
trajectories starting close together separate 
at an exponential rate The upshot ,.,this is 
that any kind of error-in particular, round- 
off error-propagates in the course of com- 
putation so that the developing trajectory 
soon bears no relationship whatsoever to the 
true trajectory of the starting point. An error 

as One pan in a will grow 
dominate the computation in as few as a 
couple do,n steps. 

Because of this feature, computer-gener- 
ated chaotic trajectories have been viewed 
with some suspicion: do these graphs corre- 
spond to real trajectories or are they mere 
machine artifacts? It is this question that 
Yorke, Grebogi, and Hammel address in an 
article to appear in the Bulletin ofthe American 
Mathematical Society. They have shown how 
the computer itself can verifv that its com- 
puted trajectory does not stray from a true 
trajectory by more than one part in 10 
million for as many as 10 million steps in the 
process. 

Their result, at first glance, is paradoxical. 
The computed trajectory of, say, the HCnon 
map starting at xo = yo = 0, most certainly is 
not the true trajectory or anywhere close to 
it. Not even a high-precision supercomputer 
can stay close to the true trajectory; in one 
experiment, a Cray 1 and a Cyber 205 gave 
wildly different answers by just the 50th 
point in the trajectory, due to the different 
roundoff mechanisms of the two machines. 
So how is it possible to claim (much less 
prove!) that 10 million points stay close to a 
true trajectory? 

The explanation lies in the difference be- 
tween the definite article "the" and the 
indefinite "a." The computed trajectory does 
not stay close to the true trajectory of the 

Fig, ,. 

Computer-Drawn Pictures 
Stall< the Wild Trajectory 
Even simple systems can exhibit chaotic behaviov, but tvacking 
them mathematically can be tvicky; computer-genevated pictures 
can help in the pursuit 

A COMPUTER-GENERATED PICTURE is 
worth as many as 10 million words, accord- 
ing to three mathematicians studying the 
young science of chaos. James Yorke and 
Celso Grebogi, both at the University of 
Maryland, and Stephen Hammel, at the 
Naval Surface Weapons Center in Silver 
Spring, Maryland, have devised a method by 
which a computer can check how far its 
calculation of a chaotic trajectory can be 
trusted. They have applied their method to 
produce "picture proofs" for two of the 
benchmark objects in chaos theory, known 
as the Ikeda map and the Hknon map (see 
box). 

Chaos thmry is a relatively new field 
which studies the complicated dynamics that 
may reside in even very simple mathematical 
models. Researchers believe that chaos the- 
ory offers a mathematical framework for 
understanding much of the noise and turbu- 
lence that is seen in experimental science. 
Phenomena as diverse as weather patterns, 
population dynamics, chemical reactions, 
and laser optics sport chaotic features that 
the theory may shed light on. Even the 
simple pendulum can be "kicked" into dis- 
playing chaotic behavior. 

The foundations of chaos theory were laid 
nearly a century ago, mainly by the French 
mathematician Henri Poincark. However, 
only recently have investigators been able to 
take a "hands on" approach to the subject, 
mainly through the deve!opment of high- 
speed computers. And these days it is possi- 
ble to study chaos on anything from a 
supercomputer down to a simple pocket 
calculator; all it takes is the ability-and 
patience-to do one mindless calculation 
after another. 

A "trajectory" in chaos theory is a se- 

chaotically, jumping about in seemingly ran- 
dom fashion. 

A chaotic trajectory exhibits three fea- 
tures. First, the motion stays within a 
bounded region-it does not get larger and 
larger without limit. Second, the trajectory 
never settles into any kind of periodic pat- 
tern, though it will repeatedly "visit" a cer- 
tain set of points. (A point is "visited" if 
every circle centered at the point, no matter 
how small, contains infinitely many points 
of the trajectory.) The set of points visited 

Researchers believe that 
chaos theory offers a 
framework for 

much of 
the noise and turbulence 
seen in experimental 
science, 

by a trajectory is known as the trajectory's 
attractor. One of the strange-and entic- 
ing-aspects of the subject is that in many 
cases, such as the HCnon map, every trajec- 
tory appears to have the same attractor, in 
which case one may speak of the system as 
having an attractor. Mathematicians are 
spending a lot of time proving that systems 
that look chaotic truly are chaotic. 

The third feature characterizing chaotic 
trajectories is a "sensitivity to initial condi- 
tions," which, loosely speaking, means that 

quence of points in the plane, in which each 
point produces its successor according to 
some mathematical function. The HCnon 
map, for instance, defines the point 
(x,,+ l ,yn+ by the equations xn+ = 1.4 + 
0 . 3 ~ ~  - x : , ~ , , ~  = x,. Depending on the 
hnction and the starting point, a trajectory 
may escape off to infinity; or it may be 
drawn toward a single point or toward some 
regular periodic motion; or it may behave 
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initial point; rather it stays close to a true 
trajectory that starts at some nearby initial 
point. The only catch is, you do not know 
which point; you only know that it is within 
one part in 10 million of where you thought 
you started. (The exact estimates depend on 
the computer's numerical precision. Rough- 
ly speaking, if the computer calculates with 
2n digits accuracy, then the numerical trajec- 
tory can be expected to approximate a true 
trajectory with n digits accuracy for as many 
as 10n points.) 

The verification method is almost brutally 
simple. As it calculates a trajectory, the 
computer places a numerical box about each 
point, with sides approximately one-mil- 
lionth long. (The trick is to orient each box 
at a suitable angle.) When the chaotic pro- 
cess maps a point on the trajectory to the 
next point, it also maps the box about the 
first point into a region that is very close to a 
parallelogram in shape. In general, the paral- 
lelogram has expanded in one direction and 
contracted in the other. The key point is to 
verify that, even when the minuscule errors 
are allowed for, the parallelogram coming 
from the first box and the new box about the 
second point form a shape like a fat plus sign 
(see Fig. 1 ) .  This guarantees that any curve 
connecting the top and bottom of the first 
box will "survive" as a curve connecting the 
top and bottom of the second box. (The 
computer does not look at these "theoreti- 
cal" curves; its job was done when it checked 
for the plus sign shapes.) 

If the plus sign shape is verified for the 
first 10 million steps, then the result can be 
read backward: any point on the final sur- 
viving curve came from some point on the 
curve before it, which came from the point 
before it, and so on back to the very first 
box. This proves in fact that infinitely many 
true trajectories stay "boxed in" near to the 
numerical trajectory for at least the first 10 
million steps. 

The verification stops if the parallelogram 
fails to make a plus sign with the next box. 
This rarely happens, but it only has to 
happen once (see Fig. 2). Yorke says such 
"glitches" almost certainly occur, but only in 
a simpler one-dimensional setting has it 
been possible to prove that they do. 

Part of the appeal of chaos lies in the 
pretty pictures that can arise from simple 
mathematical formulas. Now, Yorke says, 
some of those pictures can aspire to the 
status of proof. I t  is common in mathemati- 
cal writing to omit the details of a calcula- 
tion. In this case, Yorke notes, the "proofs" 
omit some 50 million lines of detail! 

B BARRY A. CIPRA 

Barty A. Cipra is a mathematician and writer 
based in Northfield, Minnesota. 

Fatal Attractions? 
The Htnon attractor grows on the computer screen from a single point into a gracefd 
boomerang shape. The image is produced by iterating a pair of simple functions, one 
of them having a nonlinear term, applied initially to some point in the plane specified 
by particular x- and y-coordinates. With each iteration, the attractor as a whole is 
stretched and folded, in much the same way that a baker kneads bread dough. Points 
that are initially close together get stretched apart, but are eventually folded back 
close together. All that's missing is the 
yeast. 2 

There is much that is strange about the 
Htnon attractor. For one thing, it appears 
to be the same regardless of the iteration's 
starting point. It also seems to retain com- 0 

plex detail at all levels: magnify any "line" 
and it is seen to separate into several -1 

parallel lines, each of which also separates 
under further magnification. -2 -2 -1 o 

1 2 
But is this strangeness for real? At this x 

point no one is certain. The accumulated 
computational evidence favors strange- 0.~0 

ness, and the result of Yorke et al .  certifies 
that the computer results are accurate for , 
upwards of 10 million points. But the om 
theoretical issue lies not in the first 10 
million points of a trajectory, or in the first 
10 billion points, or in the first ten any- 0.70 o& ' 0.05 1 .05 
thing; the theoretical issue lies in the infi- x 
nite limits of the trajectories-and pre- 
cious little is known about those limits. 08' 

It is known that individual trajectories 
have attractors, simply because they are a 08 
confined to a bounded part of the plane. 
But different trajectories may have differ- 0 ~ 5  - 
ent attractors, and their behavior at the 
attractors may be periodic rather than cha- 
otic. The "true" trajectories that are being 03.i3 

' ' 
0.94 095 0.96 

X 
approximated by computation may simply 
not have settled into a periodic orbit, or 
their periodic orbit may simply include an astronomical (or an Avogadro's) number of 
points. 

The prevailing opinion among theorists is that the Htnon map has a single attractor 
that is both chaotic and strange. (More precisely, "almost all" trajectories are believed 
to have the same attractor. "Almost all" is an analytic incantation that has a precise 
mathematical meaning. One sign of chaos theory's youth, though, is that many other 
terms, including "chaotic" and "strange," have not settled into generally agreed upon 
definitions.) Others emphasize the doubts. Gregory Davis of the University of 
Wisconsin at Green Bay is exploring the possibility that the Htnon map has infinitely 
many coexisting periodic attractors. His preliminary results are consistent with the 
computational data: for two points to be drawn into the same periodic orbit, they 
would have to start closer together than current computations are able to resolve. 
Davis speculates that "what is seen on the computer screen is a point that is bouncing 
in and out of different basins of attraction, thereby giving the effect of a 'strange 
attractor'." 

The theoretical issues that are unresolved for the Htnon map are also up for grabs 
for many other ostensibly strange systems. The Htnon map has attracted attention 
partly because of its comparative simplicity-its complex behavior arises out of a 
simple quadratic term in the equations defining the map, whereas other maps rely on 
more complicated nonlinear expressions. "Simplicity," however, has not made 
theoretical life much easier. One of the things he has learned about the subject, Yorke 
says, is "the more you understand it, the harder it seems." B B. A. C.  
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