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Relaxation of Isolated Ventric~lar Cardiomyocytes by free bicarbonate-buffered solution contain- 

a Voltage-Dependent Process 
- - 

ing collagenase (1 mgiml) and hyaluroni- 
dase (1 mgiml). Cells were dispersed in a 
modified fyrode2s solution containing 50 

JOHN H. B. BRIDGE, KENNETH W. SPITZER, PHILIP R. ERSHLER pM ca2+, which was subsequently brought 
to 1.0 mhl for cell storage. Normal Tyrode's 

Cell contraction and relaxation were measured in single voltage-clamped guinea pig solution contained (in millimoles per liter): 
cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to 126.0 NaCl, 4.4 KCI, 5.0 MgC12, 18.0 
mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic NaHC03, 2.7 CaC12, 0.33 NaH2P04, and 
and subsequent tonic contractions; caffeine reduced or abolished the phasic and 11.0 dextrose and was gassed with 5% C 0 2  
enlarged the tonic contraction. The rate of relaxation from tonic contractions was and 95% 0 2 .  Sodium-free solution con- 
steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal tained (in millimoles per liter) : 138.0 LiCI, 
Na+ gradient. Tonic contractions elicited in the absence of a Na' gradient promptly 4.4 KCI, 5.0 MgC12, 2.7 CaC12, Hepes 12.0, 
relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It  LiOH 6.4, and 11.0 dextrose. Its control 
appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax solution had the same composition except 
mammalian heart muscle. that NaCl and NaOH replaced LiCl and 

LiOH, respectively. Hepes-buffered solu- 

A LTHOUGH UNIMPAIRED RELAX- Ca2+ exchange, displays both Na+ (5)  and tions were gassed with 100% 0 2 .  The pH of 
ation is essential for normal heart voltage dependence (6). In this study we all solutions was 7.4. Cells rested on the 
function, the mechanism of relax- examined the contribution of ~ a + - C a ~ +  ex- glass bottom of a tissue bath and were 

ation in mammalian ventricular muscle is change to the relaxation of voltage-clamped continuously bathed with Tyrode's solu- 
not fully understood. Relaxation continues guinea pig ventricular myocytes. tions at 30" k 0.2"C. Complete replacement 
even in the presence of caffeine. However, Myocytes were isolated by pehsion of of the bath solution required 2 seconds. 
there is evidence that the sarcoplasmic retic- guinea pig hearts with a nominally ca2+- Single cells were voltage-clamped at a 
ulum (SR) becomes significantly more per- 
meable to Ca2+ so that it cannot sequester 
this ion (1-3). Under these conditions the A o r n ~  Caffeine B 10.00 r n ~  Caffeine 

decline in cytosolic calcium required for 
relaxation may be mediated by sarcolemmal 
~a+-Ca '+  exchange (4). Moreover, this re- Fig. 1. Cell contraction 
laxation should be voltage-sensitive if the (measured as in 

the absence and presence of -80 exchange is voltage-sensitive. In fact, me- 10.0 caffeine. (A) The 
chanical relaxation in amphibian heart, cell was voltage-clamped 
which is thought to be dependent on Na+- from -80 to 0 mV for 1 

second. (B) Another cell 
pm was exposed to 10.0 M [ , pm 1 y* Nora Eccles Harrison Cardiovascular Research and caffeine and subjected a 2- 

Training Insutute and the Department of Medicine, second clamp of the same 
University of Utah, Salt Lake City, UT 84112. magnitude. 
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Fig. 2. Tonic contractions 
elicited in the presence of 

O 

10.0 mM careine by volt- 
age-clamp pulses from -80 

relaxation cn  voltage was 
to 0 mV. The dependence of 

measured by repolarizing to 
different potentials (in this s" 
example '-80, -40, and 
-20 mV). 

holding potential of -80 mV with single 
suction pipettes and a discontinuous voltage 
clamp circuit (Axoclamp-2A, Axon Instru- 
ments). Current injection was chopped at a 
frequency of 2 4  kHz. Suction pipettes were 
made of borosilicate capillary tubing, had 
tip diameters of 1 to 3 ym and resistances of 
2 to 4 megohms, and were capacitatively 
shielded with Sylgard. The pipette filling 
solution contained (in millimoles per liter): 
130 K+ (KC1 and KOH), 8.0 NaCI, 5.23 
MgATP, 0.5 EGTA, 1.8 MgC12, 5.0 dex- 
trose, and 10.0 Hepes adjusted to p H  7.1 
with KOH. Free Ca2+ and Mg2+ concentra- 
tions were estimated to be 100 nA4 and 2.0 
mM, respectively (7). In most later experi- 
ments, free Mg2+ was decreased to 200 p.M. 
Results obtained with this pipette solution 
did not alter our conclusions. However, 
contractions are maintained indefinitely 

I 
O - i o  -$o -40 -2'0 o 

Membrane potential (mV) 

Fig. 3. Voltage dependence of relaxation rate. 
Because cell relengthening is not always a simple 
monoexponential function of time, relaxation rate 
has been expressed as the relative extent of relax- 
ation 1 second after the onset of repolarization. 
This is in turn expressed relative to the maximum 
rate of relaxation, which in these experiments 
took place at -80 mV. The numbers in parenthe- 
ses are the number of cells (and observations) 
contributing to each point. Values are means 
2 SEM. A total of 39 measurements were made 
on 16 cells. AU results obtained in normal Tyr- 
ode's solution containing 10.0 mM caffeine. Line 
drawn by eye. 

with low Mg2+ in the pipette, whereas with 
2.0 mhf M ~ ~ +  they tended to disappear. 
Cell shortening was measured with a video- 
based device for instantaneous length mea- 
surement (8) .  

Cells voltage-clamped from -80 to 0 mV 
in normal Tyrode's solution produced a 
phasic contraction followed by a smaller 
sustained tonic contraction that relaxed only 
on repolarization to -80 mV (Fig. 1A). 
Exposure to caffeine (10.0 mM) partially or 
completely eliminated the phasic compo- 
nent, leaving an enlarged tonic component 
that typically continued to increase for the 
duration of the pulse and relaxed on repolar- 
ization (Fig. 1B). These effects of caffeine 
are similar to those in voltage-clamped car- 
diac Purkinje strands (9).  

We measured the voltage dependence of 
relaxation from tonic contractions in normal 
Tyrode's solution containing 10.0 mM caf- 
feine (Fig. 2). The extent 07 relaxation var- 
ied steeply with voltage between - 80 and 0 
mV (Fig. 3). The processes that reduce 
cvtosolic free ca2+ and ~roduce relaxation 
in caffeine-treated cells can do so only when 
the cell is repolarized to -80 mV. A volt- 
age-sensitive ~ a + - C a ~ +  exchange could ex- 
plain these observations. However, a volt- 
age-sensitive ca2+ leak (that is, steady-state 
ca2+ current) might oppose and therefore 
slow a voltage-independent process that re- 
moves ca2+ from the cvtosol. Such a volt- 
age-dependent relaxation would not neces- 
sarily reflect voltage-sensitive ~ a + - C a ~ +  ex- 
change. To investigate these possibilities we 
studied the ionic dependence of relaxation. 

Caffeine-treated cells were voltage- 
clamped in the absence of a sarcole&al 
Na+ gradient (0 Na' in the pipette and 0 
Na' plus 144.4 mA4 Li' in the Hepes- 
buffered Tyrode's solution). Cells clamped 
from - 80 to 0 mV for 3 seconds developed 
a large contraction. Repolarization resulted 
in a slow rate of relaxation (Fig. 4A) which 
was increased sixfold (6.0 r 0.7 in five cells) 
by sudden application of 144.4 mM Na+ 
(Fig. 4B). The slow relaxation observed in 
the absence of a Na+ gradient (Fig. 4A) 
might result from calcium efflux via a sarco- 
lernmal calcium pump or from residual SR 

calcium sequestration in 10.0 mM caffeine, 
or both effects might occur. However, these 
slow processes made relatively little contri- 
bution to relaxation, judging from the mod- 
est extent of relaxation following 1 second 
of repolarization from 0 mV to -80 mV in 
the absence of external sodium (that is, 
15.1 1?: 2.9% in five cells). In contrast, relax- 
ation after 1 second of repolarization in the 
presence of the Na+ gradient is extensive 
(82.8 ? 1.4% for 31 observations on 14 
cells). It is this extensive relaxation which 
depends on the presence of a Na+ gradient 
that is also steeply dependent on voltage. A 
voltage-insensitive Na+-Ca2+ exchange o 
posed by a significant voltage-sensitive Ca Pi 
leak cannot explain external Na+-dependent 
voltage-sensitive relaxation (Fig. 4). Be- 
tween -30 and -80 mV, where relaxation 
displays voltage dependence, steady-state 
Ca2+ currents are inactivated. From the 
effect of external Na+ and membrane poten- 
tial on mechanical relaxation in caffeine- 
treated heart cells, we conclude that me- 
chanical relaxation takes place when a volt- 
age-sensitive Na+-Ca2+ exchange extrudes 
cytosolic free Ca2+. Recent intracellular cal- 

Fig. 4. Tonic contractions elicited in the absence 
of a Na+ gradient with voltage-clamp pulse from 
-80 to 0 mV. The contractions were either 
maintained or (in this example) relaxed slowly 
during the clamp pulse. (A) This slow relaxation 
accelerated on repolarization. (B) Sudden applica- 
tion of 144.4 mM external Na+ after the return to 
-80 mV caused an eightfold increase in relax- 
ation rate. (C) Contractions in (A) and (B) are 
superimposed to emphasize the effect of external 
Nac on relaxation rate. AU solutions contained 
10.0 mM caffeine. 
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cium measurements support this view (10). 
In normal cells, both the SR and Na+- 

Ca2+ exchange will contribute to relaxation 
by removing ca2+ from the cytosol. How- 
ever, the ~ a + - C a ~ +  will be effective only 
when membrane potential (Em) is negative 
to the Na+-Ca2+ exchange reversal potential 
(Ere,). Owing to the inferred voltage depen- 
dence of Na+-Ca2+ exchange, Ca2+ extru- 
sion increases as Em becomes increasingly 
negative to Ere,. Thus, during a single 
twitch the trajectory of the quantity 
Em - Ere, will determine both the onset 
and variation of Ca2+ eflm with time. 

The foregoing facts will have important 
consequences for the regulation of contrac- 
tion in heart muscle. If Ca2+ extrusion is 
abruptly delayed or reduced by prolonged 
membrane depolarization (for example, a 
prolonged action potential in which Em 
spends less time negative to Ere,), the SR 
could sequester Ca2+ normally removed by 
the exchanger. Alternatively, accumulation 
of internal Na+ as a result of glycoside 
applications would collapse Em - Ere,, 
thereby reducing ca2+ extrusion via the 
exchanger, with-resulting increases in the 
SR Ca2+ pool. This enlarged SR Ca2+ store 
would presumably strengthen the subse- 
quent contraction.. In contrast, a brief depo- 
larization (for example, shortened action 
potential) would have the opposite effect. - - 
~ h u s ,  the trajectory of Em - Ere, can regu- 
late competition between the SR and Na+- 
Ca2+ exchange for cytosolic Ca2+. This sug- 
gests volta e dependent control of sarco- 
lemmal Ca8*' extrusion via Na+-ca2+ ex- 
change can provide an effective and delicate 
mechanism for regulating the SR ca2+ 
available for contraction. 
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Cloning and Expression of the Human Interleukin-6 
(BSP-2/IFNP 2) Receptor 

Interleukin-6 (IL-6/BSF-2/IFNP 2) is a multifunctional cytokine that regulates the 
growth and differentiation of various tissues, and is known particularly for its role in 
the immune response and acute phase reactions. A complementary DNA encoding the 
human IL-6 receptor (IL-6-R) has now been isolated. The IL-6-R consists of 468 
amino acids, including a signal peptide of -19 amino acids and a domain of -90 
amino acids that is similar to a domain in the immunoglobulin (Ig) superfamily. The 
cytoplasmic domain of -82 amino acids lacks a tyrosinelkinase domain, unlike other 
growth factor receptors. 

B CELL STIMULATORY FACTOR-2 many biological functions, which include 
(BSF-2) was originally identified as a growth and differentiation activities on B 
Tcell-derived factor that causes the cells (1, 2, 7), T cells (8), myeloma-plasma- 

terminal maturation of activated B cells to 
K. Yamasaki, T. Ta a, Y. Hlrata, H. Yawata, Y. Kawani- 

Ig-producing (I). After the cDNAs shi. T. Hirano. and%. Kishimoto. D~vision of Immunol- 
were cloned, BSF-2 was found to be identi- o&, Institute for Molecular and Cellular Biolo Osaka 
cal to the 26-LD protein, IFN-P 2, myelo- universi". 1-3, Yamia-Oka, Sum. Osaka 56Y~apan.  

B. Seed, De artment of Molecular Biology, Masssachu- 
ma-plasmacpma growth factor and hepa- setts ~ e n e r ~ ~ o s ~ i t d .  Boston, MA 02114. 

stimulating factor (2-6). is estab- T. Taniguichi, Division of Molecular Biology, Institute 
for Molecular and Cellular Biolo Osaka University, l- 

lished that BSF-2, now called IL-6, has 3, Yamada-Oka, Suita, Osaka 5#: ~ a ~ a n .  

Fig. 1. Flow cytofluoro- 
metry analysis of COP 
cells transfected with 
pBSF2R.236 DNA. 
Left panel: murine COP 
cells (24) transfected 
with pBSF2R.236 DNA 
(-) or CDM8 vector 
DNA (- - -) were stained 
with B-rIL-6 and 
FITC-A as described 
(13). Right panel: COP 
cells transfected with 
pBSF2R.236 DNA 
were stained with -10 
ng of B-rIL-6 and 

. . 
.I 1 5 1'0 loo .1 1 5 10 100 

Relative fluorescence intensity 

F ~ C - A  in the presence fo 200 ng of either rIL-6 (-), rIL-1 (- - - - -), or rIL-2 (- - -). 

Fig. 2. Scatchard plot analysis of the IL-6-R 
encoded by the insert cDNA of pBSF2R.236, as 
well as the IL-6-R expressed on U266 cells. The ,- 0 
IL-6-R negative human T cell line, Jurkat, was $ 10 20 
transfected-w~th pZlpNeoSVB2R [constructed B 
by mtroducmg the lnsert cDNA of pBSF2R.236 
at the Barn HI slte of pZlpNeoSV(X) 1 (ZS)] and 3 - 
transfectant (JBSF2R) was cloned. The IL-6 
bmdmg was assayed m both U266 (A) JBSF2R 
(B) as descr~bed (14), wlth 125~-labeled rIL-6 
(spec~fic actlvlty of 6.4 X loi3 cpmlg) U266, Kdl 
= 9 8  * 2.1 pM, Kd2 = 740 2 170 pM, R1 = 
3000 * 480 sltes per cell, R2 = 24,000 f 1400 
sltes per cell; JBSFZR, Kdl = 17 + 14 pM, Kd2 = 
710 2 110 pM, R1 = 240 * 190 sltes per cell, R2 0 5 10 
= 12,000 2 680 sltes per cell. Siteslcell x lo3 
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