
Technical Comments subunits on immunoblots of ROS polypep- 
tides. 

Expression of Transducin in Retinal Rod 
Photoreceptor Outer Segments 

A guanine nucleotidebinding (G) pro- 
tein "translocation" mechanism has been 
proposed (1) to explain long-term adaptive 
physiology in the rod photoreceptor. Large, 
prolonged changes in imrnunoreactivity of 
the a subunit of transducin (aT) were de- 
tected within the rod outer segment (ROS) 
at both light onset and light offset (1). 
Concurrent and opposite changes in a T  

immunoreaaivity within the rod inner seg- 
ment suggested that the amount of transdu- 
cin within the photoreceptor is altered daily 
by massive movement of transducin sub- 
units from one cellular locale to another. 

To independently check the putative trans- 
ducin translocation event upon which the 
model is based, we quantified the amount of 
the a and p subunits (h) of transducin 
within the ROS at several times during the 
day and night. We also checked the influence 
of protein denaturation on transducin anti- 
body bindmg in light and dark. Tissue sec- 
tions were prepared and stained as described 
in (1). Before antibody staining, sections were 
either fixed by immersion in 4% forrnalde- 
hyde in saline for 20 rnin or in cold (-20°C) 
acetone fbr 10 min. The primary antibody 
was a previously characterized antiserum spe- 
cific t;dr a~ (2); GI-2, at 1 : 100 dilution &d 
the secondary antibody was goat antiserum to 
rabbit immunoglobulin G labeled with fluo- 
rescein isothiocyanate. 

We prepared ROS (3) from retinas of 45- 
day-old Long-Evans or Sprague-Dawley 
rats raised on a 12-hour light : 12-hour dark 
cycle. At each of six times evenly spaced 
throughout the 1ight:dark cycle, ROS were 
isolated from 4 to 12 retinas. The recovery 
of ROS from the retinas was greater than 
50% as determined from absorbance at 500 
nm. Purity and intactness of the ROS were 
estimated from the absorbance ratio 2801 
500 nm (4),  the appearance of the ROS 
with light microscopy, and SDS-polyacryl- 
amide gel profiles. The a and P subunits of 
transducin were identified in these prepara- 
tions by three criteria. Transducin subunits 
are the second largest polypeptide compo- 
nents of outer segment membranes and 
show a characteristic mobility on SDS-ply- 
acrylamide gels with a low ratio of N,N1- 
methylenebisacrylamide to acrylamide (5). 
In addition, transducin is characteristically 
:luted from bleached ROS disk membranes 
at guanosine tiphosphate (GTP) concentra- 
tions greater than 40 FM under low salt 
concentrations (5, 6). A previously charac- 
terized antiserum to transducin (7) was used 
to confirm the localization of a and p 
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Fig. 1. Coomassie blue-stained gel of purified 
bovine transducin (a) and dark-adapted ROS 
isolatedat 9:30 p.m., 1:30 a.m., and 5:30 a.m. (b, 
c, and d) and light-adapted ROS isolated at 9:30 
a.m., 1:30 p.m., and 5:30 p.m. (e, f, and g). The 
light-dark cycle is indicated schematically below 
the gel. Densitometry scans of lanes f (Light- 
adapted ROS) and c (dark-adapted ROS) are 
shown at right (8).  

Fig. 2. L o c ~ t i o n  of aT immuno- 
reactivity in frozen sections of eyes 
from dark-adapted (A and C, 9:30 
p.m.) and light-adapted (B and D, 
5 3 0  p.m.) rats. Section were pre- 
treated with cold acetone (A and B) 
or 4% formaldehyde in saline (C 
and D) and stained with a polyclo- 
nal antibody specific for a= (2) and 
FlTGlabeled secondary antibody. 
Nomarski micrographs of sections 
in (A) and (C) are on the left. Scale 
bar, 22 pm. Abbreviations: OS, 
outer segments; IS, inner seg- 
ments; ONL, outer nuclear layer; 
OPL, outer plexiform layer; INL, 
inner nuclear layer. 
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Peak heights from densitometic profiles 
of Coomassie blue-stained SDS-polyacryl- 
amide gels (Ultroscan 2202 laser densi- 
tomer, LKB Instruments) were used to 
quantify a T  and PT in each ROS prepara- 
tion. The transducin peak heights were nor- 
malized to the height of the rhodopsin peak 
in each gel lane. The resulting ratio of 
transducin to rhodopsin allows comparison 
of the relative transducin concentrations 
from different ROS samples with variable 
amounts of ROS polypeptides (8). 

A "soluble" pool of transducin was also 
rewvered to check the possibility that trans- 
ducin was preferentially lost into the ROS 
supernatant during preparation of dark- 
adapted membranes. Transducin subunits 
were recovered from both dark- and light- 
adapted ROS supernatants with DE52 col- 
umn chromatography (3, 5, 6). 

When prepared as above, the ROS were 
fiee from major contamination by non- 
ROS proteins. An absorbance ratio (2801 
500 nm) of 2.6 indicated ROS of relatively 
high purity and, although inner segment 
and cell debris were visible in light micro- 
graphs, these contaminants were present in 
low amounts. Further, SDS-polyacrylamide 
gel profiles of rat ROS showed all major 
polypeptides present in purified bovine, and 
frog ROS (9) (rhodopsin, transducin, phos- 
phodiesterase, and 48K) with no additional 
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Table 1. The amounts of ar, PT, and rhodopsin 
(Rh) measured by laser densitomer scans of Coo- 
massie blue-stained gels. Values are expressed as 
the mean + SEM (n = 6). 

Light 0.43 .t 0.04 0.50 + 0.05 0.46 + 0.02 
Dark 0.45 5 0.04 0.56 .t 0.06 0.44 + 0.02 

major contaminants. The identification of 
rat transducin subunits was unambiguous 

least one antigenic site on the native aT 
molecule is masked under light-adapted con- 
ditions. 
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(10) by (i) comparison with purified bovine 
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Response: Roof and Heth report a dis- 
agreement between subcellular fractionation 
and immunocytochemical data concerning 
the amount of the alpha subunit of transdu- 
cin (aT) within rod outer segments (ROS). 
As we previously reported (I), they observe 
that, under certain fixation conditions, the 
a~ immunoreactivity of ROS is less during 
the day then at night. On the other hand, 
when they isolated ROS and measure orT 
content by scanning SDS-polyacrylamide 
gels, aT levels appear constant. On the basis 
of this disagreement, the authors interpret 
the data as showing that the amounts of aT 
do not change and that light induces a 
masking of antigenic sites on aT. I believe 
this conclusion is unlikely to be correct. 
First, the observed changes in a~ irnmuno- 
reactivity are difficult to explain in terms of 
antigen masking. Second, the presented 
measurements of a~ levels in isolated ROS 
are confounded by technical limitations. 
These limitations are reinforced by the re- 
cent publication of a report by Philp et al.  
(2) which demonstrates that the a~ levels in 
isolated ROS change as predicted by im- 
munocytochemical data. 

Epitope masking is an unlikely explana- 
tion of the immunocytochemical data be- 
cause at least three spatially separated epi- 
topes would have to be involved. The antise- 
ra to aT used in our study recognize two 
epitopes, one in the NH2-terminal region of 
the protein and one within a central segment 
(3). Further, the immunocytochemical ob- 
servations were confirmed with a second 
antibody that is directed to the COOH- 
terminus of aT. Even more difficult to ex- 
plain with such a model are the simulta- 
neous and reciprocal changes in immunore- 
activity in the rod inner segments (RIS). 
That is, even if light were able to simulta- 
neously block three antigenic sites on a~ in 
the ROS, what is the mechanism of recipro- 
cal changes in immunoreactivity in the RIS? 
In support of their epitope-masking hypoth- 
esis, Roof and Heth present a comparison of 
immunocytochernical data in which two fix- 
ation procedures were used. When tissue 
was fixed with acetone, a less marked change 
in immunoreactivity was observed than 
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