
Numerical Evidence That 
the Motion of Pluto Is Chaotic 

The Digital Orrery has been used to perform an integra- 
tion of the motion of the outer planets for 845 million 
years. This integration indicates that the long-term mo- 
tion of the planet Pluto is chaotic. Nearby trajectories 
diverge exponentially with an e-folding time of only about 
20 million years. 

m H E  DETERMINATION OF THE STABILITY OF THE SOLAR 

1 system is one of the oldest problems in dynamical astrono- 
my, but despite considerable attention all attempts to prove 

the stability of the system have failed. Arnold has shown that a large 
proportion of possible solar systems are quasiperiodic if the masses, 
and orbital eccentricities and inclinations, of the planets are suffi- 
ciently small (1). The actual solar system, however, does not meet 
the stringent requirements of the proof. Certainly, the great age of 
the solar system suggests a high level of stability, but the nature of 
the long-term motion remains undetermined. The apparent analytical 
comple&y of the problem has led us to investigate-the stability by 
means of numerical models. We have investigated the long-term 
stability of the solar system through an 845-million-year numerical 
integration of the five outermost planets with the Digital Orrery (Z), 
a sp&ial-purpose computer for studying planetary motion. 

Pluto's orbit is unique among the planets. It is both highly 
eccentric (e -- 0.25) and highly inclined ( i  -- 16"). The orbits of 
Pluto and Neptune cross one-another, a condition permitted only by 
the libration of a resonant argument associated with the 3:2 
commensurability between the orbital periods of Pluto and Nep- 
tune. This resonance, which has a libration period near 20,000 years 
(4, ensures that Pluto is far from perihelion when Pluto and 
Neptune are in conjunction. Pluto also participates in a resonance 
involving its argument of perihelion, the angle between the ascend- 
ing node and the perihelion, which librates about ~r i2  with a period 
of 3.8 million years (4). This resonance guarantees that the perihe- 
lion of Pluto's orbit is far from the line of intersection of the orbital 
planes of Pluto and Neptune, further ensuring that close encounters 
are avoided. 

We found in our 200-million-year integrations of the outer 
planets (5)  that Pluto's orbit also undergoes significant variations on 
much longer time scales. The libration of the argument of perihelion 
is modulated with a period of 34 million years, and h = e sin 6, 
where e is the eccentricity and (3 is the longitude of perihelion, 
shows significant long-period variations with a period of 137 
million years. The appearance of the new 34-million-year period 
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might have been expected, because Pluto must have two indepen- 
dent long-period frequencies, but the 137-million-year period was 
completely unexpected. It results from a near commensurability 
between the frequency of circulation of Pluto's ascending node and 
one of the principal secular frequencies of the massive planets. Pluto 
also participates in two other resonances involving the frequency of 
oscillation of the argument of perihelion and the principal secular 
frequencies. In our 200-million-year integration Pluto's inclination 
appeared to have even longer periods or possibly a secular decrease. 

The similarity of Pluto's peculiar highly eccentric and inclined 
orbit to chaotic asteroid orbits ( 6 ) ,  together with the very long 
periods, Pluto's participation in a large number of resonances, and 
the possible secular decline in inclination compelled us to carry out 
longer integrations of the outer planets to clarify the nature of the 
long-term evolution of Pluto. Our new numerical integration 
indicates that in fact the motion of the planet Pluto is chaotic. 

Deterministic chaotic behavior. In most conservative dynamical 
systems Newton's equations have both regular solutions and chaotic 
solutions. For some initial conditions the motion is quasiperiodic; 
for others the motion is chaotic. Chaotic behavior is distinguished 
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Fig. 1. The exponential divergence of nearby trajectories is indicated by the 
average linear growth of the logarithms of the distance measures as a 
function of time. In the upper trace we see the growth of the variational 
distance around a reference trajectory (left vertical axis). In the lower trace 
we see how two Plutos diverge with time (right vertical axis). The distance 
saturates near 45 AU; note that the semimajor axis of Pluto's orbit is about 
40 AU. The variational method of studying neighboring trajectories does 
not have the problem of saturation. Note that the two methods are in 
excellent agreement until the two-trajectory method has nearly saturated. 
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from quasiperiodic behavior by the way in which nearby trajectories 
diverge (6, 7). Nearby quasiperiodic trajectories diverge linearly 
with time, on average, whereas nearby chaotic trajectories diverge 
exponentially with time. Quasiperiodic motion can be reduced to 
motion on a multidimensional torus; the frequency spectrum of 
quasiperiodic motion has as many independent frequencies as 
degrees of freedom. The frequency spectrum of chaotic motion is 
more complicated, usually appearing to have a broad-band compo- 
nent. 

The Lyapunov exponents measure the average rates of exponen- 
tial divergence of nearby orbits. The Lyapunov exponents are limits 
for large time of the quantity y = In(dldo)/(t - to), where d is the 
distance in phase space between the trajectory and an infinitesimally 
nearby test trajectory, and t is the time. For any particular trajectory 
of an n-dimensional system there can be n distinct Lyapunov 
exponents, depending on the phase-space direction from the refer- 
ence trajectory to the test trajectory. In Hamiltonian systems the 
Lyapunov exponents are paired; for each nonnegative exponent 
there is a non-positive exponent with equal magnitude. Thus an m- 
degree-of-freedom Hamiltonian system can have at most m positive 
exponents. For chaotic trajectories the largest Lyapunov exponent is 
positive; for quasiperiodic trajectories all of the Lyapunov expo- 
nents are zero. 

Lyapunov exponents can be estimated from the time evolution of 
the phase-space distance between a reference trajectory and nearby 
test trajectories (7, 8). The most straightforward approach is to 
simply follow the trajectories of a small cloud of particles started 
with nearly the same initial conditions. With a sufficiently long 
integration we can determine if the distances between the particles 
in the cloud diverge exponentially or linearly. If the divergence is 
exponential, then for each pair of particles in the cloud we obtain an 
estimate of the largest Lyapunov exponent. With this method the 
trajectories eventually diverge so much that they no longer sample 
the same neighborhood of the phase space. We could fix this by 
periodically rescaling the cloud to be near the reference trajectory, 
but we can even more directly study the behavior of trajectories in 
the neighborhood of a reference trajectory by integrating the 
variational equations along with the reference trajectory. In particu- 
lar, let y' = f(y) be an autonomous system of first-order ordinary 
differential equations and y(t) be the reference trajectory. We define 
a phase-space variational trajectory y + 6y and note that 6y satisfies 
a linear system of first-order ordinary differential equations with 
coefficients that depend on y(t), 6y' = F6y, where the elements of 
the Jacobian matrix are J,. = af;ldyj. 
Our numerical experiment. For many years the longest direct 

integration of the outer planets was the 1-million-year integration of 
Cohen, Hubbard, and Oesterwinter (9). Recently several longer 
integrations of the outer planets have been performed (5, 10, 11). 
The longest was our set of 200-million-year integrations. Our new 
845-million-year integration is significantly longer and more accu- 
rate than all previously reported long-term integrations. 

In our new integration of the motion of the outer planets the 
masses and initial conditions are the same as those used in our 200- 
million-year integrations of the outer planets. The reference frame is 
the invariable frame of Cohen, Hubbard, and Oestenvinter. The 
planet Pluto is taken to be a zero-mass test particle. We continue to 
neglect the effects of the inner four planets, the mass lost by the Sun 
as a result of electromagnetic radiation and solar wind, and general 
relativity. The most serious limitation of our integration is our 
ignorance of the true masses and initial conditions. Nevertheless, we 
believe that our model is sufficiently representative of the actual solar 
system that its study sheds light on the question of stability of the 
solar system. To draw more rigorous conclusions, we must deter- 
mine the sensitivity of our conclusions to the uncertainties in masses 

and initial conditions, and to unrnodeled effects. 
Our earlier integrations were limited to 100 million years forward 

and backward in time because of the accumulation of error, which 
was most seriously manifested in an accumulated longitude error of 
Jupiter of order 50". In our new integrations we continue to use the 
12th-order Stormer predictor (IZ), but a judicious choice of step 
size has reduced the numerical errors by several orders of magnitude. 
In all of our integrations the error in energy of the system varies 
nearly linearly with time. In the regime where neither roundoff nor 

Fig. 2. The conventional representation of the Lyapunov exponent calcula- 
tion, the logarithm of y versus the logarithm of time. Convergence to a 
positive exponent is indicated by a leveling 0% for regular trajectories this 
plot approaches a line with slope minus one. 

log10 t [years] 
Fig. 3. Common logarithm of the distance between several pairs of Plutos, in 
AU, versus the common logarithm of the time, in years. The initial segment 
of the graph closely fits a 312 power law (dashed line). The solid line is an 
exponential chosen to fit the long-time divergence of Plutos. The exponential 
growth takes over when its slope exceeds the slope of the power law. 
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truncation error is dominant the slope of the energy error as a 
function of time depends on step size in a complicated way. For 
some step sizes the energy error has a positive slope; for others the 
slope is negative. This suggests that there might be special step sizes 
for which there is no linear growth of energy error. By a series of 
numerical experiments we indeed found that there are values of the 
step size where the slope of the linear trend of energy vanishes. The 
special step sizes become better defined as the integration interval of 
the experiments is increased. 

Fig. 4. The orbital element h = e sin 13 for Pluto over 845 million years. On 
this scale the dominant od (the 3.7-million-year circulation of the 
longitude of pmhelion) is E l y  resolved. The most obvious component has 
a period of 137 million years. The sampling interval was increased in the 
second half of our integration. 

Fig. 5. The indination i of Pluto over 845 million years. Besides the 34- 
million-year component and the 150-million-year component there appears 
to be a component with a period near 600 million years. 

We chose our step size on the basis of a dozen 3-million-year 
integrations, and numerous shorter integrations. For our new long 
integration we chose the step size to be 32.7 days. This seemingly 
innocuous change fiom a step size near 40 days dramatically reduces 
the slope of the energy error, by roughly three orders of magnitude. 
If the numerical integration were truncation error-dominated, for 
which the accumulated error is ~rowrtional to hn. where h is the 

I I 

step size and n is the order of the integrator, then this reduction of 
step size would improve the accumulated error by only about a 
factor of 10. 

In our new integration the relative energy error (energy minus 
initial energy divided by the magnitude of the initial energy) 
accumulated over 845 million years is -2.6 x 10-lo; the growth of 
the relative energy error is still very nearly linear with a slope of 
-3.0 x 10-l9 By comparison the rate of growth of the 
relative energy error in our 200-million-year integrations was 
1.8 x 10-l6 The errors in other integrations of the outer 
solar system were comparable to the errors inour 200-million-year 
integrations. The rate of growth of energy error in the l-million- 
year integration of Cohen, Hubbard, and Oesterwinter was 
2.4 x 10-l6 For the 6-million-year integration of Kinoshita 
and Nakai (10) the relative energy error was approximately 
5 x 10-16 For the LONGSTOP integration the growth of 
relative energy (as defined in this article) was -2.5 x 10-l6 year-'. 
Thus the rate of growth of energy error in the integration reported 
here is smaller than all previous long-term integrations of the outer 
  la nets bv a factor of about 600. 

We vekied that this improvement in energy conservation was 
reflected in a corresponding improvement in position and velocity 
errors by integrating the outer planets forward 3 million years and 
then backward to recover the initial conditions, over a range of step 
sizes. For the chosen step size of 32.7 days the error in rewverin 8 the initial positions of each of the planets is of order 10- 
astronomical units (AU) or about 1500 km. Note that Jupiter has in 
this time traveled 2.5 x 10'' km. 

The error in the longtitude of Jupiter can be estimated if we 
assume that the energy error is mainly in the orbit of Jupiter. The 
relative energy error% proportional to the relative e r r o r -  orbital 
frequency so the error in longitude is proportional to the integral of 
the relative energy error: AX - tnAE(t)lE, where n is the mean 
motion of Jupiter and t is the time of integration. Because the energy 
error grows -linearly with time the position error grows with the 
square of the time. The accumulated error in the longitude of Jupiter 
after 100 million years is only about 4 arc minutes. This is to be 
wm~ared with th; 50" ac&ulated error estimated for our 200- 
million-year integrations. The error in the longitude of Jupiter after 
the full 845 million years is about 5". 

We have directlv measured the inteeration error in the determina- 
tion of the positihn of Pluto by inte*ting forward and backward 
over intervals as long as 3 million years to determine how well we 
can re~roduce the initial conditions. Over such short intervals the 
round-trip error in the position of Pluto grows as a power of the 
time with an exponent near 2. The error in position is approximately 
1.3 x AU (where t is in years). This growth of error is 
almost entirely in the integration of Pluto's orbit; the round-trip 
error is roughly the same when we integrate the whole system and 
when we integrate Pluto in the field of the Sun only. It is interesting 
to note that -in the integrations with the 32.7-day step size the 
position errors in all the planets are comparable. Extrapolation of 
the round-trip error for Pluto over the full845-million-year integra- 
tion gives an error in longitude of less than 10 arc minutes. 

Lyapunov exponent of Pluto. We estimated the largest Lya- 
punov exponent of Pluto by both the variational and the phase-space 
distance methods during the second half of our 845-million-year 
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run. Figure 1 shows the logarithm of the divergence of the phase- 
space distance in a representative two-particle experiment atid the 
growth of the logarithm of the variational phase-space distance. We 
measured the phase-space distance by the ordinary Euclidean norm 
in the six-dimensional space with position and velocity coordinates. 
We measured position in AU and velocity in AUlday. Because the 
magnitude of the velocity in these units is small compared to the 
magnitude of the position, the phase-space distance is effdvely 
equivalent to the positional distance, and we refer to phase-space 
distances in terms of AU. For both traces in this plot the average 
growth is linear, indicating exponential divergence of nearby trajec- 
tories with an e-folding time of approximately 20 million years. The 
shapes of these graphs are remarkably similar until the two-particle 
divergence grows to about 1 AU, verifying that the motion in the 
neighborhood of Pluto is properly represented. A more conservative 
representation of this data is to plot the logarithm of y versus the 
logarithm of time (Fig. 2). The leveling off of this graph indicates a 
positive Lyapunov exponent. 

To study the details of the divergence of nearby trajectories we 
expand the early portion of the two-particle divergence graph (Fig. 
3). The separation between particles starts out as a power law with 
an exponent near 3/2. The square law we described earlier estimates 
the actual total error, including systematic errors in the integration 
process. The 312 power law describes the divergence of trajectories 
subject to the same systematic errors. Only after some time does the 
exponential take off. The power law is dominated by the exponential 
only after the rate of growth of the exponential exceeds the rate of 
growth of the power law. This suggests that the portion of the 
divergence of nearby trajectories that results only fiom the numeri- 
cal error fits a 3/2 power law and that this error "seeds" the 
exoonential divergence that is the hallmark of chaos. We tested this 
hGthesis by int&ating a cloud of test partides with the orbital 
elements of Pluto in the field of the Sun alone. The divergence of 
these Ke~ler "Plutos" m w s  as 3.16 X 10-"t3" AU. This is " 
identical to the initial divergence of the Plutos in the complete 
dynamical system, showing that two-body numerical error com- 
pletely accounts for the initial divergence. 

Only the second half of the integration was used in the computa- 
tion of the Lyapunov exponents, because the measurement & the 
6rst half of our integration was contaminated by over-vigorous 
application of the rescaling method, and gave a Lyapunov exponent 
about a factor of 4 too large. The rescaling interval was only 
275,000 years, which was far too small. The rescaling interval must 
be long enough that the divergence of neighboring trajectories is 
dominated bv the exwnential divergence associated with chaotic 
behavior ra&er th' the power l& divergence caused by the 
accumulation of numerical errors. In our experiment the rescaling 
interval should have been greater than 30 million years. 

It is important to emphasize that the variational method of 
measuring the Lyapunov exponent has none of these problems. 
Features of the orbital elements of Pluto. The largest compo- 

nent in the variation of h (Fig. 4) reflects the 3.7-million-year 
regression of the longitude of perihelion. The 27-million-year 
component we previously reported is clearly visible, as is the 137- 
million-year component. The change in density of points reflects a 
change in the sampling interval. For the first 450 million years of 
our integration we recorded the state of the system every 499,983 
days (about 1,369 years) of simulated time. For the second 400 
million years we s i p l e d  16 times less frequently. 

Besides the major 3.8-million-year component in the variation of 
the inclination of Pluto (Fig. 5) we can clearly discern the 34- 
million-year component we previously reported. Although there is 
no continuing secular decline in the inclination, there is a compo- 
nent with a period near 150 million years and evidence for a 

component with a period of approximately 600 million years. 
The existence of sigdcant orbital variations with such long 

periods would be quite surprising if the motion were quasiperiodic. 
For quasiperiodic trajectories we expect to find frequencies that are 
low order combinations of a few fundamental fkquencies (one per 
degree of freedom). The natural time scale for the long-term 
evolution of a quasiperiodic planetary system is set by the periods of 
the circulation of the nodes and perihelia, which in this case are a 
few million years. Periods in the motion of Pluto comparable to the 
length of the integration have been found in all long-term integra- 
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Fig. 6. A pomon of the power spectrum of Pluto's h. In this graph A is the 
relative amplitude. There a p F  to be a broad-band component to the 
spectrum. This is consistent wth the chaotic character of the motion of Pluto 
as indicated by the positive Lyapunov exponent. 
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Fig. 7. A pomon of the power spectrum of Neptune's h. In this graph A is 
the relative amplitude. The spectrum is apparently a quite complicated line 
spectrum. That we do not observe a broad-band component is consistent 
with the motion being quasiperiodic. 
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tions. This is consistent with the chaotic character of the motion of 
Pluto, as indicated by our measurement of a positive Lyapunov 
exponent. 

Usually the measurement of a positive Lyapunov exponent pro- 
vides a confirmation of what is already visible to the eye; that is, 
chaotic trajectories look irregular. In this case, except for the very 
long periods, the plots of Pluto's orbital elements do not look 
particularly irregular. However, the irregularity of the motion does 
manifest itself in the power spectra. For a quasiperiodic trajectory 
the power spectrum of any orbital element is composed of integral 
linear combinations of fundamental frequencies, where the number 
of fundamental frequencies is equal to the number of degrees of 
freedom. The power spectrum of a chaotic trajectory usually appears 
to have some broad-band component. 

A portion of the power spectrum of Pluto's h is shown in Fig. 6. 
For comparison the same portion of the power spectrum of 
Neptune's h is shown in Fig. 7. This portion of the spectrum was 
chosen to avoid conhsion introduced by nearby major lines. 
Hanning windows have been used to reduce spectral leakage; only 
the densely sampled part of the run was used in the computation of 
the Fourier transforms. The spectrum of Neptune is quite compli- 
cated but there is no evidence that it is not a line spectrum. On the 
other hand the spectrum of Pluto does appear to have a broad-band 
component. Note that both of these spectra are computed from the 
same integration run, by means of the same numerical methods. 
They are subject to the same error processes, so the differences we 
see are dynamical in origin. The amplitudes in both graphs are 
normalized in the same way, so we can see that the broad-band 
components in Pluto's spectrum are mostly larger than the discrete 
components in Neptune's spectrum. 

The lack of obvious irregularity in the orbital elements of Pluto 
indicates that the portion of the chaotic zone in which Pluto is 
currently moving is rather small. Since the global structure of the 
chaotic zone is not known it is not possible for us to predict whether 
more irregular motions are likely. If the small chaotic zone in which 
Pluto is found connects to a larger chaotic region, relatively sudden 
transitions can be made to more irregular motion. This actually 
occurs for the motion of asteroids near the 3 : 1 Kirkwood gap (13). 

On the other hand, the fact that the time scale for divergence is 
only an order of magnitude larger than the fundamental time scales 
of the system indicates that the chaotic behavior is robust. It is not a 
narrow chaotic zone associated with a high-order resonance. Even 
though we do not know the sensitivity of the observed chaotic 
behavior to the uncertainties in parameters and initial conditions, 
and unmodeled effects, the large Lyapunov exponent suggests that 
the chaotic behavior of Pluto is characteristic of a range of solar 
systems including the actual solar system. 

Conclusions and implications of Pluto's chaotic motion. Our 
numerical model indicates that the motion of Pluto is chaotic. The 

largest Lyapunov exponent is about 1 0 - ~ . ~  Thus the e-  
folding time for the divergence of trajectories is about 20 million 
years. It would not have been surprising to dscover an instability 
with characteristic time of the order of the age of the solar system 
because such an instability would not yet have had enough time to 
produce apparent damage. Thus, considering the age of the solar 
system, 20 million years is a remarkably short time scale for 
exponential divergence. 

The discovery of the chaotic nature of Pluto's motion makes it 
more difficult to draw firm conclusions about the origin of Pluto. 
However, the orbit of Pluto is reminiscent of the orbits of asteroids 
on resonant chaotic trajectories, which typically evolve to high 
eccentricity and inclination (6). This suggests that Pluto might have 
been formed with much lower eccentricity and inclination, as is 
typical of the other planets, and that it acquired its current peculiar 
orbit purely through deterministic chaotic dynamical processes. Of 
course, it is also possible that Pluto simply formed in an orbit near 
its current orbit. 

In our experiment Pluto is a zero-mass test particle. The real Pluto 
has a small mass. We expect that the inclusion of the actual mass of 
Pluto will not change the chaotic character of the motion. If so, 
Pluto's irregular motion will chaotically pump the motion of the 
other members of the solar system and the chaotic behavior of Pluto 
would imply chaotic behavior of the rest of the solar system. 
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