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A Graph-Dynamic Model of the Power Law of 
Practice and the Problem-Solving Fan-Effect 

Numerous human learning phenomena have been observed and captured by individual 
laws, but no unified theory of learning has succeeded in accounting for these 
observations. A theory and model are proposed that account for two of these 
phenomena: the power law of practice and the problem-solving fan-effect. The power 
law of practice states that the speed of performance of a task will improve as a power of 
the number of times that the task is performed. The power law resulting from two 
sorts of problem-solving changes, addition of operators to the problem-space graph 
and alterations in the decision procedure used to decide which operator to apply at a 
particular state, is empirically demonstrated. The model provides an analytic account 
for both of these sources of the power law. The model also predicts a problem-solving 
fan-effect, slowdown during practice caused by an increase in the dilliculty of making 
useful decisions between possible paths, which is also found empirically. 

T HE POWER LAW OF PRACTICE ( I ) ,  
one of the few solid psychological 
learning phenomena, states that the 

speed of performance of a task will increase 
as a power of the number of times the task is 
performed. In one model, problem solving 
can be viewed as the search for a path 
through a directed "problem-space" graph, 
where nodes represent states of the problem 
or facts in memory and edges represent 
operators that move between states (2). 
Solving the problem involves finding a path 
from the initial state to the goal state by 
means of the available operators. Learning 
in this model corresponds to changes in 
either the specific topology of the graph or 
the decision procedure used to decide which 
operator to apply at a particular step when 
there is more than one edge emanating from 
a node. Many sorts of changes in method 
and operators can be modeled as changes in 
the topology of the problem-space graph, 
including restructuring and method selec- 
tion. In this report we use computer experi- 
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ments to show that this learning model 
u 

exhibits the power law and that the phe- 
nomenon can be explained analytically by a 
theory based on graph dynamics. o u r  the- 
ory further predicts a problem-solving "fan- 
effect" in which performance becomes slow- 
er as more oDerators are learned in certain 
situations (3). This prediction is also empiri- 
cally validated by our simulations. 

The simple problem that we will use to . . 

explore learning phenomena, the "bit 
game," is analogous to many real problems. 
A problem state in the bit game is a B-bit 
binarv vector (such as 01010). For the sake 
of concreteness we will use a 5-bit vector 
(B = 5) in most cases. A "trial" begins with 
an arbitrary initial state, say 00000. The 
player (a computer) searches for some other 
arbitrary vector (the goal state), say 111 11, 
by successively applying operators that 
change the contents of the state vector. Each 
operator is composed of 1 to B elements 
indicating: a  articular bit in the vector that 

V I 

should be flipped if it matches in the current 
state. Operators specify only the bits in the 
state that actually change and can be written 
as "pattern -2 result" pairs, with question 

marks (?) where the operator pattern says 
nothing about a particular bit position. For 
instance, the operator ?l?l? + ?0?0? will 
take the state 11010 to 10000 or the state 
11111 to 10101 but will not apply to the 
state 00000 because the bits indicated in the 
pattern do not match this state. As a result of 
the question mark "don't care" bits, opera- 
tors vary in their generality. For instance, 
each of the two-element operators, such as 
O ? l ? ? +  l ? O ? ? ,  apply to eight different 
states (in this case 00100, 00101, 00110, 
00111,01100,01101,01110, and01111). 

We begin playing a particular bit game 
with all of the (2B) 1-bit operators (10, in 
the case of a 5-bit game). This set forms a B- 
dimensional hypercube and ensures that 

1 I I 
10 100 

Trials 

Fig. 1. Log-log plots of solution rates for the 5- 
bit game as a function of the number of trials: (A) 
the random walk; (6) mediocre decision proce- 
dure; (C) optimal decision procedure. All points 
are averaged over 16,384 observations. 
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there is at least one path between any two 
nodes. When there are several applicable 
operators for a particular state, a decision 
procedure is required in order to choose 
among them. The number of edges tra- 
versed on a trial (that is, the number of steps 
required to find the goal state from the 
initial state) measures performance. For sim- 
plicity, we assume that all operators contrib- 
ute equally to performance, although opera- 
tors with variable cost could be used to 
model problems of specific sorts. A series of 
trials, beginning with a common initial 
problem-~pace &d with learning between 
each trial, will be called a problem-solving 
"run." 

We separately simulated operator addi- 
tion and decision-procedure improvement 
in the bit game. Operator learning takes 
place after each trial is completed in the style 
of SOAR chunking (4). Specifically, we add 
the operator that most generally summarizes 
the solution obtained in the trial. For in- 
stance, suppose we begin with the game, 
01110 -+ 10101, and find a solution. The 
"subproblem solving" for this game is sum- 
marized by adding the operator that solves 
this particular game in one step. In this case 
the new operator is O l ?  10 + 10?01. Notice 
that the ?-element of this operator appears 
because the third bit did not change be- 
tween the initial and goal state in this trial, 
and so this new operator connects two pairs 
of states in the problem-space, that is, it adds 
two (directed) edges to the problem-space 
graph. 

Decision procedures can be arbitrarily 
complicated algorithms with changes lead- 
ing to entirely different problem-solving be- 
havior. For a given organization of opera- 
tors and choice of initial and goal states, 
certain decision ~rocedures will be more 
effective than others. Decision procedures 
generally change radically only in the face of 
some new insight into the problem struc- 
ture. Without such an extreme change it 
only makes sense either to slowly vary the 
parameters controlling the decision proce- 
dure in order to trv to hill-climb into a best 
solution mode or to vary them randomly, 
hoping to discover a good decision proce- 
dure serendipitously. We consider changing 
between a "poor" decision procedure and an 
"optimal" one. The optimal decision proce- 
dure finds the fastest way to the goal. On the 
other hand, the poor decision procedure is a 
random walk. As operators are added to the 
problem-space through learning, it becomes 
more densely connected. Hence one has to 
do less searching to find a path leading to 
the goal, but it is also easier to get off the 
path. 

To explore the range of decision proce- 
dures that lie between optimal problem solv- 

ing and a random walk, we use a simple 
descriptive model of the effectiveness of the 
decision procedure in which, at any node 
during the search for the goal, each unpro- 
ductive edge is eliminated with probability v. 
Improvements in the decision procedure 
correspond to an increase in v and change 
the problem from an exponential random 
search to a linear drift toward the goal. Note 
that v = 1 corresponds to a perfect decision 
procedure in which search and backtracking 
are never required, whereas v = 0 corre- 
sponds to a random walk on the graph. 

In order to implement a decision proce- 
dure incorporating this parameter for the bit 
game, we first find all applicable operators 
from the current state and then order them 
by asking for each operator how many bits 
would be correctly set (for the desired goal 
state) if this operator were actually applied. 
We then separate these into the "good" ones 
(those that minimize the Hamming distance 
to the goal) and all the remaining "bad" 
ones (those that do not minimize this dis- 
tance). Next each operator from the bad set 
is removed from consideration with proba- 
bility v. Finally, we choose one operator at 
random from the union of the remainder of 
the bad set and all the optimal operators. 
When Y = 1, all of the bad operators will be 
deleted, leaving only the good ones. When 
r = 0, all of the bad operators are left in the 
set, making the decision procedure a ran- 
dom search. It is important to note that even 
when Y = 1, this implementation is only 
heuristic-it only approximates optimal 
problem solving. Actual optimal solution 
paths can only be found by exhaustively 
exploring the graph beforehand, a very 
lengthy computation. However, this heuris- 
tic comes very close to the optimal path 
(with Y = 1) in the bit game. 

Figure 1 shows how operator learning 
affects performance of the 5-bit game in the 
three main decision-procedure effectiveness 
regimes: optimal (Fig. lC, v = 1), mediocre 
(Fig. lB, Y = 0.5), and random (Fig. lA, 
v = 0). In all cases we randomly chose a start 
and goal state, solved the problem according 
to the indicated decision procedure, and 
recorded the performance. Recall that learn- 
ing takes place after each trial by adding the 
operator that most generally summarizes the 
solution path just found. The possible 
games are uniformly distributed among the 
22B bit configurations. All experiments were 
run on a 16384-processor Thinking Ma- 
chines Connection Machine (CM-2). 

Notice, first, that the results in Fig. 1, A 
and C, are consistent with the power law- 
they appear approximately straight on a log- 
log plot. More interesting, however, is the 
fact that adding edges improves perform- 
ance in the optimal and random cases but 

initially degrades performance in the regime 
of the mediocre decision procedure. This is 
the problem-solving fan-effect, wherein 
learning hurts performance rather than helps 
it. Nevertheless, the absolute performance 
ranges are, as expected, best for the optimal 
strategy, worst for the random strategy, and 
medium for the mediocre strategy. Thus, in 
order to actually improve as a result of 
learning, one must start with a moderately 
good decision procedure or else, as learning 
takes place, one must improve the decision 
procedure in addition to learning new oper- 
ators. 

The power law and fan-effect are observed 
in many situations (1, 3, 5, 6 )  although the 
quantitative details of their forms will differ 
for each different task. In order to under- 
stand the general nature of these phenome- 
na, we now show how learning that results 
from the addition of edges in a problem- 
space graph or improvements in the decision 
procedure lead in some cases to a gradual 
reduction path length with a corresponding 
gradual improvement in performance that is 
a power of the number of trials (the power 
laws), and in other cases to a gradual in- 
crease in path length (the fan-effect). Recall 
that a problem-space can be modeled as a 
graph with n nodes representing various 
problem states and with edges representing 
instances of possible operators. We are inter- 
ested in the learning behavior for situations 
involving a large number of states and typi- 
cal problem-spaces rather than any specific 
one (7). This leads us to consider typical 
examples of the class of all problem-spaces of 
a given size, namely, random graphs, where 
the initial operators are distributed at ran- 
dom and where new edges are added inde- 
pendently of one another. When large 
graphs are involved, this model is mathe- 
matically equivalent (8) to one in which 
every edge between a pair of states exists 
with independent probability p. As new 
operators are learned during the trials, p will 
correspondingly increase. In order that all 
nodes are almost surely reachable from any 
given node, p should be greater than (In n)/n 
(8). 

For this model we want to obtain an 
expression relating the expected number of 
steps, s, required to obtain a solution, to the 
values of v and p. We make a number of 
simplifications to the model which neverthe- 
less retain its essential features. First, we 
assume that all nodes of the graph have the 
average number of links: p = (n - 1)p. 
Thus we are left with a regular graph con- 
sisting of n nodes with uniform branching 
ratio p. Second, we assume that the cycles in 
the graph are long so that, in general, at any 
node there will be one edge that is one step 
closer to the goal while the others are one 
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step farther away. In this limit, which ap- 
plies when the graph is sparsely connected, 
the behavior will be similar to a walk on a tree. 
Because of the initially exponential growth in 
the number of nodes with distance, the initial 
and goal nodes will usually be separated by 
the diameter of the graph, which can be 
approximated as D = In niln y. 

With these approximations, at each node 
there is only one choice that gets closer to 
the goal state and y - 1 choices that move 
farther from the goal. However, the decision 
procedure eliminates each incorrect choice 
with probability r so there are (on average) 
effectively only ( y  - 1) (1  - v )  incorrect 
choices at each node. Thus the problem 
reduces to a bounded, one-dimensional ran- 
dom walk in which one starts at distance D 
from the goal and moves randomly until the 
goal is reached. This motion is constrained 
to remain within distance D of the goal and, 
at each step, to move toward the goal with 
probability 

p- = 
1 

1 + ( y -  l ) ( l  - Y) 
(1) 

and away with probability p+  = 1 - p-. 
The average time required to reach the goal 
can be derived by standard techniques (9 ) .  It 
is given by 

This provides an explicit form for the 
expected behavior of s as a function of p 
(topology) and r (decision effectiveness) be- 
cause the values appearing in Eq. 2, p- and 
D, are expressed in terms of these two basic 
parameters. 

When p - is greater than p +, the dominant 
behavior for large D is a drift toward the 
goal so that 

When p+ = p-, Eq. 2 gives s = D ~ ,  corre- 
sponding to symmetric diffusion. Finally, 
when p+ is greater than p-, 

which grows exponentially with D. We thus 
see a dramatic change in the nature of the 
search process as p- passes through the 
critical value of 0.5. 

Equation 2 produces the range of behav- 
iors observed in the bit game experiments. 

Fig. 2. Log-log plots of the theoretical predic- 
tions of s versus p for various v values, from Eq. 2: 
(A) the random wak; (B) mediocre decision 
procedure; (C) optimal decision procedure. In all 
cases n = 10,000. 

For instance, when the decision procedure is 
weak (v near 0), p- will be small ( y is at least 
as large as In n) and roughly equal to 
l ly(1  - Y). When y(1 - r) >> 1, one ob- 
tains 

In this case, when Y = 0 (choices made at 
random), increasing the number of edges 
reduces the time to solve the problem. How- 
ever, when v > 0 [but y(1 - Y) remains 
much larger than unity], there is a range in 
which increasing the number of links will 
result in a gradual increase in s, the expected 
number of steps required to solve the prob- 
lem, because the smaller diameter of the 
graph is more than balanced by the in- 
creased difficulty of choosing the correct 
operator from among the larger number of 
choices. Specifically, s will increase as links 
are added when I In(1 - v)l In n > (In p,)', 
which holds when v is not too close to zero, 
and there are many nodes and not too many 
edges. Conversely, when the decision proce- 
dure is strong (v near l ) ,  the system's behav- 
ior is governed by the drift behavior of Eq. 
3. When p(1  - v) is much less than 1, Eq. 3 
gives 

Thus as long as the decision procedure 
improves sufficiently fast as new links are 
added, one obtains a power-law decay in 

In y. Figure 2 shows the behavior of Eq. 2 
for increasing numbers of links in the three 
important Y value regimes. In all cases the 
path length decreases or increases, corre- 
sponding to the experimental behavior. 

We have shown that by applying the 
theory of graph dynamics to a problem- 
space viewed as a graph, we can capture, 
explain, and experimentally demonstrate the 
power law and the problem-solving fan- 
effect. Our approach should be contrasted 
with other theories of the power law and 
fan-effects. First, Anderson's ACT* model 
(5 )  obtains the power law by a rule-strength- 
ening mechanism that itself operates accord- 
ing to a power law. Second, our approach is 
more general than the approach of Rosen- 
bloom (1, 6 ) ,  whose account of the source of 
the power law is restricted to addition of 
operators resulting from the chunking of 
problem-solving subgoals. We also incorpo- 
rate improvements that result from adding 
operators and improvements in the decision 
procedure. Furthermore, we predict a pow- 
er law for any sort of operator addition (in 
the appropriate decision-procedure re- 
gimes), whereas Rosenbloom predicted 
power laws only in the case of subgoal 
chunking. 
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