
in the suprachiasmatic region (19). Exami- Putative Melatonin 
Biological Clock 

Receptors in a Human 

In vitro autoradiography with '251-labeled melatonin was used to examine melatonin 
binding sites in human hypothalamus. Specific 1251-labeled melatonin binding was 
localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was 
not apparent in other hypothalamic regions. Specific 1251-labeled melatonin binding 
was consistently found in the suprachiasmatic nuclei of hypothalami from adults and 
fetuses. Densitometric analysis of competition experiments with varying concentra- 
tions of melatonin showed monophasic competition curves, with comparable half- 
maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and 
fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6- 
chloromelatonin completely inhibited specific 1251-labeled melatonin binding, whereas 
the same concentrations of serotonin and norepinephrine caused only a partial 
reduction in specific binding. The results suggest that putative melatonin receptors are 
located in a human biological clock. 

T HE FUNCTION OF MELATONIN IN 

human physiology is a mystery. Mel- 
atonin is a hormone produced rhyth- 

mically by the vertebrate pineal gland (1). 
On the basis of studies in rodents (2) and 
nonhuman primates (3) ,  the melatonin 
rhythm in mammals is thought to be gener- 
ated by a biological (circadian) clock in the 
suprachiasmatic nuclei (SCN) of the anteri- 
or hypothalamus. The rhythm is entrained 
(synchronized) to the 24-hour period by the 
daily light-dark cycle, with hormone levels 
increased at night (1-3). In humans, the 
melatonin rhythm appears to be regulated 
similarly and is expressed prominently in 
blood and cerebrospinal fluid (CSF) (4). 

Exogenously administered melatonin can 
entrain circadian rhythms of some species of 
lizards (5), birds (6), and mammals (7). 
Melatonin can also alter the entrainment of 
human circadian rhythms. Melatonin ad- 
ministration can change the phase of the 
endogenous melatonin rhythm (8) ,  alleviate 
the symptoms of jet lag (9) ,  and facilitate 
reentrainment of some rhythms (10). Thus, 
melatonin may modulate the entrainment 
process in humans and be useful for treating 
circadian rhythm disorders. 

To better understand how melatonin 
functions, it is necessary to delineate where 
in the brain the hormone acts. By using the 
physiologically active radioiodinated ligand 
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of melatonin, 125~-labeled melatonin (11), 
reasearchers can studv putative sites of mela- 
tonin action in humans. This ligand is a 
potent melatonin agonist both in vivo (12) 
and in vitro (13). In vitro autoradiography 
with 125~-labeled melatonin has revealed a 
discrete distribution of melatonin binding 
sites in the brains of adult and fetal rodents 
(12, 14); the SCN of the rodent hypothala- 
mus are consistently labeled. We report 
autoradiographic localization of specific 
125~-labeled melatonin binding to the SCN 
of adult and fetal humans in postmortem 
material. 

Binding of 125~-labeled melatonin was ex- 
amined in hypothalamic specimens obtained 
9 to 24 hours postmortem [14.8 .+ 1.9 
hours (mean + SEM)] from brains of 11 
adult human subjects (two female, nine 
male) (15). Slide-mounted hy othalamic 
sections were incubated with 'I-labeled 
melatonin (16) either alone or in the pres- 
ence of unlabeled melatonin (17). Autora- 
diographs were generated by apposition of 
the processed sections to LKB Ultrofilm for 
1 to 3 weeks. Sections were stained with 
cresvl violet or toluidine blue and examined 
by light microscopy to confirm the localiza- 
tion of anatomical structures. Quantitative 
densitometry of autoradiographs was per- 
formed with a digitized image analysis sys- 
tem (18). 

To locate 125~-labeled melatonin binding 
sites in human hypothalamus, serial coronal 
sections (20 pm) from two specimens were 
examined at 200-pm intervals throughout 
the hypothalamus (from the rostra1 bound- 
ary of the anterior hypothalamus to the 
marnmillary bodies). Visual assessment of 
the autoradiographs revealed specific ' 2 5 ~ -  

labeled melatonin binding (displaced by 1 
pM melatonin) only in a bilateral structure 

nation of the Nissl-stained sections by one 
of us (E.G.S.) unaware of the autoradio- 
graphic results led to histological identifica- 
tion of the SCN (Fig. lA, upper panel), 
which were then found to correspond to the 
sites of specific binding (Fig. lA, middle 
panel). A low level of nonspecific binding 
(not displaced by 1 pM melatonin) was 
observed throughout the hypothalamus; 
that is, silhouettes of the sections were visi- 
ble above film background (Fig. 1A, lower 
panel). 

Next, the anterior hypothalami,- regions 
of the nine other brains were examined at 
200-pm intervals. Visual assessment of these 
autoradiographs revealed specific binding 
over the SCN in all but one brain (20). 
Visual assessment of the SCN image on the 
autoradiographs and independent assess- 
ment of the SCN region by light microscopy 
of the Nissl-stained sections showed that 
specific binding was consistently localized to 
the caudal two-thirds of each nucleus: there 
was no apparent difference in bkding 
throughout the dorsal-ventral or rnedial- 
lateral extent of the SCN. Quantitative den- - 
sitometry of autoradiographs showed that 
SCN binding was similar among the differ- 
ent hypothalami and did not vary systemati- 
cally according to the age of the individual 
or to postmortem interval. 

The binding of 125~-labeled melatonin was 
also examined at 40-p,m intervals iil serial 
coronal sections (20 pm) of hypothalami 
obtained from four fetuses (two mie, two 
female; 18 to 19 weeks of gestation) within 
12 hours after therapeutic termir:atlon of 
pregnancy. Specific binding was clearly evi- 
dent over the SCN in all fetal hypothalami 
(Fig. 2). The higher optical density of the 
autoradiographic image over fetal SCN rela- 
tive to comparably exposed autoradiographs 
from adults appeared to be due to the 
greater cellular density of the SCN during 
fetal development (a comparison is shown in 
Figs. 1A and 2A, upper panels). A low level 
of specific binding was also found in the 
surrounding fetal hypothalamus (hypotha- 
lamic silhouettes above film background 
were eliminated with 1 pM melatonin). 

After defining the autoradiographic 
boundaries of the SCN in adult and fetal 
hypothalami, intervening sections were used 
to more fully characterize '25~-labeled mela- 
tonin binding in SCN. Competition experi- 
ments with varying concentrations of mela- 
tonin (lo-" to 1 0 - 7 ~ )  were performed in 
two adult and two fetal brains. Image analy- 
sis of the resultant autoradiographs revealed 
monophasic competition curves with mean 
half-maximal inhibition (ICTo) values for 
melatonin of 150 and 110 pM for the adult 
and fetal SCN, respectively (Figs. 1B and 
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2B). Next, we tested three com ounds for 
their ability to inhibit specific PzI-labeled 
melatonin binding in six adult brains. 6- 
Chloromelatonin, a potent melatonin ago- 
nist in vivo (21) and in v im (13), complete- 
ly displaced specific lZs~-labeled melatonin 
binding at 1 (Fig. 1C). Serotonin and 

norepinephrine, however, caused only a 33 
and 21% reduction, respectively, in specific 
SCN biding at 1 pit4 concentrations (Fig. 
1C); a comparable inhibition of specific 
binding occurred at much lower concentra- 
tions of melatonin (that is, < 100 pM) (Fig. 
1B). A similar pattern of biding inhibition 

Rg. 1. Anatomic speuficity and pharmacologic characteristics of '2SI-labeled melatonin binding in the 
SCN of adult humans. (A) Lacahation of specific '251-labeled melatonin binding to SCN by in vitro 
autoradiography. A 60-pm section of hypothalamus (not used for autoradiography) was stained with 
cresyl violet to  show location of the SCN (photomicrograph, upper pawl). On an adjacent 20-pm 
section, 'ZsI-labeled melatonin binding over the SCN was apparcnt as dark densities (arrows) 
(autoradiograph, middle panel). SCN binding was eliminated when melatonin was added to the 
incubation solutions (autoradiograph, lower panel). Autoradiographic exposure, 11 days, M a m a -  
tion, ~ 2 . 9 .  Abbreviations: OC, optic chiasm; SC, suprachiasmatic nucleus; and SO, supraoptic 
nudeus. (B) Competition for binding between '25~-labeled melatonin and melatonin in adult SCN. 
Slide-mounted hypothalamic sections were incubated with 'z51-labeled melatonin (100 pM) either 
alone or in the presence of increasing concentrations of melatonin (lo-'' to lO-'M). The incubation 
baths contained 0.1% ascorbic acid and 0.025% ethanol (a necessary diluent for melatonin). Three to  
six sets of serial sections were analyzed with each series of concentrations throughout the mtral-caudal 
extent of the SCN for each brain. Nonspeufic binding was 14% of total binding. Values were corrected 
to 100% of total specific bin- ('Z51-labeled melatonin alone) for each brain to allow comparison 
between brains. Because only two brains were examined, the results were combined. The values 
depicted are mean 2 SEM; ICso was 150 2 23 pM, as determined by computer with a nonlinear 
regression program (23). (C) Inhibition of '2S~-labeled melatonin binding by 1 p M  concentrations of 6- 
chloromelatonin ( 6 4  MEL), serotonin (5-HT), or (+)norepinephrine (NE). Slide-mounted hypotha- 
lamic d o n s  were incubated with '251-labeled melatonin (100 pM) either alone or in the presence of 1 
ph4 concentrations of one of the three drugs. Just before incubations, 6-chloromelatonin (Eli Lilly 
Laboratories) was dissolved in ethanol, and serotonin and norepinephrine were dissolved in deionized 
water; drugs were then diluted with b d r  to the appropriate concentration. Both incubation solutions 
contained 0.1% ascorbic acid and 0.025% ethanol. Serial sections were examined such that drug- 
incubated sections were always bracketed by sections incubated only in '2SI-labeled melatonin for each 
of the six brains examined. Nonspeufic binding was 15% of total bound. Serotonin and norepinephrine 
inhibited speufic '251-labeled melatonin binding (P < 0.05, Mann-Whimey U test). 

by these three compounds was also observed 
in two fetal brains. 

Our results show that the human SCN 
contain melatonin binding sites. The ana- 
tomic specificity and pharmacologic charac- 
teristics of these binding sites suggest that 
they may be functioning melatonin recep- 
tors. Specific binding is localized to the 
SCN and is not apparent in other hypotha- 
lamic regions; such a restricted pattern of 
binding does not occur for other known 
neurochemical or hormonal receptors or re- 
ceptor subtypes (22). The pattern of binding 
inhibition by 6-chloromelatonin, serotonin, 
and norepinephrine is also consistent with 
the characteristics of a putative melatonin 
receptor (13). 

Specific 12s~-labeled melatonin binding in 
SCN is of high sty. Melatonin competi- 
tion curves are monophasic with similar 
ICSo values in the adult and fetus. A compa- 
rable melatonin competition curve and a 
dissociation constant of 10 pM have been 
reported for 12s~-labeled melatonin binding 
to membranes from rat hypothalami (14). 
Thus, at the 125~-labeled melatonin concen- 
trations that we used (about 100 pM), the 
calculated ICSo for melatonin probably un- 
derestimates the actual afKnity of melatonin 
for its receptor in the human SCN (23). An 
a5nity in the picomolar range is well within 
the physiological range of melatonin con- 
centrations normally found at night in the 
blood and CSF of humans (4). 

Evidence suggests that the SCN are the 
site of a biological clock in humans, as they 
are in other mammals. The human SCN are 
neurochemically similar to the SCN of ro- 
dents and nonhuman primates and contain 
the same topographical distribution of vari- 
ous newpeptides (24). Furthermore, light 
is a potent entraining stimulus for human 
circadian rhythms (25) and a direct tract 
from retina to SCN has been demonstrated 
in human postmortem tissue (26). In addi- 
tion, tumors of the anterior hypothalamus 
that presumably damage or destroy the SCN 
and that are associated with the disruption 
of various daily rhythms have been de- 
scribed in humans (27). 

An entraining effect of melatonin on 
mammalian circadian rhythms that is medi- 
ated by the SCN has been shown in rats 
(28), a species in which melatonin bin- 
sites are consistently observed in the SCN 
(14). Our finding of melatonin binding sites 
in the human SCN provides evidence that 
the reported effects of melatonin on human 
circadian rhythms (29) are also mediated by 
direct action on a hypothalamic biological 
dock. Thus, one function of melatonin in 
adult humans may be to modulate the en- 
trainment process (30). 

The finding of melatonin binding sites in 
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the SCN of the human fetus suggests that 
melatonin is an important source of entrain- 
ing information for the biological clock dur- 
ing fetal life. In rodents a circadian clock 
oscillates in the fetal SCN before the retino- 
hypothalamic pathway has innervated the 

treating a variety of biologid rhythm disor- 
ders, fiom alleviating sleep problems in shift 
workers and blind people to facilitating the 
emergence of a diurnal sleep-wake pattern in 
neonates. 
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Postsynaptic Calcium Is Sufficient for Potentiation of 
Hippocampal Synaptic Transmission 

Brief repetitive activation of excitatory synapses in the hippocampus leads to an 
increase in synaptic strength that lasts for many hours. This long-term potentiation 
(LTP) of synaptic transmission is the most compelling cellular model in the vertebrate 
brain for learning and memory. The critical role of postsynaptic calcium in triggering 
LTP has been directly examined using three types of experiment. First, nitr-5, a 
photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium 
in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocarn- 
pal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. 
Second, in agreement with previous results, buffering intracellular calcium at low 
concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so 
that calcium entry is suppressed prevented LTP. Taken together, these results 
demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and 
su6cient to potentiate synaptic transmission. 

I NTRACELLULAR FREE C A ~ +  ACTIVATES 

an array of cellular processes, and thus 
ca2+ functions as a critical and ubiqui- 

tous second messenger. Increases in intracel- 
lular free Ca2+ concentration ([Ca2+]) occur 
either by activation of voltage-dependent 
ca2+ channels (1) or by release from intra- 
cellular stores (2). In neurons, Ca2+ passes 
through a special type of ligand-gated ion 
channel linked to the N-methyl-D-aspartate 
(NMDA) subtype of the glutamate receptor 
(3, 4). NMDA receptors are found in high 
concentrations in a variety of brain regions 
(5) and appear to mediate the initiation of 
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several forms of synaptic plasticity (6). The 
induction of LTP in the hippocampus, the 
most extensively studied model for memory 
in the vertebrate brain, requires NMDA 
receptor activation (7). LTP is an enhance- 
ment of synaptic transmission lasting many 
hours in response to brief repetitive activa- 
tion of excitatory synapses. It has been 
suggested that ca2+ entering through the 
NMDA channel acts as a second messenger 
to trigger LTP (8). Despite the fundamental 
importance of this step to our understand- 
ing of LTP, and perhaps other forms of 
synaptic plasticity, the evidence linking 
Ca2+ to LTP is remarkably limited (9, 10). 
To address this issue directly we have per- 
formed three types of experiment in hippo- 
carnpal pyramidal cells, two of which have 
relied on nitr-5, a photolabile nitrobenzhy- 
drol tetracarboxylate ca2+ chelator (1 1). 

We used standard procedures to prepare 

and maintain hippocampal slices (12). Mi- 
croelectrodes were filled with n i ~ - 5  (100 
mM) loaded with Ca2+ (50 mM) dissolved 
in 1M CsCl to block K+ conductances that 
might be activated upon raising intracellular 
[Ca2+]. We impaled CA1 pyramidal cells in 

Time (min) 

Control (I) After flash (2) J0.5 mV 

lntra 

I' 
Fig. 1.  Photolysis of intracellularly injected nitr-5 
enhances synaptic transmission. (A) Graphs of the 
slope of the extracellular EPSP recorded in a 
stratum radiatum (upper) and the slope of the 
simultaneously recorded intracellular EPSP (low- 
er) (12). Each point represents the average of six 
slope measurements. The cell was penetrated 15 
rnin before time 0 on the graph. At the time 
marked by the arrow (flash) the slice was exposed 
to ultraviolet light for 25 s. (B) Sample records 
obtained at the times indicated by the numbers 1 
and 2 in (A) (records are the average of six 
sweeps). (Upper records) The extracellularly re- 
corded EPSP (Extra). (Middle records) The re- 
sponse to a constant current hyperpolariziig 
pulse (0.11 nA) used to monitor the input resist- 
ance (Ri,,,,). (Bottom records) The intracellular- 
ly recorded EPSP (Intra). The right-hand column 
shows superimposed records before and after the 
flash. 
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