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Building Black Holes: 
Supercomputer Cinema 

A new computer code can solve Einstein's equations of 
general relativity fbr the dynamical evolution of a relativ- 
istic star cluster. The cluster may contain a large number 
of stars that move in a strong gravitational field at speeds 
approaching the speed of light. Unstable star clusters 
undergo catastrophic collapse to black holes. The collapse 
of an unstable cluster to a supermassive black hole at the 
center of a galaxy may explain the origin of quasars and 
active galactic nuclei. By means of a supercomputer 
simulation and color graphics, the whole process can be 
viewed in real time on a movie screen. 

In a galaxy far, far away, long, long ago, 100 million neutron stars swirl 
around the center at velocities near the speed of light. Suddenly the delicate 
balance between their orbital motion and the inward pull of their mutual 
gravitational attraction is upset. Stars begin to rush toward the center. A n  
avalanche ensues. Out  of this catastrophic collapse, a supermassive black hole 
arises. Careour debris accretes onto the black hole, radiating profirsely be>re 
being swallowed. A quasar is born. 

UASARS ARE THE MOST ENERGETIC OBJECTS IN THE 
universe, with a power output up to lo4' erg s-', which is 
1015 times the luminosity of the sun. Most astrophysicists 

believe Q at quasars and active galactic nudei are powered by 
supennassive black holes, with masses in the range of lo6 to lo8 
solar masses ( 1 ) .  

How are these supermassive black holes formed? The scenario 
depicted above is one speculation. But a speculation is not a 
calculation. Only a detailed quantitative investigation can demon- 
strate that such an idea is theoretically viable. 

How might we observe such a catastrophic event? Direct astro- 
nomical observations are out of the question. The collapse is such a 
short-lived phenomenon that catching a black hole in the act of 
fbrmation is unlikely. 

Supercomputers can provide answers to both of these questions. 
By performing a supercomputer simulation we can demonstrate that 
the above scenario is indeed a viable mechanism for the formation of 
supermassive black holes. Moreover, with the aid of the supercom- 
puter. we can "observe" the collapse in real time on a movie screen. 

~t the Cornell National super:omputer Facility, we have recently 
solved Einstein's equations of general relativity for the dynamical 
evolution of a relahvistic star cluster (2, 3). Besides the-obvious 
application to astrophysics, the study of relativistic star dusters has a 
wider computational significance. The problem falls into two broad 
categories of research now being hotly pursued by computational 
physicists working in many different areas: nonlinear dynamics and 
field theory on a space-time lattice. Interest in these subjects is 
growing rapidly because of new computer hardware and new 
numerical algorithms. It is significant that techniques developed fbr 
solving problems arising in one area are commonly usell for solving 
problems arising in a different area-when expressed in computa- 
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Fig. 2. Schematic illustration show- 
ing how docks in the sttong gravi- 
tational field of a black hole at the 
origin run slower than docks far 
away. 

Fig. 3. "Collapse of the lapse." 

tional terms, seemingly different problems in many cases share a 
common numerical structure. For example, some of the algorithms 
employed for a relativistic star duster have also been used fbr long- 
term weather fbrecasting, plasma fusion studies, and the design of 
airplane wings. 

Our work addresses several long-standing issues in stellar dynam- 
ics. A major unsolved problem concerns the stability of relativistic 
star dusters in dynamical equilibrium. The pioneering treatments of 
the stability of relativistic star dusters (4) were restricted to linear 
perturbation theory. The more general study of stability by numeri- 
cal means involves setting up the equilibrium duster as initial data in 
a time-dependent simulation. If the duster is stable, it does not 
evolve away from its initial configuration. We have used our 
numerical model in this way to resolve issues of cluster stability. 

The stability of a single gaseous star can be diagnosed from its 
binding energy. Consider a sequence of such stars in equilibrium, 
parametrized by central density. The binding energy of each star 
along the sequence is a function of the central density. It is a 
theorem that all stars are dynamically stable up to the first maximum 
of the binding energy. Beyond this point all members of the 
sequence are dynamically unstable. This theorem holds both in 
Newtonian gravity and in general relativity (!i). 

No such simple binding energy criterion has been establiihed for 
an equilibrium sequence of collisionless star dusters [Ipser (6) has 
presented a sufKcient, but not necessary, criterion]. Our stability 
analysis shows that the binding energy does indeed provide a 
diagnostic for stability-a numerical demonstration awaiting a 
fbnnal mathematical proof. 

The final fate of unstable dusters, and their collapse to black 
holes, has previously been discussed only in qualitative terms (7). 
With our computer model, we have been able to track the complete 
nonlinear evolution of unstable configurations. 

We have restricted our initial investigation to spherically symmet- 
ric clusters, but the gravitational field of the system can be arbitrarily 
strong and particle velocities can be arbitrarily dose to fie speed of 
light. Our computational scheme combines the tools of numerical 
relativity (8) with those of N-body partide simulations (9). Stars in a 
star duster are modeled as a collisionless gas of particles, which 
interact exdusively by gravitational attraction. Consequently, they 
satisfy the Vlasov equation familiar in plasma physics fbr charged 

particles experiencing Coulomb interactions. We solve this equation 
in 111 general relativity by a mean-field partide simulation scheme. 

Our model can accurately M o w  the collapse of an unstable 
duster to a black hole. A black hole is a region where gravity is so 
strong that nothing, not even light, can escape. The formation of a 
black hole is inevitably accompanied by the appearance of space-time 
singularities-regions inside the black hole where the gravitational 
tidal fbrce and matter density become infinite. Because these 
infinities are always expected to occur inside black holes, they do not 
influence the evolution of the causally disconnected regions outside 
the hole [,,cosmic censorship" ( lo) ] .  However, because of these 
infinities, tracking the formation of a black hole numerically is 
technically ~Mcult. Yet only by solving such problems can we study 
the 111 nonlinear nature of relativistic gravity. 

Physical Picture 
To understand how one simulates the evolution of a star duster in 

general relativity, it is usem to consider first how the problem can 
be tackled in Newtonian physics. Stars in the duster move according 
to Newton's Laws of Motion 

where x and u are the position and velocity vectors of each star and 
Q, is the gravitational potential. In the simulation, these equations 
are integrated for a small timestep fbr a representative sample of 
duster stars, typically 10,000 or so. From the new star positions, we 
compute the mass density, p, at the new time by dividing the volume 
of the duster into small bins and counting the number of stars in 
each bin. The density then serves as the source term for the 
gravitational field equation, which in Newtonian physics is Pois- 
son's equation for Q,, 

where G is the gravitational constant. The new potential is then 
inserted into the particle equations of motion and the process is 

SCIENCE, VOL. 24-1 



Flg. 4. Collapse of the inner region 
of a star duster as seen by two sets 
of observers. 'I 

repeated for the next small timestep. This approach to evolving a 
self-gravitating collisionless system is known as a mean-field partide 
simulation scheme. 

Solving the relativistic problem is similar to the Newtonian 
approach just described. The Newtonian partide equations of 
motion are replaced by the geodesic equations of general relativity, 
whereas Poisson's equation is replaced by Einstein's equations for 
the gravitational field. The restriction to spherical symmeay leads to 
a considerable reduction in the number of dynamical phase-space 
degrees of tkedom that have to be d e d  in the simulation. Instead 
of the MI six degrees of freedom, three components of position and 
three components of velocity for each particle, an orbit is uniquely 
specified by the radial coordinate and the radial and transverse 
components of the velocity. Conservation of angular momentum 
further reduces this to two dynamical degrees of freedom. In 
addition, the relativistic gravitational field variables at each instant 
are functions only of radius. 

Solving Einstein's equations for the gravitational field is not 
trivial. The usual form of these equations is 

where G, is the Einstein tensor and T,, is the stress-energy tensor. 
This form intertwines space and time, and hence is not suitable for 
perfbrming a computer calculation of time evolution. We need to 
recast the equations in the form of an initial-value problem: given 
the state of the system over all space at one instant of time, t, we 
require equations that determine the state of the system over all 
space at the next instant, t + dt. The new state can then be used as 
initial data to continue the integration to the next instant, and so on. 

The required splitting of space and time in general relativity is 
given by the ADM (Arnowitt-Deser-Misner) or 3 + 1 decomposi- 
tion of Einstein's equations (1 1). In this decomposition, the original 
form of Einstein's equations (Eq. 4) is split into two kinds of 
equations: constraint equations and evolution equations. The con- 
straint equations contain no time derivatives and relate field varia- 
bles at a given instant of time. The evolution equations are first- 
order di&rential equations in time that propagate the initial data to 
the next instant of time. 

This kind of decomposition is not unique to general relativity. 
Indeed, Maxwell's equations of electromagnetism are already in this 
h: the constraint equations of electromagnetism are 

V-E = k p ,  (5) 

while the evolution equations are 

Here E is the electric field, B is the magnetic field, p, is the electric 

charge density, J is the current density, and c is the speed of light. In 
a numerical simulation of Maxwell's equations, one would start with 
E and B fields that satisfy the constraints, Eqs. 5 and 6. The 
subsequent evolution of these fields is governed by Eqs. 7 and 8. 
The whole procedure is self-consistent: the constraint equations are 
always guaranteed to hold if they are satisfied initially and if the 
fields are evolved according to Eqs. 7 and 8. 

Note that the Newtonian limit of the ADM decomposition yields 
one constraint equation, which is just Poisson's equation, Eq. 3. 
There are no evolution equations-Newtonian gravitation is not a 
truly dynamical field. 

In MI general relativity, the ADM equations are similar to 
Maxwell's equations, but more complicated. There are more fields 
and equations because general relativity describes a tensor field, 
whereas Maxwell's equations describe vector fields. More important, 
the field equations in general relativity are nonlinear. This makes the 
equations more difficult to solve, and yields solutions exhibiting 
more complicated behavior. 

The Movie 
This investigation provides an example of a computational prob 

lem that requires extensive use of graphical display to visualize the 
dynamical behavior uncovered by the simulation. Imagine trying to 
make sense of a listing of the positions and velocities of 10,000 stars 
at 1,000 successive instants of time! Instead, we have d e n  the 
output fiom selected cases and had the computer produce a color 
moGe that de~icts the colla~se of unstable dkters -to black holes. 

The equati6ns were solvid on the Cornell National Supercom- 
puter Facility (an assembly of Floating Point Systems FPS 264 array 
processors hosted by an IBM 3090-600). The computer tracked the 
motion of a representative sample of stars in the duster. The 
positions of these stars at successive times were then displayed on 
color film. The completed film lasts 8 minutes and was made on a 
Cray XMP at Digital Productions in Los Angela. 

The movie consists of six scenes. Highlights fiom scene 1 are 
shown in Fig. 1, A to G. Initially, the stars orbit about their mutual 
center at speeds close to the -speed of light. The stars obey a 
Maxwell-Bolamann energy distribution. The duster is initially in 
equilibri-the motion of the stars exactly counterbalances the 
inward pull of their combined gravity. If Newton's theory of gravity 
were correct, the cluster would remain in this equilibrium state 
forever. However, according to general relativity, gravity is actually 
stronger than predicted by Newton's theory' and the cluster is 
unstable to cataitro~hic colia~se. As time advances. the stellar orbits 
spiral inward towarh the center. At the very center ;he concentration 
of mass becomes so great that a, black hole forms. During the 
simulation, the computer sends out spherical flashes of light from 
the center of the duster. The propagation of these flashes indicates 
when the black hole forms. These flashes are depicted by the bright 
outward-moving shells in Fig. 1, B to G. Befbre the black hole forms, 



Ig. 5. Collapse of the inner region of an extended star cluster to a black hole. This may be the mechanism by which a supermassive black hole forms in a ga- 
kadc nudeus to power a quasar. 

&e light rays have no problem traveling outward forever, escaping 
om the cluster entirely. However, once the black hole forms, the 
$t rays are permanently trapped within (Fig. 1, D to F). In this 
[ample, the black hole radius (the horizon) continues to grow until 
1 of the stars are consumed. The outer boundary of the black hole 
as been silhouetted with a light blue halo for easier visualization. 
he numerical value of the final radius, R, of the black hole is 
:curately given by 

here M is the total mass of the cluster. (G and c have been set equal 
) unity in Fig. 1G.) This agrees with the theoretical value, and is 
fled the Schwanschild radius. 
Scene 2 is a cartoon illustrating that the strong gravitational field 

&fiat develops near a black hole slows down time (Fig. 2). The black 
hole is at the origin of the coordinates, x = y = 0. The z-axis is 
wppressed for clarity. Coordinate time, t, is plotted vertically (space- 
&me diagram). The clocks measure proper time, T, which agrees 
with coordinate time far away where gravity is weak. Clocks that are 
&r from the black hole advance more rapidly than clocks close to it. 
The lapse function, a, gives the ratio of time measured by a local 
dock, d ~ ,  to time measured very far away, dt (the gravitational red 
-\lift). The pink region of the clock measures the proper time 

apsed, dr = adt. 
Scene 3 depicts the cccollapse of the lapse" (12) (Fig. 3). Plotted in 

reen is log a as a function of radius from the origin for the collapse 
lown in scene 1. The clock in the lower right-hand comer measures 

the advance of coordinate time during the collapse. The cluster 
configuration at the corresponding time is shown in the lower left- 
hand comer. At t = 0 the gravitational field of the cluster is not very 
strong, a = 1, and the plot (Fig. 3A) is a flat surface. The function 
a plunges to zero (log a + -a) in the center of the cluster when 
the black hole forms (Fig. 3D). 

One of the goals of numerical relativity is to study black hole 
formation on the computer without encountering the space-time 
singularity that appears in a finite proper time at the center of the 
black hole. Reaching the singularity causes overflows and under- 
flows in the simulation because of the infinities that accompany the 
singularity. In this case the simulation will crash before the evolu- 
tion is complete, that is, before the fate of regions far outside the 
black hole &n be ascertained. 

This problem is avoided in general relativity by exploiting a gauge 
freedom. This freedom is analogous to the gauge freedom that is 
well known in electromagnetism. In relativity, we are free to label 
events in space-time with quite arbitrary sets of smooth coordinates. 
Only proper times and distances have physical sigdcance, not the 
values of the space-time coordinates. Consider the march of the 
simulation from one value of coordinate time to the next. Because 
the lapse measures the advance of proper time relative to coordinate 
time, it is obviously desirable to choose a time coordinate in which 
the lapse falls to zero whenever the gravitational field starts to get 
strong. In this way, it is possible to postpone the formation of the 
singularity to large values of coordinate time. 

There are an infinite number of ways to ex 
freedom in practice. Geometric considerations have led theoristi to 

I Fig. 6. Selected orbits for the col- 

propose two particular choices for a suitable time coordinate, 
maximal time-slicing and polar time-slicing. Both have the property 
that a +  0 in a strong field region, but which is better in a 
simulation? 

Scene 4 is a comparison of the Maxwell-Bolmann collapse oi 
scene 1 as seen by two sets of observers who use the two different 
choices of time coordinate (Fig. 4). The frames show the stellar 
positions at the center of the duster at the same coordinate times. 
Clocks carried by the maximal observers, which measure proper 
time, will advance farther than those carried by the polar ob&rvers. 



Hence the collapse proceeds farther for the maximal observers, and 
the stars get closer to the singularity at the center of the black hole. 
In Fig. 4B the black hole has already formed for maximal time 
slicing. The surface of the cluster falls well inside the Schwarzschild 
radius by late times (Fig. 4C). By contrast, for polar observers, the 
black hole forms later and even at late times the surface barely 
reaches the Schwarzschild radius. Hence, we conclude that polar 
slicing avoids the singularity to a greater extent than maximal 
slicing. This is in agreement with theoretical predictions (13). 

As described earlier, most astrophysicists believe that quasars (and 
active galactic nuclei) are powered by supermassive black holes, with 
masses exceeding lo6 to 10' solar masses. The existence of super- 
massive black holes may not be restricted to such exotic objects. Our 
nearest neighbor, the Andromeda galaxy, probably has a black hole 
of this size at its center (14), as might other nearby galaxies. Even 
our own galaxy may contain a lo6 solar mass black hole at the center 
(15). Where could such supermassive black holes come from? 

Scene 5 demonstrates how such a black hole can form in a galaxy 
whose core consists largely of compact stars (Fig. 5). Compact 
stars-neutron stars and black holes of a few solar masses-are end- 
point products of the evolution of normal stars (5). They roliferate 

I! even ordinary galaxies like our own. It may take up to 10 years for 
a galaxy to reach the stage at which its core is sufficiently relativistic 
for catastrophic collapse. At the onset of collapse a galaxy will 
consist of a tiny relativistic core embedded in a larger Newtonian 
"halo" of stars (3, 16). The ensuing implosion takes only a few 
minutes and is depicted in Fig. 5, A to D. 

In these frames, we zoom in to view the central relativistic core of 
the cluster. The initial core (Fig. 5A) contains less than 0.5% of the 
total mass of the cluster. When the collapse is complete, the black 
hole contains a full 5% of the cluster mass (Fig. 5D). This is more 
than ten times the mass of the original core. The black hole thus 
swallows stars from a wider region than just the relativistic core. The 
bulk of the stars are not captured, however, but continue to orbit 
about the black hole in a new, stable, equilibrium configuration. 
This is in contrast to the case shown in scene 1, where the relativistic 
core in the initial cluster contained a large fraction of the total mass. 
The final equilibrium state shown here-a supermassive black hole 
embedded in an extended Newtonian star cluster-is just what may 
be required to explain the observations of quasars and the central 
regions of galaxies. 

This particular case (scene 5) was difficult computationally be- 
cause of its large dynamic range: the ratio of the central density to 
the mean density was 1013. The calculation was carried out with 
7000 particles, 350 radial grid points, and 4000 timesteps, and 
required 10 hours of CPU time on an FPS 264. The graphics 
required an equivalent amount of CPU time. Special choices of 
coordinates were needed to make the computation feasible at all. 

Scene 6 illustrates four classes of orbits of stars near the black hole 
of scene 5. In spherical symmetry, each orbit is confined to a plane as 
in Newtonian theory. A star on a typical capture orbit (highlighted 
in red in Fig. 6A) will have its orbital plane (pale blue) pass through 
the center of the cluster. The star first swings around the center on a 
nearly elliptical trajectory (Fig. 6B). By the second pass of the star, 
the hole has grown sufficiently that it swallows the star. As a result, 
the mass and size of the black hole (see Eq. 9) both increase, which 
enables the hole to swallow stars that escaped capture on their initial 
passes. In this way the hole can consume stars that originate from 
outside the relativistic core of the cluster, which collapses almost 
immediately. 

Figure 6C shows a star that orbits as close as it can to the black 
hole (about two Schwarzschild radii) without actually being cap- 
tured. Notice the very large perihelion precession (rotation of the 
ellipse on each orbit). The tiny perihelion precession of the planet 

Mercury in the relatively weak gravitational field of the Sun--one of 
the famous experimental tests of general relativity-pales in compar- 
ison. 

As in Newtonian theory, a particle in a spherically symmetric 
gravitational field feels o d v  thk total amount of mass &side its 
u 

radius, and its motion is not affected by the internal spherical 
distribution of the mass. In general relativity, this result is known as 
Birkhoffs theorem. Figure 6D shows a star on an almost circular 
orbit, which is unperturbed by the formation of the black hole-a 
clear demonstration of Birkhoffs theorem. 

Fimre 6E shows a star that starts far from the center. so that the u 

black hole is a small dot on this scale. The unfortunate star happens 
to be on a very radial orbit and hence plunges directly into the black - - 
hole. The reach of the black hole out into the hald is greatest for 
such low angular momentum stars. However, most of the mass of 
the black hole comes from stars like that offrame A of scene 6, which 
originate within a few core radii. 

Future Work 
Most objects in astronomv are not sphericallv svmrnetrical and , *  

exhibit rotation. Handling these complications requires a consider- 
able increase in computer resources, even for an axisymmetric 
configuration. For example, the number of phase-space dynamical 
degrees of freedom increases from two to four. Moreover, the 
gravitational field variables at each instant of time now depend on 
G o  spatial coordinates. Most interestingly, when ~~hericaisymme- 
uy is broken in general relativity, the gravitational field becomes 
truly dynamical-gravitational waves are emitted. A fraction of the 
cluster's total mass-energy can thus be radiated away in the form of 
gravitational waves during the collapse. Tackling these more com- 
plex issues is the next challenge. 
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