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Computational Neuroscience 

The ultimate aim of computational neuroscience is to 
explain how electrical and chemical signals are used in the 
brain to represent and process information. This goal is 
not new, but much has changed in the last decade. More is 
known now about the brain because of advances in 
neuroscience, more computing power is available for 
performing realistic simulations of neural systems, and 
new insights are available from the study of simplifying 
models of large networks of neurons. Brain models are 
being used to connect the microscopic level accessible by 
molecular and cellular techniques with the systems level 
accessible by the study of behavior. 

'NDERSTANDING THE BRAIN IS A CHALLENGE THAT IS 

attracting a growing number of scientists from many 
disciplines. Although there has been an explosion of 

discoveries over the last several decades concerning the structure of 
the brain at the cellular and molecular levels, we do not yet 
understand how the nervous system enables us to see and hear, to 

learn skills and remember events, to plan actions and make choices. 
Simple reflex systems have served as usefbl preparations for studying 
the generation and modification of behavior at the cellular level (1). 
In mammals, however, the relation between perception and the 
activity of single neurons is more difficult to study because the 
sensory capacities assessed with psychophysical techniques are the 
result of activity in many neurons from many parts of the brain. In 
humans, the higher brain functions such as reasoning and language 
are even hrther removed from the properties of single neurons. 
Moreover, even relatively simple behaviors, such as stereotyped eye 
movements, involve complex interactions among large numbers of 
neurons distributed in many different brain areas (2-4). 

Explaining higher h c t i o n s  is difficult, in part, because nervous 
systems have many levels of organization between the molecular and 
systems levels, each with its own important functions. Neurons are 
organized in local circuits, columns, laminae, and topographic maps 
for purposes that we are just beginning to understand (5-8). 

T. Sejnowski is in the Department of Biophysics at the Johns Hopkins University, 
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Properties not found in components of a lower level can emerge 
from the organization and interaction of these components at a 
higher level. For example, rhythmic pattern generation in some 
neural circuits is a property of the circuit, not of isolated pacemaker 
neurons (9, 10). Higher brain functions such as perception and 
attention may depend on temporally coherent functional units 
distributed through several different maps and nuclei (4, 8). The 
sources of such network properties are not accessible by the use of 
methods suited to investigating single neurons. 

Assuming that there are emergent properties of networks, it is 
difficult to imagine a major advance in our understanding of brain 
function without a concomitant development in direct, efficient 
techniques for probing the mechanisms of distributed processing. 
New experimental techniques currently being developed include 
methods for simultaneously recording from multiple single units, 
optical recording of columnar organization in cortex with voltage- 
and ion-sensitive dyes, and large-scale measurements of brain struc- 
ture and activity with positron emission tomography (PET), magne- 
toencephalogram (MEG), 2-deoxyglucose (2-DG), and magnetic 
resonance imaging (MRI) (1 1). Statistical methods are also being 
developed for analyzing and interpreting the information that will 
be collected (12, 13). Though valuable, each of these new techniques 
has severe limitations on its spatial or temporal resolution, and new 
approaches to understanding distributed processing are needed (14). 

Modeling promises to be an important adjunct to these experi- 
mental techniques and is essential in addressing the conceptual 
issues that arise when one studies information-processing in the 
brain (15-17). The advantages of brain models are varied. (i) A 
model can make the consequences of a complex, nonlinear brain 
system with many interacting components more accessible. (ii) New 
phenomena may be discovered by comparing the predictions of 
simulation to experimental results and new experiments can be 
designed based on these predictions. (iii) Experiments that are 
difficult or even impossible to perform in living tissue, such as the 
selective lesion of particular channels, synapses, neurons, or path- 
ways, can be simulated by the use of a model. 

What kind of a computer is the brain? Mechanical and causal 
explanations of chemical and electrical signals in the brain are 
different from computational explanations (18). The chief difference 
is that a computational explanation refers to the information content 
of the physical signals and how they are used to accomplish a task. 
This difference is easiest to see in simpler physical systems that 
compute. For example, a mechanical explanation for the operation 
of a slide rule includes the observations that certain marks are lined 
up, the slider is moved, and a result is read. A computational 
explanation states that a slide rule computes products because the 
marks on the sliding wood rules correspond to logarithms, and 
adding two logarithms is equivalent to multiplying the correspond- 
ing pair of numbers. Thus, the physical system carries out a 
computation by virtue of its relation to a more abstract algorithm 
(19). One of the major research objectives of computational neuro- 
science is to discover the algorithms used in the brain. 

Unlike a digital computer, which is general purpose and can be 
programmed to run any algorithm, the brain appears to be a 
collection of special purpose systems that are very efficient at 
performing their tasks, but are limited in their flexibility. The 
architecture of an efficient, dedicated system like a slide rule, or a 
brain system, constrains the algorithm it implements in a fashion 
that does not occur in digital computer (20). The clues from 
structure are particularly valuable because the nervous system is a 
product of evolution, not engineering design. The computational 
solutions evolved by nature may be unlike those that humans would 
invent, if only because evolutionary changes are always made within 
the context of a design and architecture that already is in place (21). 

Classes of Brain Models 

Realistic brain models. One modeling strategy consists of a very 
large scale simulation that tries to incorporate as much of the cellular 
detail as is available. We call these realistic brain models. While this 
approach to simulation can be very useful, the realism of the model 
is both a weakness and a strength. As the model is made increasingly 
realistic by adding more variables and more parameters, the danger 
is that the simulation ends up as poorly understood as the nervous 
system itself. Equally worrisome, since we do not yet know all the 
cellular details, is that there may be important features that are being 
inadvertently left out, thus invalidating the results. Finally, realist; 
simulations are highly computation-intensive. Present constraints 
limit simulations to tiny nervous systems or small components of 
more complex systems, only recently has sufficient computer power 
been available to go beyond the simplest models. 

An example of a realistic model at the level of a single neuron is 
the Hodgkin-Huxley model (22) of the action potential in the squid 
giant axon. The action potential is a stereotyped, transient, electrical 
event that propagates along an axon and is used for communicating 
information over long distances. The action potential is a result of 
the voltage- and time-dependent properties of several types of 
membrane channels. The dynamics of the membrane channels were 
modeled by a set of coupled, nonlinear differential equations that 
were solved numerically. The velocity of the action potential 
predicted by Hodgkin and Huxley agreed to within 10 percent of 
the measured value. Two im~ortant  lessons can be learned from this 
example. First, the model was the culmination of a large number of 
experiments. In general, realistic models with a large number of 
parameters require a correspondingly large number of measure- 
ments to fit the parameters. Second, the voltage-dependent mem- 
brane channels postulated to account for the data were verified only 
much later with the introduction of single-channel recording tech- 
niques (23). In general, we should expect to make hypotheses that 
go beyond the immediate data. 

An example of a realistic model at the network level is the 
Hartline-Ratliff model of the Limulus lateral eye (24). The photore- 
ceptors in the retina have lateral inhibitory synaptic interactions 
with neighboring photoreceptors, and as a consequence the contrast 
in the firing rates at light intensity borders is enhanced. Because the 
interactions are approximately linear, a model of the network can be 
mathematically analyzed in great detail. Once all of the parameters 
are determined from experimental measurements, the model can 
accurately predict the firing rates of all the fibers in the optic nerve 
stimulated by an arbitrary spatiotemporal pattern of light falling on 
the retina. Models of networks that are nonlinear and have feedback 
connections are much more difficult to analyze, so that only a 
qualitative mathematical analysis is possible and simulations of their 
behavior are essential. It is worth emphasizing again the necessity of 
collecting a nearly complete set of experimental measurements 
before a realistic model can be attempted. 

Simpli3ing brain models. Because even the most successful realistic 
brain models may fail to reveal the function of the tissue, computa- 
tional neuroscience needs to develop simplifying models that cap- 
ture important principles. Textbook examples in physics that admit 
exact solutions are typically unrealistic, but they are valuable because 
they illustrate physical principles. Minimal models that reproduce 
the essential properties of physical systems, such as phase transitions, 
are even more valuable. The study of simplifying models of the brain 
can provide a conceptual framework for isolating the basic computa- 
tional problems and understanding the computational constraints 
that govern the design of the nervous system. 

~ c e  class of models that is currently being investigated under the 
general headings of connectionist models, parallel distributed pro- 



cessing models, and "neural networks" is of this second type, which 
we shall hereafter refer to as simplifving brain models. These models 
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abstract from the complexity of individual neurons and the patterns 
of connectivity in exchange for analytical tractability (25). Indepen- 
dent of their use as brain models, they are being investigated as 
prototypes of new computer architectures (26, 27) and as models for 
psychological phenomena (28-30). Some of the lessons learned from 
these models can be applied to the brain. 

One of the best stuliid models is the class of layered feed-fonvard 
networks. In this architecture, information is coded as a pattern of 
activity in an input layer of model neurons and is transfbrmed by 
successive layers receiving converging synaptic inputs from preced- 
ing layers. The following three findings are of significance for the 
brain. (i) Even systems with only a few intermediate layers have 
enormous power-in representing complex nonlinear h c t i o n s  (31, 
32). (ii) The performance of a network in specific problem domains 
(such as visual and speech processing) depends critically on how the 
incoming information is represented by the neurons (such as the 
type of preprocessing) and the symmetries in the pattern of connec- 
tions. (iii) For difficult problems, the processing units in the middle 
or "hidden" layers generally encode many different combinations of 
input variables by the use of a semidistributed type of representation 
(33). By combining the power of these models with further con- 
straints-from neurophysioiogy and neuroanatomy it may be possible 
to interpret some of the properties that have been observed from 
single-unit recordings, as we illustrate in the next section (34-36,). 

These simplifying brain models also make an important bridge to 
computer science and other disciplines that study information 
processing. Issues such as convergence of the network to a stable 
solution, the amount of time needed for the network to achieve a 
solution, and the capacity of networks to store information are being 
investigated in simplifying models in ways that are not at present 
feasible with realistic models (37). The scaling of these properties 
with the size of the network is crucially important for practical 
applications and for the plausibility of the model as a brain model 
(38-39). Many of the current models do not scale well without 
additional constraints on the architecture, such as restricting the 
connectivity to local neighborhoods. 

Technology fov bvain modeling. Computational brain models are 
almost always simulated on digital computers. Computers are 
getting faster, but they must perform the many parallel operations of 
the brain one at a time and are many orders of magnitude too slow. 
Parallel computers with thousands of processors are being devel- 
oped, but are still inadequate (40). A new approach toward simulat- 
ing biological circuitry is being pioneered by Mead (20), who is 
constructing hardware devices that have components that directly 
mimic the circuits in the brain. Fast hardware can deliver the 
computing power necessary to evaluate the performance of a model 
in real time. Furthermore, the physical restrictions on the density of 
wires and the cost of communications im~osed bv the s~atial  lavout 
of the electronic circuits are similar to the constraints imposed on 
biological circuits. This approach may lead to a "synthetic neurobi- 
ology" (20). 

Mead uses analog subthreshold complementary metal oxide semi- 
conductor VLSI (very large scale integrated) circuit technology. 
Several chips that implement simplifying models of visual informa- 
tion processing have already been-produced that are highly efficient. 
A "retina" chip computes the spatial and temporal derivative of 
arbitrary images projected onto an hexagonal array of 48 by 48 
phototransistors, which are approximately logarithmic over five 
orders of magnitude of light amplitude, coupled by means of a 
horizontal resistive grid andinjecting current into model "amacrine" 
cells that compute a temporal derivative (41). Similar circuits can be 
designed for computing optical flow in real time (42-43). 

These VLSI chips and new techniques in optical information 
processing may lead to a new computing technology, sometimes 
called artificial neural systems, or neurocomputing (44, 45). This 
technology for performing massively parallel computations could 
have a major influence on the next generation of research in 
computational neuroscience. For example, an analog VLSI model of 
a neuron that included conductance mechanisms, synaptic appara- 
tus, and dendritic geometry could be produced in great quantities. 
These chips could be used as coprocessors in a conventional digital 
computer to greatly increase the speed of realistic simulations. If this 
technology is developed now, it should be possible to simulate our 
visual system in real time by the 21st century (40). 

Specific Examples of Brain Models 
We will discuss several different models that show the great 

variety of different levels of structure, analysis, and measurement 
existing in contemporary computational neuroscience. It is impossi- 
ble to discuss in this article even a small fraction of the models in the 
literature that address a particular problem in neurobiology, so we 
will limit ourselves to a few examples from the invertebrate and 
vertebrate vision literature. This choice reflects the idiosyncrasies 
and research interests of the authors and in no way implies that other 
areas within neurobiology have not developed equally relevant 
models (46). 

The modeling of learning and memory is an important area not 
covered here. Evidence for neural plasticity is accumulating at the 
cellular and molecular levels in a variety of systems (47-51). The 
conditions for plasticity can be incorporated onto large-scale net- 
work models that have properties that can be explored in simula- 
tions of realistic models (46, 52, 53) and analytically for simplifying 
models (54, 57). A separate review would be required to summarize 
all the interesting models of learning and memory in brain circuits 
that are now being explored (58-60). 

Detecting and computing motion. Visual motion is a hdamenta l  
source of information about the world (61, 62), and motion 
detection is the first stage of motion processing. Reichardt's motion 
detection scheme was first proposed 30 years ago. Behavioral data, 
gained on the basis of open- and closed-loop experiments performed 
on beetles and flies (63, 64), indicated that a sequence of two light 
stimuli impinging on adjacent photoreceptors is the elementary 
event evoking an optomotor response. The relation between stimu- 
lus input to these two photoreceptors and the strength of the 
optomotor output follows the rule of algebraic sign multiplication 
(65, 66). 

The correlation model of motion detection follows from these 
observations (63). The output of one photoreceptor is multiplied by 
a low-pass filtered signal from a neighboring receptor (Fig. 1A). 
The product is then integrated in time, which is equivalent to the 
autocorrelation of the visual input (67). Since the low-pass filter can 
be thought of as a delay, this direction-selective subunit (Fig. 1A) 
will respond with a positive signal in one direction and with a 
negative response in the opposite direction. This theoretical model 
has a number of nontrivial properties, such as phase invariance and 
dependence on contrast frequency (67), that have been confirmed 
experimentally. In humans, the psychophysical evidence favors a 
slight modification of the original correlation model (68, 69). Thus, 
the correlation model for motion detection is consistent with 
psychophysics in several different species. It is a realistic model at the 
systems level. 

Motion detection has also been explored at the cellular level. 
Barlow and Levick (70) systematically studied the rabbit retina by 
recording extracellularly from the output cells of the retina. About 
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20 percent of all ganglion cells responded vigorously to the motion 
of both black and white suots in one direction but were silent when 
the spots moved in the opposite direction. Barlow and Levick's two 
principal conclusions were that inhibition is crucial for direction 
discrimination and that this discrimination must occur at many 
different sites within the receptive field. They proposed that direc- 

Null 
___) 

Preferred 

Fig. 1. Movement detection and fig- (D) 
ure-ground segregation. (A)  The FD-System 
correlation model (63, 64). In its 

F [ x  s( t  essential form, the two outputs from F[x + s ( t  )] - - 
two neighboring photoreceptors are - 
multiplied after one signal is delayed 
with respect to the second. If the 
product is averaged in time and sub- 
tracted from the time-averaged 
product from the other branch, the 
overall operation is equivalent to 
cross correlating the intensity on the 
retina. The model is symmetrical 
from an anatomical point of view, 
but is functionally antisymmetrical. 
The correlation model was proposed 
on the basis of behavioral experi- 
ments carried out in insects (65). (6 )  
The scheme proposed by Barlow 
and Levick (70) to account for direc- 
tion-selective ganglion cells in the 
rabbit retina. The output of one 
channel is gated in the null direction 
by a signal from a neighboring chan- 
nel. In the preferred direction, the 
delayed signal from the neighboring 
receptor arrives too late to veto the 
excitatory signal. (C) A detailed cellular implementation of Barlow and 
Levick's scheme of direction selectivity (76), based on the proposal (75) that 
the nonlinear interaction between excitatory and inhibitory synaptic induced 
conductance changes of the silent or shunting type can approximate a 
multiplication. Detailed computer simulations of the cable properties of 
dendrites show that shunting inhibition (solid circles) can effectively veto 
excitation (bars) as long as the inhibitory synapses are close to the excitatory 
synapses or between excitation and the cell body (76). (D) The neural 
circuitry underlying pattern discrimination in the visual system of the house 
fly Musca domestica, as proposed by Reichardt and his group (77, 80). In each 
eye, two overlapping sets of retinotopic arrays of elementary movement 
detectors of the correlation type (63) respond selectively to either front-to- 
back (+) or back-to-front (-) motion. All movement detectors feed into two 
pool neurons (SR and SL). One of these cells (pr) is excited by motion in the 
front-to-back direction, while the second is excited by the opposite motion 
(F- indicates excitatory synapses and D- indicates hyperpolarizing inhibi- 
tory synapses). The pool cells are also coupled with their homologues in the 
contralateral hemisphere. The output of both pool neurons shunts (p-) the 
output of the movement detectors (the inhibitory synaptic reversal potential 
is close to the resting potential of the cell) before they either excite (Fe-) 
or inhibit (DO-) the two output cells (XR and XL). The final motor output 
is controlled by the X cells. The key elements of this model (X and S cells) 
have been identified with neurons in the third optic ganglion of the fly (79, 
80). Abbreviations: L, left; R, right; T, a channel that computes the running 
average of the output from the X cells. [Courtesy of W. Reichardt] 

tion selectivity is based on a scheme whereby the response in the null 
direction is vetoed or inhibited by appropriate neighboring inputs 
(Fig. 1B); directionality is achieved by a delay between the excitato- 
ry and inhibitory channels (extending from photoreceptors to 
ganglion cells). This proposal is a cellular level version of Reichardt's 
correlation detector. 

Techniques are being developed to study motion detection at the 
biophysical level. The key experimental finding is that lateral 
inhibition is induced in ganglion cells for all directions of movement 
except for the preferred direction (71). This inhibition could be 
generated by mechanisms presynaptic to the ganglion cell (72). 
Werblin et al. (73) have found evidence in the retina of the tiger 
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salamander for movement-gated lateral inhibition generated by 
interactions among amacrine and bipolar cells. This mechanism for 
motion detection-has not yet be& integrated into a model of 
directional selectivity. Another possible mechanism for motion 
detection is through postsynaptic interaction in the ganglion cell 
dendrite between an excitatory synapse and a delayed inhibitory 
synapse with a reversal potential close to the resting potential of the 
cell (shunting or silent inhibition), as shown in Fig. 1C (74, 76). The 
latter mechanism has been proven feasible with modeling studies, 
though a direct experimental test has not yet been performed in the 
retina. 

Visual motion detection has many different uses. Reichardt and 
his group (77, 80) have studied the use of motion information for 
pattern discrimination in the house fly, Musca domestica. Pattern 
discrimination here is a special case of the more general problem of 
figure-ground segregation, where the figure is one pattern and the 
ground is the other. The fly can distinguish relative motion between 
two moving objects, even if both objects have a similar texture, such 
as random dot patterns. The cellular basis of this behavior was 
explored by use of a combination of exacting behavioral studies, 
electrophysiology, and systems analysis. The model circuitry (Fig. 
1D) gives a satisfactory account of how the fly behaves under 
different conditions of relative motion (for example, a small figure 
oscillating on a background) and also explains the observed inde- 
pendence of the behavioral optomotor response from the spatial 
extent of motion-that is, the size of the moving object. Although 
the key neurons in the model (Fig. 1D) have been identified in the 
third optic ganglion of the fly (79) (Fig. 2), the proposed synaptic 
interactions are still under investigation. 

What has been learned about visual processing from the fly? An 
engineer might have designed a motion system that first extracted 
pure velocity information. However, in the fly visual system, motion 
detection is accomplished by use of the same neurons that process 
local pattern information. The models of motion detection and 
motion processing have shown how populations of neurons with 
mixed pattern and motion signals can accomplish figure-ground 
segregation. We can begin to see how the fly uses time-varying 
visual information to control its behavior in ways that were not 
intuitively obvious. Models were used at the systems, network, 
cellular, and biophysical levels to generate hypotheses and help 
guide experimental work. 

Orientation selectivity in visual cortex. Our second example is taken 
from the mammalian visual system. In an influential study, Hubel 
and Wiesel (81) showed that most cells in the cat striate cortex 
optimally respond to elongated bar stimuli, oriented in a specified 
direction. The receptive field of a simple cell is divided into several 
elongated subregions (Fig. 3A). Illumination of part or all of an 
excitatory region increased the cellular response, whereas such 
stimuli suppressed the response if projected onto inhibitory regions. 
The input to striate cortex from cells in the lateral geniculate nucleus 
also possesses such excitatory and inhibitory subdivisions but is 
organized in a concentric fashion (Fig. 3A). Hubel and Wiesel 
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postulated that the orientation selectivity of simple cells was generat- 
ed by a row of appropriately aligned excitatory geniculate cells 
converging on their cortical target neuron (Fig. 3B). The firing 
threshold of this cortical cell at its cell body is such that only 
simultaneous input fiom a large number of geniculate cells triggers a 
burst of action potentials. According to this hypothesis, the arrange- 
ment of the receptive fields of presynaptic inputs is sdlicient to 
produce orientation selectivity (81). 

Blockage of cortical inhibition by pharmacological agents leads to 
a partial loss of orientation selectivity in some neurons (82,83). This 
observation leads to a different set of models fbr orientation 
selectivity that use intracortical inhibition (82,84-86). In the version 
shown in Fig. 3C, nonoriented cortical intemeurons suppress the 
response of the oriented simple cell to nonoptimal oriented stimuli 
by synaptically mediated inhibition. However, the nonoriented 
inhibitory intemeurons postulated by this model have not been 
h d  in the cat striate cortex. Alternatively, intracortical inhibition 
fiom oriented cells could suppress firing of cdls to stimuli with 
orthogonal orientations [uoss-orientation inhibition (87)l. 

More recently, an "eclectic" model has been proposed that 
accounts fbr most of the experimental data by conferring orientation 
selectivity on all cells through massive feedback connections among 
cortical neurons (86, 88, 89). It assumes a Hubel-and-Wiesel-type of 
excitatory prcsynaptic arrangement s u p e r i m w  on two inhibitory 
systems: (i) inhibition among similarly oriented cells but with 

spatially nonoverlapping receptive fields-and (ii) aoss-orientation 
inhibition among cdls with spatially overlapping receptive fields but 
&ring orientation. Intracellular recordings of simple cells support 
the existence of at least the first two systems (90). 

It is a sign of the complexity of the brain that such a seemingly 
simple question-what is the circuitry underlying orientation selec- 
tivity-has not been satisfactorily answered 25 years after it was first 
posed. Realistic models of cortical processing could be used to test 
the strmgths and weakness of the various proposals (91). A 
simulation of a realistic model that includes massive inhibitory 
cortical interactions is presented in Fig. 4. In addition to verifying 
the consistency of the model with experimental measurements, the 
simulation also makes interesting predictions for the gain control of 
responses to visual stimuli of varying contrasts (91). 

These models of orientation tuning for simple cells in the visual 
cortex provide explanations for how the response properties of 
neurons are generated. The question remains as to what these 
properties contribute to visual processing. It is believed that because 
simple cells respond best to bars of light, they are used to detect the 

Fig. 2. Visual motion dctecnng system in the house fly. Two Lucifer yellow- 
Wed horizontal cdls are shown in the third optic ganglia (to ) and a 
horizontal d is shown at higher magdication with cobalt &I (right 
bottom). This d is a possible correlate of the output x cell in the model 
(bottom left) that is involved in the generation of yaw toque. Additional 
cells controllug, for example, pitch, roll, lift, and thrust are M y  to exist as 
well. The components of the network model are described in Fig. 1D. 
[Courtesy of K. Hausen and W. Reichardt]. 

5.3. Wiring underlying orientation selectivity. (A) The concentric center- 
surround receptive field of geniculate cdls contrasts with the elongated 
mxptive fields of their cortical target cells. (6) The excitatory-only model 
put forth by Hubel and W1e.4 (81). A row of appropriately located 
genicuiaa cells excites the oriented cortical d. A number of geniculate cdls 
whose receptke fields are located along a given axis mon 'caUy excite 
the cortical d ( o p  snan). The firing threshold %rsimple cell 
determines the degree of orientation tuning. Here and in the following, only 
the excitatory centers of the geniculate cdls is drawn. (C) One instance of an 
inhibitory-only model (82, 8486, 1W). Nonoriented cortical inhibitory 
(filled arrows) interneurons sculpture the orientation tuning of their target 
d by suppressing its response at nonoptunal orientations. For example, a 
horizontal bar will lead to activation of the internewon, which will inhibit 
the vertically oriented cortical d. (D) "Edeaic" model combining features 
of all  modeis (88,89). An adtam+ fIubel-and-wi&typc of pkymptic 
arcanecment is s u & d  on two inhibitow ones: reci~mcal inhibition 
amoG similarly &en& cortical ceh with spahaUy nono~erlapping cecep 
tive fields (dotted lines) and uoss-orientation inhibition among orthogonal 
oriented cdls (dashed lines). Becaw of the massive Wba& among the 
participating cortical neurons [the model can be formulated as an associative 
network (101)], each neuron acquires orientation selection by means of a 
collective computation. Abbreviations: LGN, lateral geniculate nudeus; VI, 
VisUalcortcxareaVI. 
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presence of an edge or line at a particular orientation and position in 
the visual field. However, the same neurons also respond to spatial 
fkquency gratings and textured patterns, so it is not dear how to 
infer their actual function. The problem of i n f d g  function from 
response properties applies to neurons throughout the nervous 
system. One way to test a functional hypothesis is to construct a 
nctwork model with processing units having the same response 
properties as those found in the nervous system and to show that the 
network does perform the desired computation (92). Although a 
wotiring model can help generate hypotheses, and rule some out, it 
cannot prove that the brain n d y  solves the problem in the 
same way. 

Using this approach, Lehky and Sejnowski (36) have constructed 
a small layered ficcd-forward network that mkes as input a small 
patch of shaded image, as transformed by the retina and lateral 
gtniculate nudew, and computes the prinapal curvatures and 
orientation of the s& fiom which the image was derived. The 
d t i n g  network can compute surtace curvatures regardless of the 
direction of illumination, a computational problem in which the 
shape of a sUrEdce is recovered from the shading in the image (93, 
94). The construction of the network model was made possible by 
recent advances in network learning algorithms that allow complex 
networks with many thousands of connections to be synthesized 
from an input-output level description of the problem (95, 96). The 
network is trained by presenting images to the input layer and 
comparing the finng rates of the units on the output layer with the 
desired values. The error signals are used to c o m a  the synaptic 
weights between the processing units. The learning algorithm was 
used solely as a technique to create the network and not as a model 
for learning in the brain, nor as a model for how orientation tuning 
actually develop. Models of development have been proposed that 
use u n s u e  learning algorithms (53, 97). 

The surprising finding was that most of the cells on the hidden 
layer, which received the gcniculate input directly, had responses 

when probed with simulated spots or bars of light that were similar 
to those of the simple cells in the visual cortex (Fig. 5B; see also Fig. 
3A). These properties emerged through the learning procedure as 
the appropriate ones for extracting information about the principal 
curvaturrs, and were not put into the network directly. Curvatures 
were repmented on the output layer by units having tuning curves 
for curvature magnitudes and orientations (Fig. 5A). When probed 
with bars of light, the output units have receptive field properties 
similar to complex cells in the visual cortex that are end-stopped. 

response was reduced when the end of a bar of light was 
extended into an inhibitory region (98).] 

A finding of general significance was that the function of the 
model neurons in the network could not be understood solely by 
examination of their receptive field properties. For example, 
some cells with simple receptive fields were responsible not for 
signaling orientation to the output layer, but rather were providing 
information about the convexity or concavity of the surface. Exam- 
ining the outputs of a simple cell, called its "projective" field by 
analogy with the input receptive field, was critical in uncovering its 
function in the network. Thus, the very same simple cells can be 
cngagcd in several f u n c t i o w n  one hand detecting edges, on the 
other hand participating in the computation of curvature from 
shadmg informati04pcnding on the circuits to which the dl 
projects (36). Determining what was required for understanding 
the function of cells in this nctwork model has consequences for 
the more diflicult task of detumining the function of real neu- 
rons. 

This simplitj.ing network model of shape-from-shading has gener- 
ated several hypotheses about cortical processing without directly 
sirmtlating the detailed connectivity of the cortex, which is not yet 
known. The prediction that end-stopped cells should be selectively 
tuned for the surface curvature can be tested by use of shaded images 
as stimuli along with bars of light. The model can also evolve toward 
a realistic m d  that incorporates lateral interactions between 
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circuits at neighboring patches of the visual field and interactions should be used uncritically. Realistic models require a substantial 
with circuits that use &er cues for computing shape. 

Conclusions 
A scientific field is defined primarily by its problem space and its 

successful large-scale theories. Until there are such theories in 
computational neuroscience, the field is defined most by the prob- 
lems it seeks to solve, and the general methodology and specific 
techniques it hopes will yield successful theories. Models of brain 
function driven primarily by hct ional  considerations can provide 
only the most general guidance about what might be happening in 
the brain; conversely, models driven primarily by signal measure- 
ments and anatomy can easily miss those aspects of the signals that 
are relevant for information-processing. In this review we have 
presented several examples of models that attempt to combine 
insights from the hct ional  and the implementational levels of 
analysis. More examples can be found in other areas of neurobiology 
where models are being used to explore information-processing by 
brain mechanisms at many different levels of structural organization 
(46). 

Realistic and simplifying brain models have been distinguished to 
reveal their separate strengths and weakness. Neither type of model 

Type 1 Type 2 TYPe 3 

Fig. 5. Properties of model neurons in a network model that computes 
surface curvatures from shaded images of surfaces (36). (A) Representation 
of the tuning curve for one of the output cells in the network. Each cell is 
trained to respond jointly to one of the two principal curvatures and to the 
orientation of the long axis of the curved surface. The response of a single cell 
is broadly tuned and nonmonotonic. The 24 output cells have different 
preferred combinations of orientation and curvature with overlapping 
tuning curves. The pattern of responses in the population of output cells 
uniquely represents the curvatures and orientation. When probed with 
simulated bars of light these cells show some properties of end-stopped 
complex cells in the visual cortex. (B) Representative examples of three types 
of cells in the middle layer of a network that receive geniculate inputs and 
project to the output units. The hexagonal region at the bottom represents 
an array of inputs to the unit from on-center geniculate cells, and the 
hexagonal region above it are inputs from off-center geniculate cells. The 
white squares represent excitatory influences and the black squares represent 
inhibitory influences, and the area of each square is proportional to the 
magnitude of the synaptic strength. The patterns in the synaptic weights 
accurately predict the response of a cell when stimulated with simulated 
patterns of light and can be interpreted as the receptive field of the cell. The 
rectangle at the top represents the values of the weights from the cell to the 
24 output cells that represent the curvature. All the cells in each column have 
a different preferred orientation, and each row is tuned to a different 
curvature, as indicated in (A). The isolated square in the upper left corner is a 
constant bias on the cell (negative of the threshold). Three types of cells were 
found in the hidden layer after training the network to produce the correct 
pattern on the output layer for each image. Type 1 and type 2 cells have 
oriented receptive fields and behave like simple cells when probed with bars 
of light (compare to the wiring diagram in Fig. 3A). However, the type 2 cell 
provides information to the output layer not about orientation, but about 
the convexity of the surface, as determined by pattern of projection to the 
cells on the output layer. The type 3 cell has a circularly symmetric receptive 
field and is sensitive to the ratio of the two principal curvatures. 

empirical database; it is all too easy to make a complex model fit a 
limited subset of the data. Simplifjring models are essential but are 
also dangerously seductive; a model can become an end in itself and 
lose touch with nature. Ideally these two types of models should 
complement each other. For example, the same mathematical tools 
and techniques that are developed for studying a simplifjring model 
could well be applied to analyzing a realistic model, or even the 
brain itself. More accurately, the two types of models are really end 
points of a continuum, and any given model may have features of 
both. Thus, we expect future brain models to be intermediate types 
that combine the advantages of both realistic and simplifjring 
models. 

It may be premature to predict how computational models will 
develop within neuroscience over the next decade, but several 
general features are already emerging. First, in view of the many 
different structural levels of organization in the brain, and the 
realization that models rarely span more than two levels, we expect 
that many different types of models will be needed. It will be 
especially difficult to find a chain of models to cross the gap of at 
least three identified levels between the cellular and systems levels of 
investigation. Second, a model of an intermediate level of organiza- 
tion will necessarily simplifjr with respect to the structural properties 
of lower level elements, though it ought to try to incorporate as 
many of that level's functional properties as actually figure in the 
higher level's computational tasks. Thus, a model of a large network 
of neurons will necessarily simplifjr the molecular level within a 
single neuron. 

At this stage in our understanding of the brain, it may be fruitful 
to concentrate on models that suggest new and promising lines of 
experimentation, at all levels of organization. In this spirit, a model 
should be considered a provisional framework for organizing possi- 
ble ways of thinking about the nervous system. The model may not 
be able to generate a full range of predictions owing to incomplete- 
ness, some assumptions may be unrealistic simplifications, and some 
details may even be demonstrably wrong (99). Nevertheless, if the 
computational model is firmly based on the available experimental 
data, it can evolve along with the experimental program and help to 
guide future research directions. 
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