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Fractal Reaction IGnetics 

Classical reaction kinetics has been found to be unsatisfac- 
tory when the reactants are spatially constrained on the 
microscopic level by either walls, phase boundaries, or 
force fields. Recently discovered theories of heteroge- 
neous reaction kinetics have dramatic consequences, such 
as fractal orders for elementary reactions, self-ordering 
and self-unmixing of reactants, and rate coefficients with 
temporal "memories." The new theories were needed to 
explain the results of experiments and supercomputer 
simulations of reactions that were confined to low dirnen- 
sions or fractal dimensions or both. Among the practical 
examples of "fractal-like kinetics" are chemical reactions 
in pores of membranes, excitation trapping in molecular 
aggregates, exciton fusion in composite materials, and 
charge recombination in colloids and clouds. 

A MONG THE MOST IMPORTANT CHEMICAL REACTIONS ARE 

those called "heterogeneous." These reactions take place at 
interfaces of different phases, for example, gas-solid or 

liquid-solid boundaries, and include reactions such as industrial 
surface-catalysis and electrode reactions, as well as many bioen- 
zymatic and membrane reactions and some geochemical and auno- 
spheric reactions. In addition, there are many heterogeneous "non- 
chemical" reactions: in solid-state physics there are electron-hole, 
soliton-antisoliton, and exciton-exciton "recombinations," as well as 
the aggregation of excitations, defects, and so forth. Charge and 
excitation recombination, as well as excitation quenching, are also 
found in biological systems, such as photosynthetic units. 

The most universally found instruction in chemical synthesis is to 
"stir well." However, convective stirring cannot always be achieved 
for reactions in or on media that are solid, viscous, porous, or 
otherwise structured. In the absence of convective stirring, there is 
still diffusive stirring, which is called "self-stirring." However, under 
dimensional constraints (surface reactions) or topological con- 
straints (solid-state reactions), self-stirring may be highly inefficient. 
Fractal spaces such as percolation clusters are ideal testing grounds 
for "understirred" reaction kinetics. However, a reaction medium 
does not have to be a geometrical fractal in order to exhibit fractal 
kinetics. The drastic and unexpected consequences of such "fractal- 
like reaction kinetics" are described below. 

Classical Kinetics 
Classical, homogeneous chemical kinetics will be briefly reviewed 

so as to introduce the terminology of fractal kinetics. We limit 
ourselves to elementary (single-step) bimolecular (painvise) reac- 
tions, as these are by far the most important and prevalent chemical 
(and nonchemical) reactions. For a single-reactant bimolecular 
reaction, 

A + A -, products (1) 

as well as for a two-reactant bimolecular reaction, 

A + B -+ products ( 2 )  

one has second-order reaction rates, that is, all of the concentration 
dependence of the reaction can be expressed either as 

Rate = K [ A ] ~  (A + A -+ A) (3) 

or as 

Rate = K[A][B] (A + B -+ 0) (4) 

where [A] is the reactant concentration (or density) of A and K is 
the rate constant (not to be confused here with the equilibrium 
constant). Note that K is independent of time. Equations 3 and 4 
are valid for both "batch" and "steady-state" conditions. In the batch 
case, the system is prepared instantaneously (at time t = O), and the 
reaction rate is given by 

Rate = -d[A]/dt = -d[B]/dt (5) 

that is, the disappearance of reactant concentration per unit time. 
Substituting Eq. 5 into Eq. 3 or 4 gives a differential rate equation: 

-d[A]/dt = K[A]' (A + A + A )  ( 3 4  

Its solution (the integrated rate equation) is: 

[A]-' - [&I-' = Kt (6) 

where [&I is the initial concentration (at t = 0). Similarly 

-d[A]/dt = K[A] [B] (A + B -+ 0) (4a) 

If [A] = [B], Eq. 6 is also the solution of Eq. 4a. 

The author is professor of chemistry at the Depament of Chemistry, University of 
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However, at "steady state" the reactants are supplied at the same 
rate R at which they are consumed. The most general case is given by 

Here d[A]/dt is the instantaneous net change in [A], which is given 
by the difference between the rate of production R and the rate of 
reaction K[A]~. Again, Eq. 7 is valid for A + B if [A] = [B] and 
RA = RB. Note that one can start ( t  = 0) with [Ao] = [Bo] = 0 and 
RA = RB (constant in time). The reaction will then follow Eq. 7 
until a steady state is reached (d[A]/dt = 0), at which time Eq. 7 
reduces to Eq. 3. In both batch and steady-state reactions, it is 
assumed that changes in concentration with time do not affect 
chemical reactivity. 

At the turn of the century, Smoluchowski (1) showed that for self- 
stirred (diffusion-limited) homogeneous reactions in three-dimen- 
sional (3-D) systems, K - D, that is, the rate constant is linearly 
proportional to the "diffusion constant" D. Both D and K are time 
independent. Although Smoluchowski's derivation implied that the 
above is not true for lower dimensions, this result was recognized 
explicitly only in recent years (2-4). 

Fractal-Like Kinetics 
In classical kinetics, we do not expect the rate constant K to have 

any time dependence. However, experimental studies on the reac- 
tion kinetics of excitons in molecular macro-clusters (inside crystal- 
line isotopic alloys) that were prepared as fractals yielded very 
anomalous results in which rate constants depend on time (4, 5). 
These reactions are believed to have simple mechanisms and it is also 
easy to monitor the instantaneous concentrations of both reactants 
and products. Specifically, it is an exciton-fusion reaction, where 
two triplet (T) excitations fuse and form a singlet (S) excitation: 

Both reactant and product are "radioactive" in the sense that both 
are metastable and that radiation is one of the decay products (green 
light from T and ultraviolet from S). In analogy to radioactive 
tracers, the concentration can be monitored as a function of time 
(for both reactant and product). This reaction is diffusion limited. In 
perfect crystals it behaves classically according to Eqs. 3, 3a, and 7. 
However, in isotopically mixed crystals the reaction shows the 
above-mentioned anomalies. Following Eq. 3a, one can plot K 
versus time (Fig. 1). For isotopic alloys well above the critical mole 
fraction (see below), one obtains a time-independent curve (top 
curve of Fig. 1). For alloy mole fractions near or below the critical 
value, one obtains the time-dependent curve (bottom, Fig. 1).  In the 
log-log plot the slope (-h) is a constant in all cases. When h = 0, K 
is time-independent; however, when h + 0, K is time-dependent at 
all times. To  emphasize this time dependence, K is replaced by 
k - t-h and 

log k = -h log t + constant (9) 

The excitons are confined to one isotopic species (CloH8) In the 
ideal solid solution (CloHs/CloDs) the molecules of one species (say 
CloHs) are distributed randomly among the lattice sites. The critical 
mole fraction is the lowest isotopic composition for which the 
excitons are able to diffuse ("percolate") throughout the sample. At 
lower mole fractions, each exciton is trapped within a small CloHs 
cluster, and the exciton fusion reaction is inefficient. At the "critical" 
composition the CloHs molecules form a macroscopic cluster that 
extends throughout the crystal. Such a loosely connected extended 
cluster (Fig. 2) is called a "percolation cluster," and is a textbook 
example (6, 7) of a "fractal." For this fractal, h = 113 (see below). 

Flg. 1. Log-log plot of 
instantaneous rate con- I 
stant k versus time 1, for l o 0 +  o 
the exciton fusion reaction 
(Eq. 8) in isotopically 1: 
m e d  naphthalene crystals ,o - 
[see (4)] at the critical per- 
colation composition 
(bottom curve) and well 
above it (top curve). The 
analysis of this experiment ,,, 1  o2 1  o3 
(4, 5) gave h = 0.32 Time (ms) 
? 0.03 for the bottom 
curve (compared with the theoretical value of 0.33) and h = 0.03 for the top 
curve (theoretical value of 0). 

Fig. 2. A percolation cluster. Here 59.3% of the points of a square lattice are 
"occupied" (the rest are empty). Only the points that belong to the 
connected ("percolating") giant cluster are shown. This aggregate is a 
"random fractal" with df = 1.896 (= 91148) and d, = 1.333 (= 413). 

Fractals (6) are objects with "fractal dimensions." There are many 
definitions of dimensions (6-10). For instance, for Fig. 2, on the 
average the mass of ink (or number of dots) in a box of radius Y is 
proportional to @, where df = 1.89 (in contrast to df = 2 for a 
regular 2-D lattice). This percolation cluster is an example of a 
"random fractal." An example of an ordered fractal is given in Fig. 3. 
Here df = (log 3)/(log 2) = 1.58. Ordered fractals on the molecular 
level may not occur in nature. Actually, the random alloy discussed 
above is the most ideal experimental fractal system. Its fractal aspects 
(and dimension) are preserved on the scale of 1 nrn to 1 cm (that is, 
a factor of lo7). The exciton reactions that are confined to this 
fractal matrix (4, 5) inspired the theoretical work, including exten- 
sive simulations, that resulted in the following picture. 

Batch reactions. Both phenomenologically and theoretically, 

where k is the instantaneous rate coefficient (replacing K i n  Eqs. 3a 
and 4a). The term "coefficient" rather than "constant" must be used, 
because in general k depends on the time, whereas k l  = k(t = 1) 
does not. However, in 3-D (homogeneous) space, for the A + A 
reaction, h = 0, and thus k is a constant, in agreement with the 
classical-kinetics result. If a system is made homogeneous by vigor- 
ous stirring, h again will equal 0. However, for diffusion-limited 
reactions that occur in fractal spaces, theory (and simulations) give 
h > 0 and hence a time-dependent k. We thus call the general form 
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of Eq. 9a fractal-like kinetics (fbr h > 0). Nevertheless, Eq. 9a is not 
limited to fractals, but applies in many other nonclassical situations. 
For instance, fbr an A + A reaction in one dimension (2), theory 
and simulations give h = 112. Also, for an A + B reaction on a 
square lattice (3), fbr very long times, h = 112. Typical values for 
fractal systems are near h = 113 (see Fig. 1). Actually, fbr A + A 
reactions, h = 1 - d42 (4, 5), where d, is the so-called spectral (or 
random-walk recurrence) dimension (6, 10) defined below. Note 
that Eq. 9a is an approximation that f%ls at very short times. 

Fractals differ from Euclidean spaces not only in their typical 
"fractal" dimension df (6), but also in having more than one relevant 
dimension. The "spectral dimension" is defined by the recurrence 
probability P of a random walker, that is, the probability of a 
random walker to return to its origin after time t: 

For Euclidean spaces, d, = df = d. However, for fractal spaces, 
d, < df < d [where d is the dimension of the Eudidean space in 
which the fractal is embedded (6)]. For instance, fbr the Sierpinski 
gasket (Fig. 3) d, = 1.36, whereas df = 1.58, and fbr the percolating 
duster (Fig. 2) d, = 1.33, whereas df = 1.89. Thus for the A + A 
reaction on a Sierpinski gasket, one expects from theory that 
h = 1 - d42 = 0.32. Simulations reproduce this result (4). Similar- 
ly, for the percolating duster, h = 1 - d42 = 0.33, which has again 
bccn borne out (4) by simulations as well as by experiment (see 
above). Note here that fbr the whole dass of random fractals, in all 
embedded Euclidean dimensions (two, three, or higher) d, is always 
(4, 10) -413 and thus h = 1 - d42 = 113 fbr A + A reactions. 

Steady-state reactions. A genuine "steady state" is time-independent 
by definition. The hctal-like nature expresses itself in an anomalous 
reaction order X. For instance, for the bimolecular A + A reaction, 

Rate = K[A]~  

so that one 6nds (4) fbr the diffusion-limited case: 

X = 1 + 21ds = 1 + (1 - h)-' (d, < 2) (114 

Thus expected values are X = 2.46 fbr the Sierpinski gasket, 
X = 2.5 for the percolating duster, and X = 3 for the 1-D A + A 
reaction! These results have been confirmed by Monte Carlo 
simulations (4). The mechanism of the reaction is still bimolecular. 
Although this would be an assumption fbr real experiments, it is 
built into the simulations (and shows the benefits of simulations, in 
that one can get anomalous orders from a simple bimolecular 
elementary step). 

Clusters and islands. According to Mandelbrot (6, p. 1) there are 
"connected fractals" and there is "dust." The effective dimensions of 
"dust" are between zero and unity. A simple example of fractal dust 
is the Cantor set. Catalytic islands on noncatalytic supports are 
practical examples of "dust." Whether such "dust" is strictly fractal 
or is just made of monodisperse islands, the result is anomalous, 
fractal-like reaction kinetics. For fractal dust, with 0 < d, < 1, Eq. 
11 results in 3 < X < a, that is, anomalously large values of the 
reaction order X. For various finite dusters, lattice animals (7, 8) 
and monodisperse islands (square and linear), computer simulations 
(9) have indeed given unbelievably large X exponents (from 3 to 
75). Historically, the first indication for such anomalously high 
reaction orders came from experiments (5). Semantically, any binary 
reaction kinetics with h > 0 or X > 2 are referred to as "fractal-like 
kinetics." Thus any surface diffusion-controlled reaction that occurs 
on dusters or islands is expected to be anomalous and fractal-like. 

Segregation of reactants. Possibly the most dramatic manilktation of 
fractal-like reactions is the "spontaneous" segregation of reactants in 
A + B reactions, as had been predicted by Zeldovich and collabora- 
tors (1 1) and illustrated in simulations by Toussaint and W i l d  (3). 

Flg. 3. (A) A Sierpinski "gasket.= 
The density p of lattice points (ver- 
tices) as a function of base length 
(R) is given by p = C R ~ :  where cis a 
constant. Here the fractal dimen- 
sion is d, = log 3Aog 2 = 1.585. 
The specpal dimension is 
d, = 1.365. For a similar triangle 
without holes, p = CR*, where 
d, = D = 2; the spectral dimension 
is also d, = D = 2. For W e r  dis- 
cussion, see (6). (B) A steady-state 
reahtion of the d o n  
A + B + AB t on a Sierpinski 
gasket. In this supercomputer sim- 
ulation [von Neumann Center, 
Princeton (12)] there is a steady 
rate of A (red) and B (black) parti- 
cles (equal amounts) Ian- at ran- 
dom locations on this fractal sur- 
face, then moving in random direc- 
tions, a step at a time. When parti- 
cle A steps on partide B (or B on 
A), both are anddated (Icave the 
surface). The very segregated real- 
ization shown.is a snapshot t h  
afta 1 million time s . Landing rate: four pairs per time step. Note that 
the mcierbing lattice& is not shown here. 

Fig. 4. Two identical "fiactalm con- 
tainers, with identical concentra- 
tions of reacting molecules, but with 
ditfmnt instantaneous reaction 
rates. The probability for instanta- 

the container on the right. 
mus reaction is obviously hlgher in 

With absolutely no stirring, and a randomly prepared "batch" 
distribution of A and B reactants, one 6nds after a long time that the 
reactants segregate. Interestingly enough, although these reactions 
were run on Euclidean spaces (cube and square), the chemical 
kinetics at the time of segregation is fractal-like, for example, 
h = 112 for a square lattice (see above). This result is not surprising, 
as the reaction now proceeds in a lower dimensional space-the 
boundaries of the segregated domains [note that there is no relation 
between the Zeldovich effect and the Belusov-Zhabotinski reactions 
(811- 

Under steady-state conditions, no sigmficant segregation is h d  
in 2-D and 3-D Euclidean spaces (12,13). However, fbr dimensions 
less than 2, a very striking segregation is observed (12) (Fig. 3B). 
Moreover, whereas fbr batch reactions the segregation only appears 
a l k  a long time (when the reactant concentrations approach ma), 
for steady-state reactions the segregation occurs at both low and 
high concentrations. 

The Meaning of Fractal-Like Kinetics 
The replacement of the rate constant by a time-dependent rate 

d c i e n t  k(t) has unexpected consequences. Assume that one can 
look at one container with a batch reaction A + A + A2 f in 
progress, with instantaneous concentration [A] at time t = 16 s after 
preparation. Imagine another container that simultaneously happens 
to pass through the same instantaneous concentration [A], but 
b e i i  at time t = 1 s & its preparation. The second container 
obviously was prepared with a lower initial concentrauon, but both 
have the same concentration at observation time. Both containers 
are also assumed to have exactly the same thermodynamic condi- 
tions.of temperature, pressure, and so fbrth. Thus they should react 
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Tabk 1. F factors (rounded). 

Cubic lame 
Sierpinski gasket 
Percolation duster 
Lineat lame 
Linear islands (20 sites each) 

Fig. 5. A steady-state realization of the A + B + AB f reaction on a 
percolating duster (Fig. 2) from a supercomputer simulation [Sari Diego 
Center (9)]. Landmg rate: one pair per two steps. Other conditions are the 
same as in the caption of Fig. 3B. Note that the underlying lattice (Fig. 2) is 
not shown here. 

classically at the same rate. However, with a fractal-like kinetics, this 
is not true. Assume that h = 112. For the first container k = 
k116-In = k114, whereas for the second k = kl l - In  = kl. At the 
time of observation, the second container is reaaing with an 
instantaneous rate four times greater than the first one. How is this 
so? 

One approach to the above dilemma is to say that the containers 
have a &rent history. The first was prepared longer ago and with a 
higher initial concentration. The passage of time has "degradedn the 
rate d c i e n t  k. If these were real reactions, happening on a 
catalyst, we would have probably said that the catalyst got "poi- 
soned." However, there is no "poison" in the computer simulations. 
There is also no reason to believe that poisoning occurs in the 
laboratory reactions studied (see below). What then is the diffkrence 
between the two containers? 

In specitjing a concentration or a density for a noncrystalline 
thermodynamic system, one implicitly assumes a uniformly random 
distribution in space. Only under such an assumption can one expect 
that two systems with identical conditions will have identical 
reaction rates. Apparently, this is no longer true for our fractal 
containers. A simple example is given in Fig. 4. Obviously, for a 
bimolecular reaction to occur, two molecules must "pair up." We 
can measure such pairing-up in a number of ways. One simple 
method is to define a pair with the help of a maximum distance d (if 
the molecules are closer than d, they count as a pair). We can then 
define an instantaneous-reactivity criterion r to be given by the 
6-action of molecules included in such "pairs." For instance, in Fig. 
4, r = 617 for the right-hand container, but r = 0 for the l&-hand 
container. Note that a random distribution will eventually include 
pairs, whereas an ordered distribution, which looks like a lattice or a 

grid, will not. Although in a classical reaction system the distribu- 
tion stays unifbrmly random, in a fractal-like reaction system the 
distribution tends to become "less random," that is, it is actually 
more ordered. A "mathematical" poisoning is thus created through 
self-ordering (see below). This effect is related to the compactness of 
low-dimensional random walk (14, 15). 

A second dection on the above example may lead to the 
conclusion that a fractal-like reaction might be more intuitive than a 
classical one. As pairs react (A + A + A2 f ), they are depleted. In 
time the fraction of pairs is reduced. However, in the classical case 
the ensemble manages to "rerandomizen itself (without stirring) and 
thus to keep up the supply of pairs. Hence the key question is: Can 
"self-stirring" compensate for pair depletion in a diffusion-limited 
reaction? It is at this point that the topology of the reaction space 
enters. In low dimensions a random walker is likely to stay at its 
original vicinity (14) and will eventually recms its starting point. In 
higher dimensions (D > 2) the random walker has a 6nite "escape 
probability" and may never return to the starting point. Thus a 
fiactal-like kinetics is a "compact" kinetics (15)--the random walkers 
mostly "oscillate" around their original positions. 

Importance of Initial Conditions 
From our previous discussion it is apparent that initial conditions, 

which are usually of little importance in the "rerandomking" 
classical kinetics, may be very important in fractal kinetics. 

Batch versus steady-state creation and recombination. When the reactants 
A are produced suddenly (for example, photochemically by an 
intense but short laser pulse), one assumes that their distribution is 
random. However, when the reactants are produced at a steady rate, 
leading to a steady-state condition (for example, photochemical 
excitation by a continuous light source), the distribution is partially 
ordered (16,17). Based on computer simulations (1 6,17) one gets a 
novel effect for fractal-like reaction media. However, for a 3-D, 
isotropic (cubic) medium, one gets the classical result. 

A simple empirical criterion for partial order is given by the factor 
F 

where kf; is the initial (t = 0) ratc coefficient for random creation and 
& is the one for steady-state aeation, defined for equal initial 
concentrations: 

Table 1 lists some typical F factors derived from simulations (16, 
17). The very large values observed for these F factors demonstrate 
that the nonrandom steady-state distribution for fractals and low- 
dimensional geometries manifests itself in ememely reduced reac- 
tion probabilities. Thus F is an "order parameter," because steady- 
state conditions in low-dimensional media are achieved only after a 
process of self-ordering. Specifically, for a 1-D lattice, the steady- 
state population has a quasi-periodic distribution, that is, it forms a 
quasi-superlattice, rather than a random, Poissonian distribution. 
Quantitatively, the nearest-neighbor distance (r) has a distribution 
P(r) with a most probable value ro that f f i e s  a mesoscopic length 
scale, ro >> a, where a is the particle size (reaction cross section). 
Such a P(r) distribution is also obtained at long times for batch 
reactions, irrespective of initial conditions (18). For instance, for 
A + A+ A, P(r) a r q [ - p ( r  - a)?], where p is proportional to 
the reciprocal of the square of the particle density. Note that for a 
Poissonian distribution P(r) a exp[-a(r - a)] and ro = a, where a 
is the reciprocal of the particle density. 

Pair creation. Here we consider the reaction 



1 A + A + A 2 f  andB+B+B2f)orwithpaircreation.Inthe 
latter cases the particle distribution is random and the steady-state 
density is much lower (9). Segregation is also expected for most 
fractal media (where d,  < 2) and dispersed media (such as in Fig. 6). 

Segregation and WenxelJs Law. Wcnzel's law (1777) (20) states that 
for heterogeneous reactions, the larger the interface, the k t e r  the 
reaction, that is, the rate per unit surface is constant. Except for 
obvious generalizations (only the "active" part ofthe surface should 
be counted), this law still holds (21). 

Recent simulations have shown (22) that the steady-state rate 
constant, per unit area, may strongly depend on the size of the 
sample. For the bottom topology of Fig. 7, the reaction proceeds 
three times as fast as the top topology (23). The reason is segrega- 
tion. A higher segregation is possible on the c o n n d  loop. 

~ 1 ~ .  6. A eon on an -ble o f m n ~ a a c  h h  (5 Meed, thereaction &e constant is about three times faster for &e 
by 5 sites) from a supercomputer simulation [San Diego Center (9)]. bottom configuration (24, thus dearly violating Wend's law. This 
Snapshot after 5 x I d  steps. Landing rate: one pair per eight time steps. result shows that shredding or grinding a sample not only increases 

the s& area but can also increase the reactivity per unit surface. 
Clouds and colloids. Clouds, colloidal formations,.~d dust are often 

Fig. 7. The shrcdding effect. The I 
reaction A + B + A B f  proceeds aaaaaaaaaaaaaaaaaa fractals (6). Of particular interest with respect to possible biomor- 
only on the rims of the surfaces. phogcnesis (24, 25) are the diffusion-limited aggregates (DLA), 
Thac is ual length of rim in both cases. The reaction A  + B + AB f  where a diffusion-limited kinetic process forms a fractal (26). Many 
redts in %&a f i t y  (low= d o n  rate) far the w m d  natural formations resemble a DLA and are presumably formed in a 
catalyst (top), wmpared with the disjointed one (bottom). similar fashion (27). We focus here on a diffusion-limited chemical 

reaction proceeding on a DLA. For A + A + A2 f , the reaction is 

A 2 + A + A + A 2 f  fiarral-like with h = 113 (28). Presumably an A + B reaction on a 
(la) DLA (such as a dust particle) will also result in reactant segregation 

We assume a catalytic surface onto which A2 molecules land at and self-organization. 
random and immediately dissociate into A atoms. The atoms diffuse The origin of charge separation in colloids and clouds may also be 
and react, giving a product (A2) that immediately leaves the s&. attributed to reactive segregation. Ions randomly accrctcd by a 
A very drastic effect can be seen for a 1-D surface. Whereas a steady colloid or cloud result in pamal charge segregation (see Figs. 3B and 
random landing of A atoms results in a steady-state reaction with a 5) even without any external field. In addition, this effect is 
reaction order X = 3, according to Eq. 11% a pairwise landing signi6cantly amplified in the presence of a relatively weak field (Fig. 
process gives X = 2 at steady state (13, 18). The pairwise landing 8). Much higher fields are required fbr nonreactive charge separa- 
process prevents the tbnnation of a self-ordered steady state, tion. 
resulting instead in a Poissonian steady state. This is an example of a 
subtle but important distinction that also applies for hctal surfaces. 
Note that Eq. l a  describes an equilibrium as well as a steady-state PradctalLike process. Maxwell's postulate ascribes a random (Poissonian) distri- 
bution to all kinetic equilibria. Photochemical and photophysical experiments with reaction 

Segregation and Self-ordering 
The self-ordering effect is much more prominent for the two- 

reactant (A + B) case. Focusing again on Fig. 3B (steady state), 
note that in this Monte Carlo simulation A and B partides land at 
random and move at random. When an A atom collides with a B (or 
B with A), the product AB desorbs. An A atom is not allowed'to , 

react with an A nor a B atom with a B. Thus A and B are created in a 

pairs so that at all times [A] = [B] exactly. A drastic segregation '. 
such as in Fig. 3B happens for each computer realization, although 
the shape of the aggregates differs. Furthermore, segregation allows 
a much higher steady-state density compared with t h s e  in nonseg- *- 
regated o u t ~ ~ ~  (12) (see below). No such steady-state segregation • 

has been observed (12) for Eudidean spaces with dimension d > 2, * 
nor is it expead theoretically (19). 

A similar dramatic segregation effect is observed for random 
hctals, for example, a "percolating cluster" (see Fig. 5). As 
mentioned above, the underlying ''mid. (Fig. 2) itself has no 
apparent order. Nevertheless, the reactant distribution shows dear 

Fig. 8. Electric field effects on steady-state reactions. Same conditions as for segregation of'klike" particles and aggregations of "liken particles. Fig. 5, for a *Onal bias the rvldom & In this 
However, these s e l f i o m t i o n  effects are no longer observed supercomputer simulation [San Diego Center (9)], the snapshot is after 16 
when all of the partides are allowed to react (that is, also allowing step, and the d i d o n  bias is 0.35 to 0.15. 
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mechanisms known to be elementary, in cases where both product 
and reactant are easily followed in time, have served as ideal tests for 
fractal-like kinetics. Other systems besides excitons (see above) have 
been studied and are presented here. 

Naphthalenephotodimmmzation in porous membranes. The photodimer- 
ization of anthracene in solution was probably the first well-studied 
diffusion-lited reaction (29). The bmolecular reaction 
A + A + A2 (A = anthracene) followed the dassical kinetics laws. 
A similar reaction provided the first study of fractal chemical 
kinetics: 

N* + N*+N2**+N + N + aphoton (16) 

Here N* is a naphthalene molecule excited to its first triplet state 
and N2** is the transitory dimer in the first excited singlet state (30, 
31). The experiment is performed in a solution embedded in various 
porous membranes [nylon (see Fig. 9) and acetate]. The naphtha- 
lene molecules diffuse inside the solvent inside the pores. A fractal- 
like kinetics with h on the order of 113 was obtained for the various 
membranes, whereas classically one expects h = 0. 

Photophysical reaction in a 1-D jactal-like system. It has been men- 
tioned that an A + A reaction in a 1-D system is fractal-like with 
h = 112. How thin a tube is necessarv to have 1-D behavior? 
Simulations (18) show that if the reactioi time is much longer than 
the time it takes the particles to reach the wall, then the reacting 
ensemble "knows" that it is confined to a 1-D medium. 

To test this idea, a range of cylindrical tubes was used, with radii 
between 5 and 6000 nm. The tubes (Fig. 10) were channel pores in 
polycarbonate porous membranes. They were filled with crystalline 
naphthalene (Cl& only) and exciton kinetics were studied (see Eq. 
8). For the 100-nm and thicker naphthalene "wires" (32), h = 0, 
that is, classical kinetics held, as expected. For the very thin wires 
(<25 nm), the result was h = 0.49. Note that h = 112 is expected 
for 1-D systems. Thus 1-D structures with intermediate thickness 
exhibited fwd-like behavior (0 < h < 1/2), similar to the fractal 
behavior of the percolation duster (h = 113) described earlier. 

These 1-D wires have also been subiected to the initial condition 
tests (see above). The thinnest wires showed a factor F - 5 (see Eq. 
12), whereas the thickest ones showed F = 1. This result is consist- 
ent with those in Table 1. [In addition, preliminary experiments on 
solution photodimerization of naphthalene inside the thinnest cylin- 
drical pores gave h = 0.4 2 0.1, in good agreement with the 
expected theoretical value and the above exciton experiments.] 

Applications of Fractal Kinetics 
Fractal kinetics as a structural tool. Porous glass (Vycor) has recently 

been under active investigation, because of a controversy (31-33) 
about its pore topology: is it fractal, like a percolation cluster (Fig. 
l), or is it effectively one dimensional? Porous glass has been 
subjected (16, 31, 32) to two fractal-kinetics tests as was done for 
exciton fusion in naphthalene-embedded pores: (i) the h value and 
(ii) the F factor. Both tests support the nonfiactal topology. Similar 
tests have been performed on a number of composites containing 
porous polymeric membranes and filter papers (31). Also, the 
domain-boundary topology of vapor-deposited films has been inves- 
tigated (4,34), as well as the effective topology of molecular clusters 
in molecularly doped polymers (4, 35) and the chain topology in 
dilute polymeric blends (36). In all of these cases consistent results 
were obtained. More such applications can be envisioned, such as 
the investigation of surfaces of catalysts, electrodes, and electronic 
devices. 

Fractal kinetics as a tool for reaction kinetics. The major goal of this 
work is to understand heterogeneous reaction kinetics in areas such 

Flg. 9 (lett). Porous nylon membrane (Gdman, Ann Arbor, Michigan). 
M e c a t i o n  about x lo4. Fig. 10 (right). Channel-pore plycarbon- 
ate membrane (Nudepore, Pleasanton, California). Ma@cation about 
X 10". Thickness, -6 pm. 

as chemistry, biology, geology, solid-state physics, astrophysics, and 
atmospheric sciences. Only the first steps have been taken in this 
direction, such as energy transport studies in condensed phases (37) 
and the dimerization and recombination studies mentioned above. 
Although the molecular kinetics experiments (30) may be viewed as 
preliminary evidence, the exciton-kinetics experiments (4, 5, 9, 31, 
32, 34-38) have given consistent results in different laboratories for 
more than a decade. Note that even the presence of partial convec- 
tion may still leave a surprising degree of "understirring," especially 
in low dimensions (34L41). 

Diffusion-controlled reactions with geometrical constraints, as 
found in heterogeneous kinetics, may be described by reactions on 
fractal domains. The hallmarks of "fractal-like" reactions are anoma- 
lous reaction orders and time-dependent reaction rate "constants." 
These anomalies stem from the nonrandomness of the reactant 
distributions in low dimensions. For homo-bimolecular reactions 
(A + A+ Pr) the distribution is partially ordered, for example, 
quasi-periodic. However, for hetero-bimolecular reactions 
(A + B + Pr) the reactants segregate. Theory, simulations, and 
experiments are interrelated through the formalism of fractal reac- 
tion kinetics (42). 
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Developmental Regulation of Two 5 S 
Ribosomal RNA Genes 

The developmental regulation of two kinds of Xenopus 5s 
RNA genes (oocyte and somatic types) can be explained 
by differences in the stability of protein-protein and 
protein-DNA interactions in a transcription complex that 
directs transcription initiation by RNA polymerase 111. 
Dissociation of transcription factors from oocyte 5S RNA 
genes during development allows them to be repressed by 
chromatin assembly. In the same cells, somatic 5s RNA 
genes remain active because their transcription complexes 
are stable. 

T HE FROG XENOPUS LAEVIS CONTAINS TWO KINDS OF 

multigene families that encode 5S ribosomal RNA, an 
essential component of ribosomes. Xenopus oocytes synthe- 

size and accumulate large amounts of 5S RNA encoded for by a 
large multigene family called oocyte 5S DNA. Oocytes also express a 
small multigene family (somatic 5S DNA). After fertilization and 
development of the embryo, the oocyte-specific 5S RNA genes are 
repressed, while the somatic 5S RNA genes remain active. This is an 
example of what may be a common developmental mechanism: 
where two (or more) gene families have similar (but not identical) 
cis-acting controlling elements that are recognized by the same 
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factors but are nonetheless controlled differently. In studying the 
developmental control of this "dual" 5S RNA gene system, we have 
sought to understand the molecular mechanisms that establish and 
maintain this pattern of differential gene activity. 

The 5s RNA Genes of Xenopus laevis 
The structure and organization of the three kinds of 5S RNA 

genes that have been characterized from the X. laevis genome are 
diagrammed in Fig. 1. These are called major oocyte (Xlo) ( I ) ,  trace 
oocyte (Xlt), and somatic (Xls) 5S DNA (2). Each class is organized 
in clusters of simple tandem repeats. All three classes are transcribed 
in growing oocytes, while somatic 5S DNA transcription contrib- 
utes more than 95% of the 5S RNA synthesized in somatic cells (3). 
Because there are only 400 somatic 5S RNA genes but over 20,000 
oocyte 5S RNA genes per haploid genome, this is a final differential 
gene transcription of over 1000-fold in somatic cells. We refer to 
this as a somatic-to-oocyte ratio (SIO) of 1000. The two kinds of 
oocyte-specific 5S RNA genes (Xlt and Xlo) are similar enough that 
we will concentrate on the differential transcription of Xlo and Xls 
5S RNA genes in this article. There are six nucleotide differences 
between Xlo and Xls 5S RNA genes (Fig. l ) ,  and the spacers are 
completely different except for short conserved elements near the 5' 
and 3' ends of the gene. We assess the importance of these sequence 
differences by in vitro (4) and in vivo (5)  transcription assays, where 
full-length 5S RNA is synthesized. 

The 5S RNA genes are accurately and efficiently transcribed by 
RNA polymerase I11 when they are injected into oocyte nuclei or 
incubated in extracts of these same nuclei. Transcription initiation is 
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