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cell (7-9). We measured pressure in the 
samples with the ruby fluorescence tech- 
nique and pressure gradients by comparing 
spectra from individual ruby grains distrib- 
uted across the sample (10). The measured 
pressure gradient (aPlar) and the sample 
thickness ( h )  closely approximate the maxi- 
mum shear stress supported by the sample 
through the relation (8, 9, 11) : 

where a,, is the shear stress acting on the 
plane of the diamond-sample interface and v 
is the radial distance from the center of the 
sample. The sample thickness was measured 
on decompressed samples at zero pressure 
(12, 13). w e  equaLe -the shear stress ex- 

Effect of a Coordination Change on the Strength of' pressed in ~ q .  1 with the yield sum* of 
Amorphous Sioz the sample at high pressure (8, 9, 11). 

All of our measurements were carried out 
above 8 GPa because the sample compaction 

CHARLES MEADE AND RAYMOND JEANLOZ is not reproducible below these pressures. 
At low pressures, extrusion of the sample 

Measurements of the yield strength of SiOz glass to pressures as high as 81 gigapascals and compaction of voids at grain boundaries 
at room temperature show that the strength of amorphous silica decreases significantly control deformation. These processes occur 
as it is compressed to denser structures with higher coordination. Above 27 gigapas- at different rates in each sample (14). Also, 
cals, as the silicon in amorphous SiOz is continuously transformed from fourfold to irreversible compaction of silica glass in- 
sixfold coordination, the strength of the glass decreases by more than an order of creases the density by as much as 18% 
magnitude. These data confirm theoretical predictions that the mechanical properties between 0 and 8 GPa (IS), providing addi- 
of polymerized amorphous silicates are sensitive to pressure-induced structural trans- tional stress relaxation, which also varies 
formations and suggest that the viscosity of silica-rich liquids decreases significantly at between samples. 
high pressures. Such a change in melt rheology could enhance the processes of chemical The strength of amorphous SiOz in- 
differentiation with depth in the Earth's mantle. creases and then decreases with pressure as 

the glass is compressed from 8.6 to 81  GPa 

0 N THE BASIS OF MOLECULAR strength of silica glass to 81  GPa that con- (Fig. 1 and Table 1). This behavior is un- 
dynamics simulations, Angel1 and firm the second prediction from the molecu- usual because most solids become stronger 
co-workers (1) originally suggested lar dynamics simulations: the mechanical prop- with increasing pressure and density (8, 16). 

that increases in pressure comparable to the erties of amorphous silicates are indeed sensi- The decrease in strength was reproducible in 
range of values that occur in the Earth's tive to structural changes, such as a pressure- separate recompression experiments, which 
mantle could dramatically change both the induced increase in coordination (6). suggests that these results are independent 
structure and viscosity of polymerized sili- We determined the strength of amor- of previous deformation and compaction 
cate melts (2, 3). These were important phous silica at room temperature and high (1 7). Indeed, transient effects of work hard- 
predictions because silicate melts are ex- pressure by measuring the maximum shear ening should not be important in the low- 
tremely mobile compared to crystalline stress supported by the glass in a diamond temperature deformation of the glass (18). 
rocks, and any changes in the density or 
viscosity of melts with depth could strongly 
influence the chemical differentiation and Fig. ,. shear I I I I 

thermal evolution of the planetary interior stress in silica glass at room 
through geologic time. In accord with the temperamre_ and average 2 - 
computer simulations, as well as with the pressures ( P )  between 8.6 g 
interpretation of shock wave measurements and 81 GPa. Each point tor- vl 

responds to a separate sam- 2 - on silicate melts (4), recent spectroscopic pie, and the heavy line vl 
- 

observations have indicated that the strut- shows the general trend of $ 
tures of noncrystalline silicates change mark- the data. The shear stress is - 
edly with pressure. Specifically, the SiO4 determined from Eq. 1, and 

tetrahedra making up the melt and glass ~ ~ ~ & m e ~ ~ ~ ~ ~ ~ p ~ ~  ,; 
structures at low pressures are transformed high pressures. The error 2 1 

- 
to Si06 octahedra (and distorted octahedra) bars represent the combined I .  
at pressures of a few tens of gigapascals (5 ) .  uncertainties from the mea- 0 I I I I 

We report measurements of the yield Surements and aP'ar. 0 20 40 60 80 
The open circles show the Average pressure (GPa) 
strength of samples that 

D~ a;rmenc of ~~~l~ and ~ ~ ~ ~ h ~ ~ i ~ ~ ,  university of were initially compressed to 50 GPa, unloaded, and then recompressed. The arrow marks the zero 
~J for i l i a ,  Berkeley, C% 944720. pressure strength of silica glass (19). 
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large decrease in the strength of Si02 glass. 
Linear fits to the pressure gradients across 
diamond cell samples (Fig. 2 and Table 1) 
indicate that aPlar increases sharply between 
average pressures of 8.6 and 26.9 GPa (24), 

of silicate liquids may become indepen- 
~t of composition in the lower mantle. 
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dynamics simulkions (1) that amorphous 
silicates are weakened significantly by pres- 
sure-induced coordination changes that are 
likely to occur inside the Earth (25). The 
recompression experiments provide addi- 
tional evidence that the change in coordina- 
tion is completely reversible in Si02 glass at 
room temperature. Thus, our observations 
of a low strength in the highly coordinated 
glass should be applicable to the rheology of 
melts because the kinetic barrier for the 

Table 1. Summary data for SiOz glass. 

0.062 56.0 1.74 (20.15) 
0.059 58.0 1.71 (20.15) 
0.080 58.0 2.32 (k0.16) 
0.088 60.0 2.64 (k0.15) 
0.153 4.0 3.37 (k0.16) 
0.178 48.0 4.27 (20.17) 
0.130 37.0 2.41 (k0.26) 
0.144 37.0 2.66 (20.27) 
0.169 30.0 2.54 (20.28) 
0.072 34.0 1.22 (20.34) 
0.018 35.0 0.32 (k0.41) 
0.086 39.0 1.68 (20.44) 
0.077 37.0 1.44 (ro.44) 
0.088 33.0 1.45 (20.47) 
0.072 40.0 1.44 (20.51) 

Recompressed samples 
0.028 72.0 1.01 (k0.15) 
0.107 35.0 1.87 (20.17) 
0.214 40.0 4.28 (20.17) 
0.232 34.0 3.94 (20.21) 
0.073 30.0 1.10 (k0.33) 

coordination change appears to be negligi- 
ble. 

We propose that the decreasing strength 
of Si02 glass above 27 GPa reflects a weak- 
ening of the Si-O bond and depolymeriza- 
tion of the network structure. For example, 
the change in coordination could increase 
the Si-O distance by as much as 10% (26) 
and produce a more ionic, sp3d2 hybridized 
bond (27). Moreover, we believe that a 
significant number of nonbridging oxygens 
are created as the Si04 tetrahedra are gradu- 
allv comuressed and distorted into a net- 

I 

work of edge-sharing polyhedra at high 
pressures. Qualitatively, this model seems 
plausible because depolymerization signifi- 
cantly enhances the f l ~ w - ~ r o ~ e r t i e s  of silica- 
rich melts at low pressures (21, 3). In the 
Earth's crust, rhyolitic and dacitic magmas 
are ~articularlv resistant to flow. vet with At 0 GPa the fracture strength of amor- 

phous Si02 is approximately 4 GPa (19), 
whereas at 8.6 GPa the glass flows plastically 
and the strength is less than 1 GPa. Because 

, , 
small additions of ions that depolymerize 
the melt structure (for example, Na', A13+, 
Mg2+, Fe2+, or Ca2+), their viscosities can 

the style of deformation changes from brittle decrease by up to three orders of magnitude 
(21, 28). 

That amorphous silica becomes weakened 
to ductile over the same pressure range, the 
difference shown in Fig. 1 is a conservative 
estimate of the decrease-in the creep strength 
of silica glass between 0 and 10 GPa (20, 
21). This decrease in strength below 10 GPa 
is not produced by a change in coordination 
because Raman scattering (22) and infrared 
absorption (5)  of silica in the diamond cell 
show that Si is tetrahedrallv coordinated at 

at high suggests that deep in the 
Earth, silica-rich melts can have relatively 
low viscosities because their structures are 
depolymerized by pressure-induced coordi- 
nation changes. That is, we expect that the 
effect of increasing pressure in the Earth's 
mantle is analogous to the role of network- 

these pressures. This decrease also does not 
reflect stress relaxation accompanying irre- 
versible compaction because the previously 
compressed sample had a low strength at 8.6 
GPa (23). 

Between 27 and 62 GPa, there is another 

modifjring ions in silica-rich melts at low 
pressures. Thus, there may be substantial 
differences between the flow of melts in the 

\ - -  -. , 
Because the gasket is not compressed between the 
diamond faces (7, 8), it does not influence the 
strength of the sample. Previous experiments (8) and 
the reproducibility of the present data show that 
strength is independent of gasket material and sam- 
ple size. 

crust and mantle. In contrast to the variabili- 
ty in viscosity that is readily observed in 
melts at the Earth's surface (29), the viscosi- 
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M.itotic Recombination Within the Centromere of a 
Yeast Chromosome 

Centromeres are the structural elements of eukaryotic chromosomes that hold sister 
chromatids together and to which spindle tubules connect during cell division. 
Centromeres have been shown to suppress meiotic recombination in some systems. In 
this study yeast strains genetically marked within and flanking a centromere, were used 
to demonstrate that gene conversion (nonreciprocal recombination) tracts in mitosis 
can enter into and extend through the centromere. 

ENTROMERIc DNA FORMS A TIGHT the types of constructions used. 
complex with proteins that is very Mitotic gene mapping in yeast is based on 
resistant in vitro to nuclease diges- the frequency of crossovers between genes 

tion ( I ) .  One might expect that recombina- and their centromeres. The original pre- 
tion could not occur within such a protein- sumption (5 )  was that in mitosis, duplicated 
DNA complex. Indeed, in Drosophila, meiot- 
ic recombination near the centromere is 
greatly suppressed (2). However, in yeast, 
we found that meiotic conversion tracts 
frequently span the centromere (3). We also 
found that meiotic conversion occurs at 
approximately normal rates near the centro- 
mere. In contrast, Lambie and Roeder (4) 
suggested that the yeast centromere repress- 
es meiotic conversion about fivefold. These 
different findings on the effect of the centro- 
mere on the rates of meiotic conversion may 
reflect differences in genetic background or 

sister chromatids were held together by their 
centromeres while they recombined with 
their nonsister homologs. Consequently, the 
further a gene was from its centromere, the 
greater the chance of a crossover uncoupling 
sister alleles from the same centromere. 
Thus, about half the time, depending on the 
segregation of the homologous chromo- 
somes, mitotic crossing-over will lead to 
heterozygous markers distal to the cross- 
over becoming homozygous. 

Recent evidence (6-8) suggests that a 
considerable portion of mitotic recombina- 
tion occurs prior to chromosome duplica- 
tion. The two-strand-stage model of recom- 
bination (6)  suggests that crossovers occur 
in GI between homologous DNA single 
strands of the same polarity and are resolved 

Table 1. Numbers and types of presumptive convertants derived from SLP-6 and S-5 parent strains. 
Standard genetic procedures for yeast were used to score for markers and to determine mating types 
(22). Trichodermin (TCM) resistance was scored on nonselective media containing 0.20 mg of the drug 
per milliliter. Trichoderrnin was stored as a 20 mg of solution in 50% ethanol at -20°C. The pluses and 
minuses indicate the growth of the strains on media lacking Leu, Ura, His, or Thr or the presence or 
absence of the Xho I or Nru I restriction sites. NA means not applicable. Representative presumptive a/ 
a, and aia strains were shown to be dploid because the viability of meiotic progeny after crossing to 
diploid mating-type homozygous testers was good, while bad spore viability (characteristic of a 
triploid) was obtained when they were crossed to haploid testers. As expected genetic tests indicated 
that al l  heterozygous markers not on chromosome I11 remained heterozygous in the SLP-6 convertants. 
Numbers in heading state the number of convertants obtained. 

Marker uva3- uva3- Tcm resistance 
Depamnent of Molecular Genetics and Cell Biology, 
University of Chicago, Chicago, IL 60637. 2 1 1 2 1 1 2 2 2 2 5 1 0 4  
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of Physicians and Surgeons of Columbia University, His 
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