRF scheme 
(28). 

Our present implementation represents a 
subset of the possible interactions shown in 
Fig. 1, itself only a simplified version of the 
organization of the likely integration pro- 
cess. As described elsewhere (5, 26), the 
svstem will be im~roved in an incremental 
fashion, including pathways not shown in 
Fig. 1, such as feedback from the results of 
integration into the matching stage of the 
stereo and motion algorithms. 

The highly parallel algorithms we have 
described (29) map quite naturally onto an 
architecture such as the Connection Ma- 
chine, which consists of 64K simple one-bit 
processors with local and global connection 
capabilities. The same algorithms also map 
onto very large scale integration (VLSI) 
architectures of hlly analog elements (we 
have successfblly experimented with a ver- 
sion of Eqs. 5 and 6, in which 1 is a 
continuous variable), mixed analog and dig- 
ital components and purely digital proces- 
sors (similar to a much simplified and spe- 
cialized Connection Machine). 

A plausible organization of visual integra- 
tion as sketched in Fig. l may be found 
ultimately by theory and by computer ex- 
periments of the type described here. We 
believe that psychophysical and physiologi- 
cal data about the integration stage in the 
mammalian visual system may be helpful in 
guiding our theoretical and computational 
work. The system described here has already 

triggered a series of psychophysical experi- 
ments in order to establish whether and how 
brightness edges aid human conlputation of 
surface discontinuities (30). 

REFERENCES AND NOTES 

1. T.  Poggio and V. Torre, A.1 .  .\l~nro N o .  773, 
C .B . I .P .  Paper N o .  001 (,etificial Intelligence Labo- 
ratory, Massachusetts Institute ofTechnology, Cam- 
bridge, 1984). 

2. LM. Bertero, T. Poggio, V. Torre, A.1 ,  A4emo h'o. 
924 (Artificial Intelligence Laboratory, Massachu- 
setts Institute of Technology, Cambridge, 19871, 
also Roc .  IEEE ,  in press. 

3. T.  Poggio, V. Torre, C. Koch, Nirture 317, 314 
(1985). 

4. T. Pozeio. Workinp Paoer N o .  285  (Artificial Intelli- 
"U , " ' 

gence Laboratory, iMassachusetts Inst~tute of Tech- 
nology, Cambridge, 1985). 

5. E. B. Gamble and T.  Poggio, A . I .  :Wento No .  970 
(Artificial Intelligence Laboratory, Massachusetts 
Institute of Technolom, Cambridge, 1987). 

6. J. Hutchinson, C. ~ G c h ,  J. LUO,-C. Mead, I E E E  
Cotnputer Majiaxine 21, 52 (March 1988). 

7. T. Poggio et a!., in Proceedir~gs: Image L'tzdrrstanciit~g 
Workshop. Los Angeles, Februan~ 1987 (Morgan 
Kaufn~ann, San iMateo, CA, 19871, pp. 41-54. 

8. P. B. Chou and C. .M. Brown, in Proceediwgs: lt~tage 
Understanding Workslzop, Los Angeles, February 1987 
(Morgan Kaufmann, San Mateo, CA, 1987), pp. 
663-670. 

9. P. B. Chou and C. M. Brown, in Proc~edings: Interna- 
tional joint Cnt!li.rence on Art8cinI Intelligence, Milan, 
August 1987 (Morgan Kaufmann. San Mateo, CA, 
19871, pp. 779-782. 

10. P. B. Chou and C. M. Brown, in Proreedit~gr: Imafe 
Utrdentanditrg iVorkshop, Cambridge, April 1988, 
(Morgan Kaufmann, San Mateo, CA, 19881, pp. 
214221. 

11. H. G. Barrow and J. IM. Tenenbaum, in Computer 
Vision Systems, A. R. Hanson and E. M. Riseman, 
Eds. (Academic Press, New York, 1978), pp. 3-26. 

12. S. Geman and D. Geman, I E E E  Trans. Pattern Atial. 
Macit. Intell. PAMI-6, 721 (1984). 

13. W. Hoff and N. Ahuja, in Proceedings o f  the Inferno- 
tional Corlference on Compi~ter Vision, London, June 
1987 (IEEE, Washington, DC, 1987), pp. 284- 
294. 

14. A. Blake and A. Zisserman, Visual Reconstmction 
(MIT Press, Cambridge, IMA, 1987). 

15. J. Aioimonos and C. M. Brown, in Advances in 
Coinputeu Vis io t~ ,  C. Brown, Ed. (Erlbaum, Hillsdale, 
NJ, 1987), pp. 115-163. 

16. F. S. Cohen and D. B. Cooper, in Proceedings oofSPIE 
Conjerence on Advances in Intelligetzt Robotics Systerr~i, 
Cambridge, MA, November 1983 (SPIE, the Inter- 
national Society for Optical Engineering, Belling. 
ham, WA, 1983). 

17. J. L. ~Marroquin, S, ~Mitter, T. Poggio, in Proceedirgs: 
Irnaxe Understanding Workshop, L. Baumann, Ed., 
Miami Beach, FL, December 1985 (Scientific Appli- 
cations International Corporation, San Diego, CA, 
1985), pp. 293-309. 

18. N, Metropolis, A. Rosenbluth, M. Rosenbluth, A, 
Teller, E. Teller,J. Phgs. Chetn, 21, 1087 (1953). 

19. J. L. Marroquin, Probabilistic Solrction of  lt~verse Prob- 
lems, thesis, Massachusetts Institute of Technology 
11985\. 
\ - .  --, 

20. IM. Drumheller and T. Poggio, in Proceedit~fs o f l E E E  
Cotlferet~ce on Robotics and Automation (IEEE, Wash- 
ington, DC, 19861, pp. 1439-1448. 

21. J. J. Little, H.  H. Biilthoff, T.  Poggio, in Proceedings: 
Image Understandin2 Workshop, Los Angeles, Febm- 
anr 1987 (Morgan Kaufmann, San ~Mateo, CA, 
1987), pp. 915-920. 

22. D. U'. Murray and B. F. Buxton, I E E E  Trans. Patteni 
Anal. ~Llnch. hltell. PAMI-9 (no. 2), 220 (1987). 

23. A. L. Yuille, '4.1. 114eino N o .  987 (Artificial Intelli- 
gence Laboratory, Massachusetts Institute of Tech.. 
nology, Cambridge 1987). 

24. H. Voorhees and T. Poggio, Nature 333, 364 
(1988). 

25. T. Poggio et al., in Proceediti'qs: h z q f e  Undevstandi~rg 
Workshop, L. Baumann, Ed., Mimi  Beach, FL, 
December 1985 (Sc~entific Applications Interna- 

21 OCTOBER 1988 REPORTS 439 



tional Corporation, San Dicgo, CA, 1985), pp. 25- 
29 -. . 

26. T. Poggio el ol.,  in Proc~eilir~qs: Imnge Utldentat~din~q 
W ~ r k ~ l i o p ,  Can~br~dge, April 1988 (Morgan Kauf- 
msnii, San ~Mateo, CA, 1988), pp. 1-12. 

27. T. A. Cass, in ibid., pp. 640-650. 
28. \lie have exploited the labeling of discontirtuities (E. 

B. Gamble, D. Geiger, T. Poggio, D. Weinshall, in 
preparation) in recognition experiments. In addi- 
tion, our integration scheme allolvs us to segment 
the scene Into different depth planes, for instance, 
thereby considerably reducing the comhinatorics of 
model-based recognition. 

29. Our formulation ofthe intcgration problem in terms 
of MRF does not imply that the algorithms are 
necessarily stochslstic. Deterministic approximations 
to the more general stochastic schemes may \$pork 
quite well, especially in situations where redundant 
and contradictory data from several sources effec- 
tively set the initial state of the system close to the 
solution. We have. in fact, found that gradient 
descent in the space of the depth and the line process 
oi-ten works quite well, We ro~ltincly use a mixed 
detcrmin~stic and stochastic strategy (17)  in which 
the continuous (depth) process is deterministic all^^ 

updated while the line process is updated stochasti- 
cally. Other strategies may also be effective ( 8 ) ,  such 
as space-variant filtering, for instance, coupled with 
edge detection. In addition, time-dependent sched- 
ules of the coupling parameters can be useful. They 
are someu~hat similar to simulated annealing, which 
can also be effectively used, though it is quite slow. 

30. H .  H, Biilthoff, personal communication. 
31. J. F. Canny, IEEE 7i.m~. Pattern Atlal. ~Wach. Intell. 

PAMI-8 (no. 6),  679 (1986). 
32. This report describes research done within the Ar t -  

ficial Intelligence Laboratory. Support for the A. I. 
Laboratory's artificial intelligence research is provid- 
ed by the Advanced Research Projects Agency of the 
Deparunent of Defense under Army contract 
DACA76-85-C-0010 and in parr under Office of 
Naval Research (ONR) contract N00014-85-K- 
0124. Support for this research is also provided by a 
grant from ONR, Engineering Psychology Divi- 
sion, and by a gift from the Artificial Intelligence 
Center of Hughes Aircraft Corporation to T. Pog- 
gio. 

4 May 1988; accepted 12 August 1988 

Earthquake-Caused Coastal Uplift and Its Effects on 
Rocky Intertidal Kelp Communities 

The coastal uplift (approximately 40 to  60 centimeters) associated with the Chilean 
earthquake s f  3 March 1985 caused extensive mortality of intertidal organisms at  the 
Estaci6n Costera de Investigaciones Marinas, Las Cruces. The kelp belt of the 
laminarian Lessonia nigrescens was particularly affected. Most of the primary space 
liberated at  the upper border of this belt was invaded by species of barnacles, which 
showed an oppo%nistic colonization strategy. Drastic mo&ifications in the environ- 
ment such as coastal uplift, subsidence, or  the effects of the El Nifio phenomenon are 
characteristic of the southern Pacific. Modifications in the marine ecosystem that 
generate catastrophic and widespread mortalities of intertidal organisms can affect 
species compositibn, diversity, o r  local biogeography. 

N 3 MARCH 1985 AT 19:47 A 
major earthquake, with a surface 
wave magnitude of 7.8, occurred 

in central Chile (1). The seismic wave origi- 
nated in the sea bed 40 krn west of the 
coastal town of Algarrobo (33"201S, 
71°40'W) at a depth of approximately 15 
km (2). The average horizontal displace- 
ments in coastal zones were in a northwest 
direction and of magnitude approximately 
25 cm (3). Studies on the vertical compo- 
nent of deformation suggest a mean conti- 
nental uplift of about 33 cm. Maximum 
uplifts of approximately 45 to 50 cm were 
observed in coastal areas, such as El Quisco. 
The coastal marine station (ECIM) of the 
Pontificia Universidad Catolica de Chile ( 4 ) ,  
located on a 500-m stretch of exposed rocky 

extreme low water spring (ELWS) (5) .  The 
uplifts (Table 1) found at ECIM, about 44 
to 59 cm, were roughly within the range 
determined by Instituto G e o g r ~ c o  Militar 
(3). 

It is well established that the zonation 
patterns of intertidal organisms are deter- 
mined by biotic and abiotic factors (6-8). 
Among the latter, desiccation and tempera- 
ture stress can play key roles determining the 
upper limit of sessile organisms. Hence, in 
Chile, even under normal weather condi- 
tions during ELWS tides at around noon- 
time on sunny days, intertidal macroalgae 
have been observed to die (bleaching) (9). 
Moreover, substantial modification of inter- 
tidal landscapes has been documented (10, 
11) as a result of increases in seawater 

shore at Las Cruces, is 15 to 20 krn from temperature. Similarly, coastal uplifts or 
both El Quisco and Algarrobo. The seismic subsidences resulting from earthquakes or 
wave caused both horizontal and vertical nuclear testing have modified the intertidal 
coastal displacements (3) at ECIM. I inde- zonation pattcrns or induced mortalities 
pendently checked rocky shore uplifts at among sessile or mobile species (12-15). 
ECIM, using previously known fixed bench- Since 1974 the zonation and dynamics of 
marks that were leveled and referred to the the central Chile rocky intertidal shore have 

been studied (16, 17). Immediately before 
the March 1985 earthquake I was engaged 
in an intertidal research program at Las 
Cruces (18). Transects had-been made ran- 
domly a; selected sites, and species composi- 
tion, primary space, percent coverage, and 
the change through time in biomass of the 
macroalga Lessonia nigvescens were assessed 
(19). The first two field surveys were con- 
ducted on 9 to 10 February and 5 to 8 
March 1985. I report here on the effects of 
the coastal uplift on ECIM rocky shore 
communities and particularly on the struc- 
ture and dynamics of the lower rocky shore 
fringe, the'so-called L. tzigvescens belt(9, 16, 
20). 

Six 1-m-wide transects in the L. nigrescens 
kelp zone, extending 2.5 m from their inter- 
tidal upper to lower limit and 3 to 7 m apart, 
were randomly chosen (21). Vertical differ- 
ences between the lower and upper limits of 
the belts were 1 to 1.55 m. Each belt. 
identified by means of poxy putty marks, 
was divided vertically into five 0.5-m plots 
(1-m horizontal axis, 0.5-m vertical axis). 
Plots A (upper limit) to E (lower limit) were 
sampled 8 to 11 times during the 36-month 
study. The maximum holdfast diameter (d) 
of each L. nigrescens plant within each plot 
was recorded and the biomass was calculated 
(22). 

tern (23). A significant decrease in biomass, 
accompanied by a change in the color of the 
~lants  from brown to vetlow and the subse- 
quent mortality of the stipes and holdfasts, 
was evident toward the end of 1985. By 
February-March 1986 all plants had disap- 
peared from the upper plots. No recoloniza- 
tion has been observed up to February 
1988. The biomass record for the middle 
plot, C, was similar, but the biomass de- 
crease was obvious only in early 1986. By 
February 1987 almost all plants had disap- 
peared from this plot as well, and no recolo- 
nization has since been observed. Plots D 
and E, the lower plots, behaved differently. 
At plot D a drastic decrease in L. nigvescens 
biomass was observed in early 1986 (23) 
(about 6 kg m-2 by February 1987), but by 
February 1988 the biomass had increased to 
about 15 kg m-'. Plot E showed compara- 
tively less change in L. nigvescens biomass, 
with values between 20 and 33 kg m-2. In 
plot F (not part of the original study because 
the kelp was absent) L. izigvescens was abun- 
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