lar surface of the molecule by antibodies as well as by polypeptide neurotoxins from scorpion, sea anemone, coral, and snail (12, 20). Evidently, inactivation of Na⁺ channels is a transmembrane conformational change involving both intracellular and extracellular segments of the channel protein.

FEFERENCES AND NOTES

- 1. B. Hille, Ionic Channels of Excitable Membranes (Sinauer, Sunderland, MA, 1984).
- 2. W. S. Agnew, Annu. Rev. Physiol. 46, 517 (1984); R. L. Barchi, Trends Biochem. Sci. 9, 358 (1984); W. A. Catterall, Science 223, 653 (1984); Annu. Rev.
- Biochem. 55, 953 (1986).
 A. L. Goldin et al., Proc. Natl. Acad. Sci. U.S. A. 83, 7503 (1986); M. Noda et al., Nature 322, 826 (1986).
- V. J. Auld et al., Neuron 1, 449 (1988)
- M. Noda et al., Nature 312, 121 (1984); M. Noda et al., ibid. 320, 188 (1986).
- C. M. Armstrong, F. Bezanilla, E. Rojas, J. Gen. Physiol. 62, 375 (1973); E. Rojas and B. Rudy, J. Physiol. (London) 262, 501 (1976); D. Eaton, M. S Brodwick, G. S. Oxford, B. Rudy, Nature 271, 473 (1978); G. S. Oxford, C. M. Wu, T. Narahashi, J. Gen. Physiol. 71, 227 (1978); J. Patlak and R. Horn, ibid. 79, 333 (1982).
- 7. D. Gordon et al., Proc. Natl. Acad. Sci. U.S.A. 84, 8682 (1987); D. Gordon, D. Merrick, D. A. Wollner, W. A. Catterall, *Biochemistry* 27, 7032 (1988); D. Merrick and W. A. Catterall, unpublished results.
- 8. D. A. Wollner and W. A. Catterall, Proc. Natl. Acad. Sci. U.S.A. 83, 8424 (1986).
- 9. O. P. Hamill, Á. Marty, E. Neher, B. Sackmann, F. J. Sigworth, Pfluegers Arch. 391, 85 (1981).
- T. Gonoi, S. J. Sherman, W. A. Catterall, J. Neur-osci. 5, 2559 (1985).
- 11. The patch-clamp micropipettes were prepared from microhematocrit capillaries (VWR), and their tips were fire-polished to yield pipette tip resistances of 0.3 to 0.5 megohms. The pipette intracellular solu-tion contained 105 mM CsF, 40 mM CsCl, 10 mM NaF, and 5 mM EGTA (pH 7.2), adjusted with CsOH. Affinity-purified antibodies were dialyzed against this intracellular solution and aliquots of the antibody-containing solution were introduced into the pipette immediately before the electrophysiologexperiments. The affinity-purified antibodies were introduced into the pipette solution at concentrations that completely immunoprecipitate 0.5 nM Na⁺ channels, as determined in previous studies (7). Sodium currents were recorded in the presence of reduced extracellular Na+ to minimize series resistance errors and enhance voltage control (10). The extracellular solution contained 120 mM tetraethylammonium chloride, 35 mM NaCl, 1.5 mM CaCl₂, 1.0 mM MgCl₂, 5 mM glucose, and 5 mM Hepes (pH 7.4). The whole-cell Na⁺ currents were measured with a List L/M-EPC7 patch-clamp amplifier. Capacity and series resistance were compensated for with the patch-clamp circuitry. The remaining leakage and capacitive transients were compensated by an external analog circuit. The current signals were filtered at 1 kHz through an eight-pole Bessel filter. Voltage stimuli were applied and the currents were digitzed (20 μ s per point) and analyzed with an IBM-XT computer, a Labmaster (Scientific Solutions Inc., Solon, OH) board, and programs based on the Fastlab (Indec Systems, Sunnyvale, CA) system. Recordings were made at room tempera-ture, 21 to 23°C. Na⁺ current traces were scaled by factors of 1.05 to 1.6 to allow direct comparison of current time courses. In some experiments (for example, the current-voltage curve illustrated in Fig. 2B) no scaling was required to make quantitative comparisons of Na⁺ currents before and after antibody treatment. Similar antibody effects were observed regardless of the scaling factor used in individual experiments.
- 12. W. A. Catterall, Annu. Rev. Pharmacol. Toxicol. 20, 15 (1980); G. Strichartz, T. Rando, G. K. Wang,

Annu. Rev. Neurosci. 10, 237 (1985); H. Meves, J. M. Simard, D. D. Watt, Ann. N.Y. Acad. Sci. 479, 113 (1985).

 W. A. Catterall, J. Biol. Chem. 252, 8669 (1977); J. Gen. Physiol. 74, 375 (1979).
 H. R. Guy, Molecular Biology of Ion Channels: Current Topics in Membrane Transport, W. Agnew, Ed. (Academic Press, New York, in press).

- 15. V. L. Salgado, J. Z. Yeh, T. Narahashi, Biophys. J.
- V. L. Sagado, J. Z. Ten, T. Natanashi, *Biophys. J.* 47, 567 (1985).
 R. W. Aldrich, D. P. Corey, C. F. Stevens, *Nature* 306, 436 (1983); R. W. Aldrich and C. F. Stevens, *J. Neurosci.* 7, 418 (1987); C. M. Armstrong and F. Bezanilla, J. Gen. Physiol. 70, 567 (1977); F. Bez-Bezanna, J. Gen. Physiol. 76, 507 (1977), F. Bez-anilla and C. M. Armstrong, *ibid*, p. 549; C. M.
 Armstrong, *Physiol. Rev.* 61, 644 (1981).
 C. A. Vandenberg and R. Horn, *J. Gen. Physiol.* 84, 535 (1984); T. Gonoi and B. Hille, *ibid.* 89,
- 17

253 (1987).

- 18. R. E. Weiss and R. Horn, Science 233, 361 (1986); J. P. Ruppersberg, A. Schurz, R. Ruedel, Neurosci. Lett. 78, 166 (1987).
- 19. H. Meiri et al., Proc. Natl. Acad. Sci. U.S.A. 84, 5058 (1987).
- 20. W. A. Catterall, ISI Atlas Sci. Pharmacol. 2, 190 (1988).
- 21. We thank D. Merrick and D. Gordon for providing the affinity-purified antibodies to the peptides and J Offord and L. Maechler for help with preparation of cell cultures. Supported by research grant NS-15751 from the National Institutes of Health, research contract DAMD-17-84-C-4130 from the U.S. Army Research Office, and a grant from the Muscular Dystrophy Association to W.A.C.

1 June 1988; accepted 2 August 1988.

Sequence and Expression of mRNAs Encoding the α_1 and α_2 Subunits of a DHP-Sensitive Calcium Channel

STEVEN B. ELLIS, MARK E. WILLIAMS, NANCY R. WAYS, ROBERT BRENNER, Alan H. Sharp, Albert T. Leung, Kevin P. Campbell, Edward McKenna, Walter J. Koch, Anna Hui, Arnold Schwartz,* Michael M. Harpold*

Complementary DNAs were isolated and used to deduce the primary structures of the α_1 and α_2 subunits of the dihydropyridine-sensitive, voltage-dependent calcium channel from rabbit skeletal muscle. The α_1 subunit, which contains putative binding sites for calcium antagonists, is a hydrophobic protein with a sequence that is consistent with multiple transmembrane domains and shows structural and sequence homology with other voltage-dependent ion channels. In contrast, the α_2 subunit is a hydrophilic protein without homology to other known protein sequences. Nucleic acid hybridization studies suggest that the α_1 and α_2 subunit mRNAs are expressed differentially in a tissue-specific manner and that there is a family of genes encoding additional calcium channel subtypes.

HE L-TYPE BUT NOT THE T-TYPE OR N-type Ca²⁺ channels are sensitive to "Ca2+ antagonist" drugs, including the dihydropyridines (DHPs). Skeletal muscle DHP-sensitive Ca2+ channels (Ltype) comprise at least two large polypeptide subunits, α_1 and α_2 , which copurify with equimolar stoichiometry (2–5). The α_1 subunit, which may be weakly glycosylated, contains receptor sites for at least two classes of Ca²⁺ antagonists, the dihydropyridines and the phenylalkylamines, and has a molecular mass of 155 to 170 kD under both reducing and nonreducing conditions. The α_2 subunit, which is extensively glycosylated, does not bind either DHP or phenylalkylamine Ca²⁺ antagonists and has a molecular mass of 165 to 175 kD under nonreducing conditions and of 135 to 150 kD under reducing conditions. Two additional subunits may also be present, a nonglycosylated β subunit (50 to 55 kD) and a glycosylated γ subunit (30 to 33 kD) (2, 3, 6, 7). In addition, the α_1 and β subunits are substrates for protein kinases, whereas the α_2 and γ subunits are not (7, 8). Although active DHP-sensitive Ca^{2+} channels have

been reconstituted in vitro (9), it is unknown which subunits are required for a functional DHP-sensitive Ca2+ channel.

We describe here the sequences and tissue-specific expression of the α_1 and α_2 subunits of a DHP-sensitive Ca²⁺ channel determined by using cloned cDNA sequences. To isolate the cDNA clones, monoclonal antibody IIF7, specific for the α_1 subunit from rabbit skeletal muscle triads (6), and guinea pig polyclonal antisera, specific for the gel-purified α_2 subunit (4), were each used to screen 1.0×10^6 recombinant phage of a rabbit back skeletal muscle cDNA library. Overlapping cDNA clones were isolated to determine the DNA sequence encoding each subunit (Fig. 1).

S. B. Ellis, M. E. Williams, N. R. Ways, R. Brenner, M. M. Harpold, The Salk Institute Biotechnology/Industrial Associates, Inc. (SIBIA), 505 Coast Boulevard South, La Jolla, CA 92037.

A. H. Sharp, A. T. Leung, K. P. Campbell, Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242.

E. McKenna, W. J. Koch, A. Hui, A. Schwartz, Depart-ment of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267

^{*}To whom correspondence should be addressed.

Α α1			(ho l					Β α2							
Nco I Pst I	Sac I Apa I Nco I Eco RI	Pst	Nco I,) Pst I	Apal	Pstl Apal Bam HI	Ncol Apal Sac I		Sma Apa Hind III	Bgl II Ico I Nco I	st	Pst I Bam HI Cba I Hind III Pst I	lco l Eco Rl	l hq		gi II gi II
+	1000	2000		1 n 4		5000	-		1000	2000	3000	<u>z</u> – 4000	<u>ν</u> 5000	60,00	
່ເ	ACAACGGAGCCC	CACCELECTER	2227722222	000000000000000000000000000000000000000	SCCGAGGTC	TGTTGGCAAAAGT	-238		1000	2000	0000	4000	5000	634	1000
		GCGAGGCAGCCGCG TTCGCCGCCGCCG		GCCGACGCGCGCCT/		CGCCCGCCCCTTT GCCCGCGGGGTGGC CCAGCTCGCGAAG	-159 -80 -1	ACA ATA A Thr Ile 1	ACT CAG GCC Thr Gln Ala	: AGA TAT TCA a Arg Tyr Ser	GAA ACA CTG Glu Thr Leu	AAA CCG GA Lys Pro Asp	T AAT TTT GAA GAA p Asn Phe Glu Glu	TCT GGC Ser Gly 654	1980
-26 ATG Met	GCT GCG GGC CGC	CCG CTG GCC TO Pro Leu Ala Ti	GG ACG CTG	ACA CTT TGG C/	AG GCG TG In Ala Tr	-7 G CTG ATC CTG D Leu Ile Leu	60	TAC ACA T Tyr Thr F	TTC CTA GCA Phe Leu Ala	CCA AGA GAT Pro Arg Asp	TAC TGC AGT Tyr Cys Ser	GAC CTT AAA Asp Leu Lys	A CCT TCA GAT AAT s Pro Ser Asp Aşn	AAC ACT Asn Thr 674	2040
ATC	GGG CCC TCG TCG	-1 +1 GAG ¹ GAG CCG T Glu Glu Pro P	TC CCT TCA	GCC GTC ACT A	TC AAG TO	A TGG GTG GAT TTP Val ASP	120	GAA TTT (Glu Phe L	CTT TTA AAT _eu Leu Asr	TTC AAT GAG Phe Asn Glu	TTT ATT GAT Phe Ile Asp	AGA AAA ACI Arg Lys Thi	T CCA AAC AAC CCA r Pro Asn Aşn Pro	TCC TGT Ser Cys 694	2100
AAG	ATG CAA GAA GAC	CTG GTC ACA C	TG GCA AAA	ACA GCA AGT G	GA GTC CA	34 T CAG CTT GTT S G1n Leu Val	180	AAT ACA G Asn Thr A	GAC TTG ATT Asp Leu Ile	AAT AGA GTC Asn Arg Val	TTG CTG GAT Leu Leu Asp	GCA GGC TTI Ala Gly Phe	T ACA AAT GAA CTT e Thr Asn Glu Leu	GTT CAA Val Gln 714	2160
GAT	ATT TAT GAG AAA	TAT CAA GAT T	TG TAT ACT	GTG GAA CCA A	AT AAT GO	54 CA CGT CAG CTG a Arg Gln Leu	240	AAT TAC 1 Asn Tyr 1	IGG AGT AAG Irp Ser Lys	G CAG AAG AAT Gln Lys Asn	ATC AAG GGA Ile Lys Gly	GTG AAA GC/ Val Lys Ala	A CGG TTT GTT GTG a Arg Phe Val Val	ACT GAT Thr Asp 734	2220
GTG Val	GAA ATT GCA GCC Glu Ile Ala Ala	AGA GAC ATT G Arg Asp Ile G	AG AAG CTT 1u Lvs Leu	CTC AGC AAC A	GA TCT A/	74 A GCC CTG GTG /s Ala Leu Val	300	GGT GGG # Gly Gly 1	ATT ACC AGA [le Thr Arg	GTT TAT CCC Val Tyr Pro	AAA GAG GCT Lys Glu Ala	GGA GAA AA Gly Glu Asr	T TGG CAG GAA AAC n Trp Gln Glu Asn	CCA GAG Pro Glu 754	2280
CGC	CTG GCT TTG GAA	GCA GAG AAA G Ala Glu Lys V	TT CAA GCA	GCC CAC CAA T Ala His Gln T	GG AGG G/	94 AA GAT TTT GCA Lu Asp Phe Ala	360	ACA TAT (Thr Tyr (GAA GAC AGO Glu Asp Ser	C TTC TAT AAA Phe Tyr Lys	AGG AGC CTC Arg Ser Leu	GAT AAT GAT Asp Asn Asp	T AAC TAC GTT TTC p Asn Tyr Val Phe	ACT GCT Thr Ala 774	2340
AGC	AAT GAA GTT GTC Asn Glu Val Val	TAC TAT AAC G	CG AAG GAT	GAT CTT GAT C Asp Leu Asp P	CT GAA A/	114 AA AAT GAC AGT AS Asn Asp Ser	420	CCC TAC 1 Pro Tyr F	TTT AAC AAA Phe Aşn Lys	AGT GGA CCT Ser Gly Pro	GGG GCC TAT Gly Ala Tyr	GAG TCA GGO Glu Ser Gly	C ATT ATG GTA AGC y Ile Met Val Ser	AAA GCT Lys Ala 794	2400
GAA Glu	CCA GGC AGC CAG	AGG ATC AAA C	CT GTT TTC	ATT GAC GAT G	CT AAC T	* 134 TT AGA AGA CAA	480	GTA GAA / Val Glu 1	ATA TAT ATC Ile Tyr Ile	C CAA GGA AAA e Gln Gly Lys	CTT CTT AAA Leu Leu Lys	CCT GCA GT Pro Ala Va	T GTT GGA ATT AAA 1 Val Gly Ile Lys	ATT GAT Ile Asp 814	2460
GTA Val	TCC TAT CAG CAC	GCA GCT GTC C	AT ATC CCC	ACT GAC ATC T	AT GAA G	154 GA TCG ACA ATC Ly Ser Thr Lle	540	GTA AAT 1 Val Asn S	ICT TGG AT# Ser Trp Ile	A GAG AAT TTC e Glu Aşn Phe	ACC AAA ACT Thr Lys Thr	TCA ATC AGO Ser Ile Arg	G GAT CCG TGT GCT g Asp Pro Cys Ala	GGT CCA Gly Pro 834	2520
GTG	TTA AAC GAA CTC	AAC TGG ACA A	GT GCC TTA	GAT GAC GTT T Asp Asp Val P	TC AAA A	174 AA AAT CGA GAG	600	GTT TGT (Val Cys /	GAC TGC AA/ Asp Cys Lys	A CGA AAC AGT s Arg Asn Ser	GAT GTA ATG Asp Val Met	GAT TGT GT(Asp Cys Va	G ATT CTA GAT GAC 1 Ile Leu Asp Asp	GGT GGG Gly Gly 854	2580
GAA	GAC CCT TCA CTG	TTG TGG CAG G	TG TTT GGC	AGT GCC ACT G	GC CTG G	194 CC CGG TAT TAC	660	TTT CTT Phe Leu I	TTG ATG GCO Leu Met Ala	C AAC CAT GAT a Asn His Asp	GAT TAT ACC Asp Tyr Thr	AAT CAG AT Asn Gln Ile	T GGA AGA TTC TTT e Gly Arg Phe Phe	GGA GAG Gly Glu 874	2640
CCA	GCT TCT CCA TGG	GTT GAT AAT A	GC CGA ACC	CCA AAC AAG A Pro Asn Lys I	TT GAT C	214 TT TAT GAT GTA PU TVC ASD Val	720	ATT GAT (Ile Asp	CCA AGC TTO Pro Ser Leu	G ATG AGA CAC u Met Arg His	CTG GTC AAT Leu Val Aşn	ATA TCA GT Ile Ser Va	T TAT GCC TTT AAC 1 Tyr Ala Phe Aşn	AAA TCT Lys Ser 894	2700
CGC	AGA AGA CCA TGG	TAC ATC CAA G	GT GCT GCA	TCC CCT AAA G	AT ATG C	234 TT ATT CTG GTG	780	TAT GAT Tyr Asp	TAT CAG TCO Tyr Gln Sei	G GTG TGT GAA r Val Cys Glu	CCT GGT GCT Pro Gly Ala	GCG CCA AA Ala Pro Ly	G CAG GGA GCA GGG s Gln Gly Ala Gly	CAC CGC His Arg 914	2760
GAT	GTG AGT GGA AGC	GTT AGT GGA C	TG ACA CTC	AAA CTC ATC C	GG ACA T	254 CC GTC TCC GAA er Val Ser Glu	840	TCG GCT Ser Ala	TAT GTG CC/ Tyr Val Pro	A TCA ATA GCA p Ser Ile Ala	GAC ATA CTG Asp Ile Leu	G CAG ATT GG	A TGG TGG GCC ACT y Trp Trp Ala Thr	GCT GCT Ala Ala 934	2820
ATG Met	TTG GAA ACC CTC	TCA GAT GAT G Ser Asp Asp A	AT TTT GTG sp Phe Val	AAC GTG GCT T Asn Val Ala S	CA TTT A	274 AC AGC AAT GCT sn Ser Asn Ala	9 00	GCC TGG <u>Ala Trp</u>	TCT ATT CT Ser Ile Leu	ICAG CAG TTT IGln Gln Phe	CTG TTG AGT Leu Leu Ser	TTG ACT TT Leu Thr Pho	T CCA CGG CTC CTT e Pro Arg Leu Leu	GAG GCA Glu Ala 954	2880
CAG	GAT GTA AGC TGC Asp Val Ser Cvs	TTT CAG CAC C Phe Gln His L	TT GTC CAA eu Val Gln	GCA AAT GTA A Ala Asn Val A	GA AAT A/ ra Asn Ly	294 AG AAA GTG TTG /s Lys Val Leu	960	GCT GAT A Ala Asp I	ATG GAG GAI Met Glu Asp	T GAC GAC TTC D Asp Asp Phe	ACT GCC TCC Thr Ala Ser	Met Ser Ly	G CAG AGC TGC ATC s Gln Ser Cys Ile	ACT GAG Thr Glu 974	2940
AAA	GAT GCA GTG AAT Asp Ala Val Asp	AAT ATC ACA G	CA AAA GGA	ATC ACA GAT T	AT AAG AA	314 AG GGC TTT AGT vs Glv Phe Ser	1020	CAA ACC C Gln Thr G	CAG TAT TTC Sln Tyr Phe	C TTC GAT AAT Phe Asp Asn	GAC AGC AAA Asp Ser Lys	TCG TTC AGI Ser Phe Ser	T GGG GTA TTA GAC r Gly Val Leu Asp	TGT GGG Cys Gly 994	3000
TTT Phe	GCT TTT GAG CAG	CTG CTT AAT T	AT AAT GTA	TCC AGA GCC A	AC TGC A	334 AT AAG ATT ATC sn Lvs Ile Ile	1080	AAT TGT 1 Aşn Cys S	ICC AGA ATO Ser Arg Ile	C TTT CAT GTA Phe His Val	GAA AAG CTC Glu Lys Leu	ATG AAC ACC Met Asn Thr	C AAT TTA A T A TTC r Asn Leu Ile Phe	ATA ATG Ile Met 1014	3060
ATG	TTG TTC ACG GAC	GGA GGA GAA G	AG AGA GCC	CAG GAG ATA T Gin Giu Ile P	TT GCC A	354 AA TAC AAT AAA vs Tvr Asn Lvs	1140	GTA GAG / Val Glu S	AGC AAG GGG Ser Lys Gly	ACA TGT CCC Thr Cys Pro	TGT GAC ACA Cys Asp Thr	CGG CTG CTC Arg Leu Leu	C ATA CAA GCA GAG u Ile Gln Ala Glu	CAA ACT Gln Thr 1034	3120
GAC	AAG AAA GTA CGT	GTA TTC ACA T	TC TCA GTT	GGC CAA CAT A	AT TAC G	374 AC AGA GGA CCT Sp Arg Glv Pro	1200	TCT GAT (Ser Asp (GGA CCA GAT Gly Pro Asp	F CCT TGT GAT Pro Cys Asp	ATG GTT AAG Met Val Lys	Gln Pro Arg	A TAT CGA AAA GGG g Tyr Arg Lys Gly	CCA GAT Pro Asp 1054	3180
ATT	CAG TGG ATG GCT Gln Trp Met Ala	TGC GAA AAT A	AA GGT TAT	TAT TAT GAA A	TT CCA T le Pro S	394 CC ATT GGA GCC er Ile Gly Ala	1260	GTC TGC Val Cys I	TTT GAC AAC Phe Asp Asr	C AAT GTC CTG 1 Asn Val Leu	GAG GAT TAT Glu Asp Tyr	ACT GAC TGO Thr Asp Cys	C GGT GGG GTC TCT s Gly Gly Val Ser	GGA TTA Gly Leu <u>1074</u>	3240
ATA	AGA ATT AAT ACT Arg Ile Asn Thr	CAG GAA TAC C Gln Glu Tyr L	TA GAT GTT eu Asp Val	CTG GGA AGA C Leu Gly Arg P	CG ATG G	414 TT TTA GCA GGA al Leu Ala Gly	1320	AAT CCT	TCC CTG TGC Ser Leu Trp	G TCC ATC ATC <u>Ser Ile Ile</u> 1080	GGG ATA CAG Gly Ile Gln	TTT GTA CTO Phe Val Leo	G CTT TGG CTG GTT <u>u Leu Trp Leu Val</u>	TCT GGC Ser Gly	3300
GAC	AAA GCT AAG CAA Lys Ala Lys Gln	GTC CAAITGG A	CA AAT GTG hr Asn Val	TAC CTG GAT G Tyr Leu Asp A	CA CTG G	434 AA CTG GGA CTT lu Leu Gly Leu	1380	AGC AGA (<u>Ser</u> Arg I	CAC TGC CTO His Cys Leu	G TTA TGA CCT J Leu	TCTAAAACCAAA	TCTCCATAATT	AAACTCCAGACCCTGCCA	CAACATG	3372
GTC Val	ATT ACT GGA ACT Ile Thr Gly Thr	CTT CCG GTC 1 Leu Pro Val F	TC AAC ATA Phe Asn Ile	IACT GGC CAA T IThr Gly Gln P	TT GAA A he Glu A	454 AT AAG ACA AAC sn Lys Thr Asn	1440	CGCAGACT	GTTATGTTAA/ CATCAGGCACO	AGTAGGGTCAACT CCACTGGCTGCAT	GTTAAATCAGAA GTCAGGGTGTCC	CATTAGCTGGG	CCTCTGCCATGGCAGAGG	CCTAAGG	3451
TTA	AAG AAC CAG CTG Lys Asn Gln Leu	ATT CTT GGA G Ile Leu Gly V	TG ATG GGA	GTT GAT GTG T Val Asp Val S	CT TTG G er Leu G	* 474 AA GAT ATT AAA lu Asp Ile Lys	1500	Fig. 1.	Restrict	ion maps o	of the (A)	α_1 and (B) α_2 subunit cl	DNA. T	he heavy
AGA Arg	CTG ACA CCA CGT Leu Thr Pro Arg	TTT ACA CTC 1 Phe Thr Leu (GC CCC AAT Cys Pro Asn	GGC TAC TAT I Gly Tyr Tyr F	TT GCA A Phe Ala I	494 TT GAT CCT AAT le Asp Pro Asn	1560	line re oligo-c	presents T–prim	the codin ed expressi	ig sequention cDNA	ce. The c library c	DNAs were 1 constructed in	solated λgt11 (from an 23) from
GGT Gly	P TAT GTG TTA TTA Tyr Val Leu Leu	CAT CCA AAT (His Pro Asn I	CTT CAG CCA Leu Gln Pro	AAG CCT ATT G Lys Pro Ile G	GT GTA G 1y Val G	514 GT ATA CCA ACA ly Ile Pro Thr	1620	young cDNA	adult ra was syr	bbit back hthesized, 1	skeletal m Eco RI ac	uscle pol lapters (2	y(A) ⁺ RNA. 1 24) were added	Double- l, and f	-stranded
ATT Ile	AAT TTG AGA AAA Asn Leu Arg Lys	AGG AGA CCC / Arg Arg Pro /	AAT GTT CAG Asn Val Gln	AAC CCC AAA 1 Asn Pro Lys S	CT CAG G Ser Gln G	534 AG CCA GTG ACA lu Pro Val Thr	1680	>1500 λgt11.) nt wer Two α_1	e selected cDNA clo	on a Sep ones were	harose Cl identified	L-4B column by screening v	and liga with mo	ated into phoclonal
TTG Leu	GAT TTC CTC GAT Asp Phe Leu Asp	GCA GAG TTG (Ala Glu Leu (GAG AAT GAC Glu Asn Asp	ATT AAA GTG G Ile Lys Val G	AG ATT C Glu Ile A	554 GA AAT AAA ATG rg Asn Lys Met	1740	Ab III cross-h	F7 (6). Ì nybridiza	Each clone tion. One	contained clone (λSl	l an ∼50 kMCaCH	0-nt insert and α 1.3) was secu	d was re lienced (elated by (11). The
ATC 11e	C GAT GGA GAA AGT Asp Gly Glu Ser	GGA GAA AAA Gly Glu Lys	ACA TTC AGA Thr Phe Arg	ACT CTG GTT / Thr Leu Val L	AAA TCT C _ys Ser G	574 AA GAT GAG AGA In Asp Glu Arg	1800	453-nt of the	t cDNA	insert enco	des amino this clone	acid resid	dues 950 to 11 o IIF7, we co	00. On nclude	the basis that the
TAT Tyr	f ATT GAC AAA GGA ^ Ile Asp Lys Gly	AAC AGG ACA Aşn Arg Thr	TAC ACG TGG Tyr Thr Trp	ACT CCT GTC / Thr Pro Val /	AAC GGC A Aşn Gly T	CA GAT TAT AGC hr Asp Tyr Ser	1860	IIF7 e	pitope is	encoded b	y this por	tion of th	e protein seque	ence. The (25)	ne cDNA
AG Sei	f TTG GCC TTG GTA r Leu Ala Leu Val	TTA CCA ACC Leu Pro Thr	TAC AGT TTT Tyr Ser Phe	TAC TAT ATA / Tyr Tyr Ile I	AAA GCC A Lys Ala L	614 AAA ATA GAA GAG ys Ile Glu Glu.	1 9 20	sequer	1 ce (11, 2)	26) and pro	edicted an	nino acid	sequence of th	ne rabbi	t skeletal
is show	wn as the first	26 amino	acids (res	sidues - 26	to -1	An arrow	identifi	muscle es the pro	oposed c	leavage site	e and nosi	tive num	hering starts w	ith the i	a pepude proposed

is shown as the first 26 amino acids (residues -26 to -1). An arrow identifies the proposed cleavage site and positive numbering starts with the proposed NH₂-terminal residue of the mature protein. The NH₂-terminal amino acid sequence previously determined (4) is shown in bold sequence; Thr⁸, Trp¹², and Asp¹⁴ were not previously determined. An in-frame upstream stop codon is underlined, as well as the start and stop codons of an upstream short open reading frame. Three putative transmembrane regions are enclosed in boxes. Potential *N*-glycosylation and phosphorylation sites are identified by an asterisk (*) below Asn residues and P below the Ser and Thr residues, respectively. Three α_2 cDNA clones were identified by screening the λ gt11 rabbit back skeletal muscle cDNA library with guinea pig antisera to α_2 . Two clones, λ SkMCaCH $\alpha 2.2$ (2.5 kb) and λ SkMCaCH $\alpha 2.4$ (3.6 kb), overlapped to encode 4.75 kb of an ~8-kb transcript (Fig. 3B). An additional 14 overlapping clones encoding a total of ~7850 nt were isolated by DNA hybridization. Only 176 nt of ~4224 nt of 3' untranslated sequence was confirmed in both directions and are reported.

The α_1 subunit cDNA contains a 5619nucleotide (nt) open reading frame that encodes a sequence of 1873 amino acids (Fig. 1A). This cDNA sequence is consistent with an ~6500 nt DHP receptor α_1 mRNA (see Fig. 3A). Although the nucleotide sequence of this cDNA is 99.4% identical to the cDNA sequence of the DHP receptor reported by Tanabe *et al.* (10), a number of differences were determined. Nucleotide differences were identified at 33 positions (11), of which three result in amino acid changes. The amino acid differences occur at residues 1808 (Thr to Met), 1815 (Ala to Val), and 1835 (Ala to Glu).

We also cloned approximately 7850 nt of α_2 cDNA (Fig. 1B), which is consistent with an ~8000-nt α_2 mRNA (see Fig. 3B). Three hundred and eight nucleotides of 5' untranslated sequence, a 3318-nt open reading frame, and 176-nt of 3' untranslated sequence are shown in Fig. 1C. The 5' untranslated sequence of the α_2 cDNA is unusually long (12). The open reading frame encodes a sequence of 1106 amino acids (Fig. 1C). The deduced amino acid sequence yields a calculated molecular weight of 125,018 for the α_2 subunit, which contrasts with the observed molecular mass of 165 to 175 kD (under nonreducing conditions) determined by SDS-polyacrylamide gel electrophoresis (2, 3, 6, 7). However, the agreement between the sequence of amino acid residues 1 to 17 (Fig. 1C) with the partial amino-terminal sequence of the α_2 subunit (4) indicated that we cloned the α_2 subunit. We propose that the α_2 subunit has a 26-amino acid (residues -1 to -26) signal sequence. Although this proposed signal sequence is hydrophobic and of an appropriate characteristic length (13), it has an unusually short central hydrophobic region defined by Glu^{-1} and Gln^{-12} . The α_2 subunit contains 18 potential N-glycosylation sites (14) and two potential adenosine 3',5'-monophosphate (cAMP)-dependent phosphorylation sites (15) (Fig. 1C).

The α_2 subunit lacks significant homology with any protein in the Dayhoff protein sequence database or with other sequences of ion channel and receptor proteins. An analysis of the α_2 subunit sequence for regional hydropathy (16) reveals that, in contrast to the α_1 subunit, this protein is substantially hydrophilic, although it does contain a number of hydrophobic regions that may represent transmembrane domains (Fig. 2). These segments are designated I (amino acid residues 422 to 445), II (residues 895 to 919), and III (residues 1056 to 1075) in Figs. 1C and 2. If the proposed α_2 subunit signal sequence is, in fact, cleaved between the Glu⁻¹ and Glu⁺¹ residues (Fig. 1C), the amino terminus would be extracellular. Furthermore, assuming that the three hydrophobic segments (Fig. 2) are transmembrane domains and that there are only three such domains, the carboxyl terminus would be intracellular. Such a transmembrane topography would result in 8 of the 18 potential *N*-glycosylation sites being extracellular and the two potential phosphorylation sites being intracellular (Fig. 2) and would be consistent with biochemical studies on the α_2 subunit (2, 3, 6–8).

To determine the tissue-specific expres-

Fig. 2. Hydrophilicity profile of the α_2 subunit computed according to Kyte and Doolittle (16); the window size is 19 residues plotted at oneresidue intervals. Potential glycosylation sites (*) and phosphorylation sites (P) are indicated. Three transmembrane domains are proposed: I, amino acid residues 422 to 445; II, amino acid residues 895 to 919; and III, amino acid residues 1056 to sion of α_1 and α_2 mRNAs, total RNA was isolated from a variety of rabbit tissues for RNA blot analysis (Fig. 3). For the α_1 subunit, a prominent 6.5-kb transcript was detected in total RNA from skeletal muscle, while a much weaker hybridizing transcript of the same size was observed in aorta (Fig. 3A). Upon longer exposures of the autoradiograms, a weakly hybridizing 6.5-kb transcript was also observed in total RNA from heart; however, no α_1 -specific hybridization was observed with total RNA from ileum or

1075. Transmembrane regions are proposed based on their hydropathy value, polarity index, and hydrophobic moment analysis (16, 27). The proposed signal sequence is indicated by the hatched box above residues -1 to -26.

Fig. 3. RNA blot analysis of rabbit total RNA with (**A**) α_1 and (**B**) α_2 subunit cDNA probes. Total RNA was isolated from the tissues indicated, and 10 μ g of RNA per lane was electrophoresed in a 1% agaroseformaldehyde denaturing gel and transferred to nitrocellulose filters (28). The filters were hybridized with the respective cDNA probes and washed in 0.015*M* NaCl, 0.0015*M* sodium citrate, 0.1% SDS, *p*H 7.0, at

 37° C for α_1 and 50° C for α_2 . The α_1 and α_2 cDNA probes, the Eco RI–Sac I fragment (nt 1006 to 5314) of pSkMCaCH α 1.7, and the cDNA insert (nt 133 to 3494) of λ SkMCaCH α 2.3 were labeled by random priming. Autoradiography was for 7 days with an intensifying screen, except for the RNA from ileum and aorta hybridized with the α_2 cDNA probe, which was exposed to x-ray film for 14 days.

Fig. 4. DNA blot analysis of rabbit and human genomic DNA with (A) α_1 and (B) α_2 subunit cDNA probes. DNAs were digested with the indicated restriction enzymes and 15 µg of digested DNA was electrophoresed in a 0.8% agarose gel and transferred to nitrocellulose. Blots were hybridized at 42°C in 0.25 mM EDTA, NaH2PO4·H2O, 0.05M 0.9M NaCl, pH 7.0 [5× sasodium phosphate line (SSPE)], 5× Denhardt's solution, 50% deionized formamide, 0.2% SDS, and sonicated herring sperm DNA (200 μ g/ml) (29). (**A**)

 α_1 ; hybridization with pSkMCaCH α 1.7 (25) cDNA probe. (B) α_2 ; hybridization with cDNA insert of λ SkMCaCH α 2.3 (26) subcloned into pIBI24 as probe. High stringency washing buffer consisted of 0.1× SSPE, 0.1% SDS, 65°C (lanes 1 to 4). Low stringency washing buffer consisted of 1× SSPE, 0.1% SDS, 50°C (lanes 5 to 8). R, rabbit genomic DNA; H, human genomic DNA.

brain. In contrast, an 8.0-kb transcript specific for the α_2 subunit was detected in total RNA from each of the tissues examined (Fig. 3B). In addition, a weakly hybridizing α_2 7.0-kb transcript was observed in skeletal muscle and the hippocampal region of the brain. The intensity of the α_2 hybridization signals also varied among the different tissues. This variability of the α_1 and α_2 hybridization signals may result from the absence or lower concentrations of the α_1 and α_2 transcripts in these tissues relative to skeletal muscle. Alternatively, the lower hybridization signals, or lack thereof, in certain tissues may be due to the presence of transcripts with varying degrees of sequence homology encoding α_1 and α_2 subunitrelated subtypes.

To investigate the existence of gene sequences related to those encoding the skeletal muscle α_1 and α_2 subunits, rabbit and human genomic DNAs were digested with various restriction enzymes and DNA blots of these DNAs were hybridized with radiolabeled cDNA clones specific for the α_1 or the α_2 subunits (Fig. 4). Under conditions of high stringency, very few hybridizing bands were observed in rabbit genomic DNA with either the α_1 - or α_2 -specific probes (Fig. 4, A and B, lanes 1 and 3) indicating a low copy number, perhaps only a single copy each, of the α_1 and α_2 subunit genes. DNA blots of the same DNA preparations were also probed under conditions of low stringency with the same α_1 - and α_2 specific probes (Fig. 4, A and B, lanes 5 and 7). Although more bands were observed with the α_1 cDNA probe than in the high stringency condition, no additional bands were observed with the α_2 cDNA probe. In addition, similar results were obtained with human genomic DNA (Figs, 4A and 4B, lanes 2, 4, 6, and 8), which suggests substantial conservation of the DNA sequences encoding the α_1 and α_2 subunits between rabbits and humans. These results, together with those of the RNA blot analyses, suggest that the α_1 subunit of the skeletal muscle DHP-sensitive Ca²⁺ channel may share homologous sequences with rabbit and human genes encoding distinct subtypes of Ca²⁺ channels. Additionally, these results confirm and extend those of recent peptide mapping and immunological studies that indicate that significant homology exists between the skeletal muscle α_2 subunit and a similar subunit associated with heart and brain L-type Ca^{2+} channels (17).

The sequence and structural homologies of the DHP receptor α_1 subunit with the α subunit of Na⁺ channels (18) and a region of *Drosophila* K⁺ channel proteins (19) support the conclusion that the α_1 subunit is part of a voltage-dependent Ca²⁺ channel.

Biochemical and ultrastructural evidence demonstrates that the α_2 subunit interacts with the α_1 subunit, and perhaps also with the β and γ subunits, with equimolar stoichiometry as a complex localized in the T tubules (3, 5-7). The apparent inability of mRNA derived from an α_1 subunit cDNA to induce the expression of voltage-dependent Ca2+ channel activity in Xenopus oocytes (20) suggests that, in contrast to Na⁺ (18) and K^{+} (19) channels, the skeletal muscle DHP-sensitive Ca²⁺ channel may function only as a multiple subunit complex. Ion transport proteins and ligand-gated ion channels, such as Na^+, K^+ -ATPase (21) and the nicotinic acetylcholine receptors (22), require multiple, distinct subunits for functions. For example, the α_2 subunit of the DHP-sensitive Ca²⁺ channel may be analogous to the β subunit of the Na⁺,K⁺-ATPase, an extensively glycosylated protein with a single putative membrane spanning region, which has been proposed to be required for the insertion of the α subunit into the membrane (21).

REFERENCES AND NOTES

- R. J. Miller, Science 235, 46 (1987); J. C. Venter and D. Triggle, Eds. Structure and Physiology of the Slow Inward Calcium Channel (Liss, New York, 1987).
- W. A. Catterall, M. J. Seager, M. Takahashi, J. Biol. Chem. 263, 3535 (1988); S. C. Froehner, Trends Neurosci. 11, 90 (1988).
- A. H. Sharp, T. Imagawa, A. T. Leung, K. P. Campbell, J. Biol. Chem. 262, 12309 (1987); P. L. Vaghy et al., ibid., p. 14337.
 N. Nakayama, T. L. Kirley, P. L. Vaghy, E. McKen-
- N. Nakayama, T. L. Kirley, P. L. Vaghy, E. McKenna, A. Schwartz, *ibid.*, p. 6572.
- A. T. Leung, T. Imagawa, B. Block, C. Franzini-Armstrong, K. P. Campbell, *ibid.* 263, 994 (1988).
 A. T. Leung, T. Imagawa, K. P. Campbell, *ibid.* 262, 7943 (1987).
- Z62, 7943 (1987).
 M. Takahashi, M. J. Seagar, J. F. Jones, B. F. X. Reber, W. A. Catterall, *Proc. Natl. Acad. Sci. U.S. A.*
- 84, 5478 (1987). 8. T. Imagawa, A. T. Leung, K. P. Campbell, J. Biol. Cham 262, 8333 (1987)
- Chem. 262, 8333 (1987).
 B. M. Curtis and W. A. Catterall, Biochemistry 25, 3077 (1986); J. S. Smith et al., ibid. 26, 7182 (1987).
- 10. T. Tanabe et al., Nature 328, 313 (1987).
- 11. Fragments of cDNA clones were subcloned into either pIBI24/25 (IBI, New Haven, CT) or M13 mp18/19. A sequential series of overlapping clones was generated prior to DNA sequencing [R. M. K. Dale, B. A. McClure, J. P. Houchins, Plasmid 13, 31 (1985)]. The cDNA fragments were sequenced by the dideoxy chain-termination method [F. Sanger, S. Nicklen, A. R. Coulson, Proc. Natl. Acad. Sci. U.S. A. 74, 5463 (1977)]. The positions of nucleotide differences and the sequence determined are as follows: 2001 (C), 2049 (T), 2081 (G), 2556 (A), 2631 (C), 2835 (C), 2874 (T), 3222 (G), 3450 (A), 3462 (T), 3486 (G), 3498 (T), 3720 (T), 4212 (C), 4449 (C), 4515 (A), 4803 (C), 4854 (A), 4950 (C), 5190 (A), 5238 (A), 5423 (T), 5444 (T), 5504 (A), 5514 (C), 5631–5632 (CA insertion), 5655 (G), 5739 (C deletion), and 5855-5858 (CTGG dele tion). All nucleotide differences resulting in amino acid differences were confirmed by sequencing in both directions. In two cases, clones λ SkMCa-CH α 1.4 and pSkMCaCH α 1.6, significant alterations were found. The sequence of ASkMCa-CHa1.4 diverges from the α_1 primary sequence at nt 3415, followed by a translational stop four co-

dons farther in the carboxyl-terminal direction. The sequence of pSkMCaCH α 1.6 contains an in-frame 57-nt deletion from nt 3610 to 3666.

- M. Kozak, Nucleic Acids Res. 15, 8125 (1987).
 G. von Heijne, J. Mol. Biol. 184, 99 (1985).
- 14. S. C. Hubbard and R. J. Ivatt, Annu. Rev. Biochem. 50, 555 (1981).
- J. R. Feramisco, D. B. Glass, E. G. Krebs, J. Biol. Chem. 255, 4240 (1980).
- Chem. 255, 4240 (1980). 16. J. Kyte and R. F. Doolittle, J. Mol. Biol. 157, 105 (1982).
- C. L. Cooper et al., J. Biol. Chem. 262, 509 (1987);
 M. Takahashi and W. Catterall, Science 236, 88 (1987); Biochemistry 26, 5518 (1987).
- M. Noda et al., Nature 312, 121 (1984); M. Noda et al., ibid. 320, 188 (1986); M. Noda et al., ibid. 322, 826 (1986); A. L. Goldin et al., Proc. Natl. Acad. Sci. U.S.A. 83, 7503 (1986); W. Stühmer et al., Eur. Biophys. J. 14, 131 (1987).
- B. L. Tempel, D. M. Papazian, T. L. Schwarz, Y. N. Jan, L. Y. Jan, *Science* 237, 770 (1987); T L. Schwarz, B. L. Tempel, D. M. Papazian, Y. N. Jan, L. Y. Jan, *Nature* 331, 137 (1988); L. C. Timpe *et al.*, *ibid.*, p. 143.
- F. Hofmann, W. Nastainczyk, A. Röhrkasten, T. Schneider, M. Sieber, *Trends Pharmacol. Sci.* 8, 393 (1987).
- 21. S. Noguchi, M. Mishina, M. Kawamura, S. Numa, *FEBS Lett.* **225**, 27 (1987).
- 22. J. Boulter et al., Proc. Natl. Acad. Sci. U.S.A 84, 7763 (1987).
- U. Gubler and B. J. Hoffman, Gene 25, 263 (1983);
 B. Lapeyre and F. Amabrie, *ibid.* 37, 215 (1985); T. V. Huynh, R. A. Young, R. W. Davis, in DNA Cloning: A Practical Approach, D. M. Glover, Ed. (IRL, Oxford, U.K., 1985), vol. 1, p. 49.
- 24. W. I. Wood *et al.*, *Nature* **312**, 330 (1984). 25. λ SkMCaCH α 1.3 nt 2847–3300, numbering ac-
- 5. ASKMCaCHa1.3 nt 2847–3300, numbering according to (19)] was used to rescreen the λ gtl1 library and 8 of 1 × 10⁶ clones were positive. Clone λ SkMCaCHa1.4 (1700 nt) extended the farthest 5' to nt 2237. A fragment of this clone was used to screen 1 × 10⁶ transformants of a rabbit back skeletal muscle cDNA library (constructed according to the method of H. Okayama and P. Berg). After an additional rescreening, the largest clone isolated, of eight positives, was pSkMCaCHa1.7 (5.3 kb) extending 5' to nt ~450. Upon rescreening the λ gtl1 library, one clone, λ SkMCaCHa1.8 (1.55 kb), was isolated that extended 78 nt 5' of the start codon.
- 6. The nucleotide sequence shown was determined from clones λ SkMCaCH α 2.15 (nt -380-1123) and λ SkMCaCH α 2.3 (nt 133-3494). Five nucleotide differences among individual clones were observed, resulting in three amino acid changes. The nucleotides reported are from clone SkMCa-CH α 2.3. Differences occur in the sequence at positions 169, A(SkMCaCH α 2.15); 347 and 348, AA(SkMCaCH α 2.2); 984, T(SkMCaCH α 2.4); and a deltion of nts 1858-1860 (SkMCaCH α 2.4); and a KkMCaCH α 2.4). The resulting amino acid changes are Asn³¹, Lys⁹⁰, and a deletion of Ser⁵⁹⁴.
- 27. D. H. MacLennan, C. J. Brandl, B. Korezak, N. M. Green, *Nature* **316**, 696 (1985); D. Eisenberg, E. Schwarz, M. Komaromy, R. Wall, *J. Mol. Biol.* **179**, 125 (1984).
- J. H. Han, C. Stratowa, W. Ruther, Biochemistry 26, 1617 (1987); T. Maniatis, E. F. Fritsch, J. Sambrook, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring, Harbor, NY, 1982).
- 29. J. Meinkoth and G. Wahl, Anal. Biochem. 138, 267 (1984).
- 30. We thank L. Blonski and P. Prodanovich for preparation of the oligonucleotides; J. Robbins for RNA; D. MacLennan for providing the rabbit skeletal muscle Okayama-Berg cDNA library; P. Vaghy, T. Kirley, D. Slish, K. Kropp, J. Robbins, and G. Shull for assistance in some experiments, discussions, and manuscript review; R. Evans, J. Patrick, J. Sartor, G. Veliçelebi, and M. Wilson for discussions and reading the manuscript; and L. Wilson for typing the manuscript. Supported by SIBIA; the NIH and American Heart Association (A. S. and K.P.C.); and the Muscular Dystrophy Association (K.P.C.). E.M. and W.J.K. are NIH predoctoral trainces.

9 June 1988; accepted 10 August 1988

SCIENCE, VOL. 241