We have shown, by two independent
criteria (protease and phospholipase sensi-
tivity), that the elimination of the negatively
charged transmembrane aspartate residue
abolishes the signal for PI modification of
Qa-2. These results indicate that at least one
requirement for P1 linkage of proteins is the
presence of a weakly hydrophobic trans-
membrane segment.
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Alpha-2-Antiplasmin: A Serpin with Two Separate
but Overlapping Reactive Sites

]J. PoteEmraA, B.-H. SHIEH, ]J. TRAVIS*

Although the proteinase inhibitor alpha-2-antiplasmin («,AP) is known to control the
activity of plasmin through rapid formation of stable complexes, it also efficiently
inactivates chymotrypsin. These interactions are shown to occur at adjacent, overlap-
ping sites so that plasmin attacks the inhibitor at an Arg**-Met’® peptide bond, while
chymotrypsin interacts at a Met’*>-Ser’® sequence one residue downstream. Thus, a
naturally occurring plasma serine proteinase inhibitor can have multiple specificities
through interactions at adjacent sites. It also illustrates the potential flexibility of the

reactive site loop in this class of inhibitors.

UMAN o,AP IS ONE OF SEVERAL
Hhomologous proteins that com-

prise the serpin (SERine Protein-
ase INhibitor) superfamily (1, 2). Kinetic
studies on the interaction of this inhibitor
with a series of proteinases have shown that
its major target enzymes are plasmin and
trypsin (K, = 1.0 — 4.0 X 10'M ™" sec™")
(3-5). Complex formation occurs through
enzyme-inhibitor interactions at the Arg®%-
Met*® peptide bond (3, 6), and this is in
agreement with the specificities of both plas-
min and trypsin. However, o,AP can also
form stable complexes with bovine a-chy-
motrypsin [K, = 6.7 X 10°M™! sec™! (3)]
which  dissociate only very slowly
[Kg=5.6%107° sec™! (7)]. Thus, such
interactions are not simply a mechanism for
chymotrypsin inactivation of a,AP by limit-
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ed proteolysis. Because the structure of the
inhibitor loop of ®,AP includes the se-
quence beginning -Ala-Met-Ser-Arg-Met-
Ser-Leu-Ser- (residues 361-368), with the
Arg-Met peptide bond representing the in-
hibitory site for plasmin and trypsin inhibi-
tion (3, 6), many other adjacent peptide
bonds in this region would appear to be
more favorable for chymotrypsin binding
and inhibition. We have, therefore, deter-
mined the site of attack of chymotrypsin
during complex formation with a,AP.
Complexes of a,AP with bovine a-chy-
motrypsin were formed by incubation of
equimolar quantities of inhibitor and en-
zyme at pH 7.4 for 1 minute at 25°C.
Human «-2-macroglobulin (a,M) (5M ex-
cess) was added to trap any chymotrypsin
released from complexes, and the reaction
mixture was incubated for 15 hours. Under
these conditions more than 90% of the
chymotrypsin activity was released. The
large o,M-chymotrypsin complexes were
separated from mixtures of native and modi-
fied a,AP by gel filtration chromatography

on Sephadex G-100. The two forms of
inhibitor were then purified by fast protein
liquid chromatography (FPLC) on a mono-
Q column (Pharmacia). Modified o,AP,
which represented more than 75% of the
starting material, migrated as two compo-
nents of 60 kD and 14 kD, on SDS-
polyacrylamide gel electrophoresis (SDS-
PAGE) (Fig. 1). Preparative gel electropho-
resis was used to isolate each, and both were
then analyzed for NH,-terminal sequences.
The first ten residues are given below:

60 kD:
LysSerProProGlyValCysSerArgAsp 1
14 kD:
SerLeuSerSerPheSerValAsnArgPro 2

The sequence of peptide 1 indicates that
chymotrypsin attacked aAP between resi-
dues 24 and 25 while analysis of peptide 2
shows cleavage between residues 365 and
366. The former reaction is presumed to be
noninhibitory, representing only enzymatic
hydrolysis of peptide bonds in the NH,-
terminal region and has been reported for
other serpins (8, 9). However, the latter
cleavage indicates that the interaction be-
tween chymotrypsin and a,AP has occurred
between Met*® and Ser*® in the reactive
site loop and that the 14-kD fragment
represents the cleavage peptide released dur-
ing slow dissociation of this complex. Thus,
AP has two inhibitory sites that overlap,
Met*" being in the P,’-position for plas-
min/trypsin inhibition and in the P;-posi-
tion for chymotrypsin inhibition (Fig. 2).
Upstream, human neutrophil elastase inacti-
vates apAP by cleavage between Ala**! and
Met*? (3, 10). This reaction occurs even
though there are two nearby Met-Ser se-
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Fig. 1. SDS-PAGE of a,AP after dissociation of
complexes with bovine a-chymotrypsin. Samples
were separated by electrophoresis on an 8 to 20%
SDS-polyacrylamide slab gel with the Wyckof
buffer system (19), and the gel was stained with
Coomassie blue. Lane 1, protein standards; lanes
2 and 6, a,AP control; lane 3, native and post-
complex inhibitor after gel filtration; lane 4, active
aAP after FPLC; lane 5, modified a,AP and
cleavage peptide after FPLC.
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Ser~ILE-ALA-MET-SER-ARG-MET-SER-LEY=~-~~~=--PRO-LYS-COOH

Fig. 2. The structure of 12 2025
the reactive site of hu- NHp-Asn-6Ln Leu-Lvs
man oAP. Complex A
formation with plasmin A

and trypsin occurs one
residue upstream from
that occurring with chy-
motrypsin. Neutrophil
elastase inactivates a,AP
by hydrolysis of an Ala-
Met peptide bond. Note
that the inhibition of hu-
man leukocyte elastase

4 4

A

Creavace S1Te For CHyMoTRYPSIN (No INACTIVATION)
B

INACTIVATION SITE For Human NeuTROPHIL ELASTASE
C

ReactIve SITE For INHIBITION OF PLASMIN AND TRYPSIN

DREAC‘I‘IVE S1Te For INnIBITION OF CHYMOTRYPSIN

by a;-proteinase inhibitor occurs by attack at a Met-Ser peptide bond (11), two of which are present in
the a,AP reactive site loop, yet apparently ignored by this enzyme.

Fig. 3. Differential loss of a;AP inhibitory activi-
ty after modification of arginine residues. The
a,AP (1.5 pM) was incubated in the presence of
1,2-cyclohexanedione (7.5 mM and 75 mM) in
0.1M sodium borate buffer, pH 8.8, at 37°C.
Aliquots were removed at specific time intervals
and assayed for residual chymotrypsin and trypsin
inhibitory activities. Inhibitor and enzyme were
preincubated for three minutes at pH 8.0 prior to
activity measurements. Substrates used were Suc-
Ala-Ala-Pro-Phe-pNA for chymotrypsin and Bz-
Ile-Glu-Gly-Arg-pNA for trypsin. (A and A)
chymotrypsin inhibitory activity; (O and @) tryp-
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quences, cither of which might be consid-
ered equivalent to the reactive site of a;-
proteinase inhibitor (11), which is the con-
trolling inhibitor for this enzyme.
Significantly, there was no evidence for
chymotrypsin attack at the Arg***-Met®®
trypsin/plasmin inhibitory site. When the
modified inhibitor obtained from chymo-
trypsin complexes was digested with car-
boxypeptidase (Cpase) A (Worthington) for
24 hours only methionine was released,
while digestion with Cpase B gave only
lysine, which is the COOH-terminus of
native aAP (12). If, however, Cpase A
treatment was followed with Cpase B, both
lysine and arginine were found, as would be
expected from the reactive site sequence.
Confirmation of the presence of two inhibi-
tory sites in o;AP has been obtained
through chemical modification experiments.
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When a;AP was incubated with either a
5,000 or 50,000 molar excess of cyclohexan-
edione (Aldrich) at pH 8.8 there was rapid
loss of trypsin inhibitory activity (Fig. 3)
(13). However, much longer incubation
times were required to reduce chymotrypsin
inhibitory activity. We would have expected
parallel losses of both activities if inhibition
of either enzyme was occurring at a single
site.

Serpins have a reactive center which is
exposed on a strained loop near their car-
boxyl terminus (2, 14). While sequences at
cither end of this loop are highly conserved
in all of the proteins of this class so far
examined, within the reactive site loop there
is considerable heterogeneity (15, 16). This
has previously been shown in the ovomu-
coid inhibitor family (17), even though the
reactive site peptide bond was rigidly speci-

fied. In AP, however, the reactive site can
apparently shift, depending on the enzyme
being complexed, as shown in this report
and also in data obtained with natural and
recombinant derived mutants of AP,
where insertions and deletions in the reac-
tive site loop caused the elimination of
inhibitory activity or changes in specificity
(or both) (5, 18). Since most of the serpins
tested can form complexes with more than
one proteinase, albeit at very different rates,
it is likely that other members of this family
will have properties similar to those found
with a,AP, particularly if inhibition is rapid
and the complexes formed are stable. Exami-
nation of loop sequences alone, however, is
not likely to be useful since potential reactive
sites are not always recognized. Otherwise,
we would expect a;AP to inhibit neutrophil
elastase. Obviously, other contact regions in
serpins besides the putative P, residues must
be important in dictating inhibitor specific-
ity.
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