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Diffusion of Small Solutes in Polymer-Containing 
Solutions 

Diffusion processes involving polymers are common in scientific and engineering 
separations and are a major component of biological functions. Analyses of these 
systems are usually based on versions of the Stokes-Einstein equation, although order 
of magnitude deviations have been observed. Presented here is a theoretical correction 
to the Stokes-Einstein equation containing a "local viscosityy' function that combines 
diffusional hydrodynamics with Maxwell's treatment of electrical resistance in inho- 
mogeneous regions. The resulting equation accurately predicts experimental diffusion 
data within tight bounds for polymer concentrations from 0 to 9 percent. It requires 
knowledge only of thermodynamics and of pure solvent and solution viscosities. 

F OR THREE-COMPONENT DIFFUSION 

where one component is a dilute 
polymer, Stokes-Einstein type equa- 

tions (for example, Eqs. l and 2) produce 
errors as large as 10,000 times (1-8). Not- 
withstanding, Eq. 1 is used as the basis for 
most correlations of protein sedimentation 
(6), polymerization (4), gel chromatography 
(5), and systems of biological interest (8), 
despite the presence of dilute polymers. 

Several sound theoretical approaches can 
be used to derive Stokes-Einstein type equa- 
tions (9-13); however, all of them contain a 
difficult assumption, that the mechanisms of 
molecular drag are identical with those of 
global viscosity. Thus, for ideal solutions at 
infinite dilution, the binary-liquid diffusion 
coefficient, DAB, is predicted to be inversely 
proportional to viscosity (1-1 3): 

where q is the solution (global) viscosity, k 
is the Boltzmann constant, T is temperature, 
and YA is the hydrodynamic radius of the 
dilute diffusing species. From nonequilibri- 
um thermodynamics (14), Eq. 1 becomes, 
for nonideal solutions, 

ty coefficient and mole fraction of species A, 
and v is the hydrodynamic radius of the 
diffusing species. Various statistical and hy- 
drodynamic treatments have related v to 
molar volume; we have found those of 
Hartley and Crank (15), Protopapas et al .  
(I@, and Perrin (17) particularly notewor- 
thy (18-20); the fit is excellent in many 
systems. For engineering purposes, the ef- 
fect of solvent association on v is typically 
dealt with by the correlation of Wilke and 
Chang (21) or through cluster diffusion 
correlations (22, 23). 

Empirical corrections of Eq. 1 suggest 
that diffusivity is inversely proportional to a 
variable power of solvent viscosity (1-6), 
proportional to viscosity raised to the power 
of a function of molar volume (24, 25), or 
proportional to a variable power of the 
solvent molecular weight (21). Although 
these corrections allow successful matching 
of experimental data (2-4, 21), the funda- 
mental justification is unclear. From statisti- 
cal mechanics also come several attractive 
modifications generally having the form (26, 
27) 

where Do is the diffusivity in the absence of 
polymer, c is polymer concentration, and a 

DAB = " (1 + 2) 
6nqv (2) and v are constants. With appropriate con- 

stants for a and v, Eq. 3 can be made to fit a 
where +)'A and XA are, respectively, the activi- given set of data exc~llently; however, most 

theories predict that a should be approxi- 
Department of Chemical Engineering, Michigan State mately p;oportional to v (1) and v sh&ld be 
University, East Lansing, MI 48824. a universal constant based on hydrodynamic 
*To whom correspondence should be addressed. screening lengths [which Ogston et al. (26) 

and Alterberger and Tirrell (28) predict to 
be 112 (from quite different approaches), 
and others predict to be 213 or more (29, 
30)]. The problem with Eq. 3 is that experi- 
mental measurements do not support any 
general correlation for a and v, so that an a 
priori analytical treatment seems distant at 
;resent: a.varies much more slowly than v; 
and v, instead of being a universal constant, 
appears to vary between 0.38 and 2.21 even 
for very dilute polymer solutions (31). In 
our opinion, these problems stem from the 
difficulty in treating the microscopic equiva- 
lent of hydrodynamic "wall drag" and "tor- 
tuosity" through statistical mechanics. We 
present here a theoretical analysis that leads 
to a useful local viscositv relation for de- 
scribing experimental data for diffusion pro- 
cesses. Predictions of this equation should 
be useful in analyzing sedimentation, poly- 
merization, gel chromatography, and sys- 
tems of biological and physiological interest. 

We measured the viscosities and mutual 
diffusion coefficients of benzene-cyclohex- 
ane-dilute polymer solutions wi& tech- 
niques described elsewhere (32, 33). Poly- 
mer concentration and molecular weight 
strongly affect global viscosity (Fig. 1) so 
that for a polymer concentration of 2 gldl 
and a molecular weight of 1.8 x lo6, the 
viscosity of this three-component solution is 
almost 40 times that of cyclohexane-benzene 
without polymer. Although Eqs. 1 and 2 
predict sharp decreases in diffusion coeffi- 
cient with increased molecular weight or 
polymer concentration because of increases 
in viscosity, as does Eq. 3 for theoretical 

0.1 4 
0 1 2 3 

Polystyrene concentration (gidl) 

Fig. 1. Global viscosity of polystyrene-benzene- 
cyclohexane versus polystyrene concentration. 
Viscosities were measured with a Cannon-Ubbe- 
lohde viscometer; values for benzene and cyclo- 
hexane were compared with those in the literature 
(41), and the agreement was within 1%. Densities 
were measured with a pycnometer. Monodisperse 
polystyrene [MW, = 4 X lo3 (0), 5 x lo4 (O), 
6 x lo5 (O), 1.8 x lo6 (B); MW,IMW, < 1.1, 
where MW, is the number-average molecular 
weight] was purchased from Alfa Products, and 
polydisperse polystyrene [MW, = 3.21 x lo5 
(A), MW,/MW, = 3.8, where MW, is the 
weight-average molecular weight] was purchased 
from Aldrich. All measurements were made at 
25°C. 
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values of v, the experimental diffision coef- 
ficient is barely affected (Fig. 2A). For all 
molecular weights used, the diffision coef- 
ficient shows no perceptible decrease at 
polymer concentrations below 2 gldl even 
when the viscosity is more than 40 times 
that of cyclohexane-benzene. The correction 
factor of Hiss and Cussler (2) (viscosity to 
the -213 power) also predicts large de- 
creases in diffusion with increased viscosity, 
far in excess of experimental observations 
(Fig. 2B). The Wike-Chang equation (21) 
predicts diffisivities almost identical to 
those of Eq. 2. 

To examine whether the above discrepan- 
cies could be caused by the thermodynamic 
effect of polymer addition, we estimated the 
activity term [1 + (dhyi/dlnxi)] in Eq. 2 
with the UNIFAC group-contribution 
method (13): 

The combinatorial part (y;) is due to differ- 
ences in size and shape of the molecules, and 
the residual part (y;) is due to group inter- 
actions (molecular association effects). The 
activity term for benzene and cyclohexane 
was calculated to be 0.78 -+ 0.01 at all poly- 
mer concentrations. Thus, shifts in the activ- 
ity term could not have caused the large 
discrepancies between the theory and ex- 
periment. 

Fig. 2. (A) Experimental diffision coefficient D 
of benzene-cyclohexane at 25°C versus polysty- 
rene concentration (added to increase solution 
viscosity). Symbols are as in Fig. 1. The solid lines 
represent predictions from Eq. 2, which are al- 
most identical with those of the Wike-Chang 
equation (21). Although all theoretically consist- 
ent hydrodynamic treatments of diffision predict 
strong dependences on polymer concentration or 
molecular weight, or both, experimental obsenra- 
tion is contrary to these predictions. In these 
experiments we used a Mach-Zehnder interferom- 
eter; we checked the reliability by comparing 
measurements for several benzene:cyclohexane 
solutions with literature values (42); the agree- 
ment was within 1% for all cases. Each experi- 

As a possible model, let us treat dilute 
(and possibly concentrated) polymer solu- 
tions as inhomogeneous with respect to 
molecular drag. Thus polymer molecules 
affect diffisivity by effectively increasing the 
local viscosity in a set of irregularly distrib- 
uted contiguous regions (34) near the poly- 
mer. As a first approximation for treating 
this, we used Maxwell's simple equation (35) 
for regular distributions of spherical regions 
(Fig. 3). The effective diffisivity is (36) 

where Do is the diffisivity in polymer-unaf- 
fected regions, and D,, and +,, are, respec- 
tively, the diffisivity and volume fraction of 
the polymer-affected regions. 

Application of the Stokes-Einstein equa- 
tion in each region gives 

where q* is the local viscosity in that region, 
and r in this case is the average benzene- 
cyclohexane radius. Obviously, the local vis- 
cosity of polymer-unaffected regions must 
be that of the solvent, qo, and the local 

0  1  2  3  4  

Polystyrene concentration (gldl) 

Fig. 3. Diffision through regularly dispersed 
regions of different diffisivity. We treat the local 
diffisivity in the b ~ &  as the same as that in the 
solvent; the local diffisivity in the polymer-affect- 
ed regions (pr) is presumably lower. The polymer 
chain is indicated by the regions marked "P." The 
relative size of the polymer-affected regions is 
derived explicitly from our treatment of wall drag. 

viscosity of polymer-affected regions, qp,*, 
must be the global viscosity (17) or higher: 
q < qpr* < rn. The activity term [ l  + 
(dlnyildlnxi)] = 0.78 a 0.01 at all polysty- 
rene concentrations of interest. 

To estimate +,, we observe from theoreti- 
cal and experimental evidence that wall drag 
(in the absence of strongly binding wall 
interactions) reduces the diffisivity in 
straight tubes according to the relation (37) 

where O(h2) refers to terms of order k2, 
DIDo is the ratio of diffisivities caused by 
the wall effect, and X = 2rld is the average 
diffisant diameter divided by the tube diam- 
eter. For diffision in polymers, take d as the 
effective diameter between polymers, so that 

0 ( ~ ~ ) 1 ( 1  - +P) + +P (8) 
We now use the Ergun (38) equation's 

equivalent diameter 
ment involved layering two solutions atopAone 
another in a window diffision cell with a sharp B 

d = 4VlA (9) 

boundary layer between. The first solution con- 2.0 
Local viscosity model to solve for A. Here V = (1 - 4,) is the 

sisted of a small amount of polystyrene in 25 cm3 open volume per cubic centimeter of solu- 
of benzene:cyclohexane (volume ratio 1:1.02), tion, and 9, is the volume fraction of poly- 
and the second consisted of an equal amount of 

- 

polystyrene in another 25 cm3 of benzene:cyclo- 
- mer; A is the polymer surface area per cubic 

hexane (volume ratio 1 : 0.98). Interference fringe "; ,2 - Local viscosity model centimeter of solution estimated by using 
patterns caused by diffusion were photographed 2 - the observation (39) that vinyl polymers, 
at predetermined time intervals, and the diffusion '$ 0.8 - including polystyrene, approximate cylin- 
coefficient of benzene:cyclohexane at the average x - 
volume ratio (1: 1) was calculated. Details of this 0.4 - ders of length per repeated unit, 
ex~erimental method are described elsewhere 132. t ,  = 2.5 x lo-' cm. Thus, 

\ 2 

34 .  Corrections arising from polymer diffusion 
are believed to be small because of the small O.O 

activity gradient for polymer difision and the 0 1 2 3 4 5 6 7 8 9 1 0  ( lo)  
large hydrodynamic radii of the polymer mole- Polystyrene concentration (gldl) 

cules. (8) Comparison of predictions from Eq. 2, from the Hiss-Cussler equation (2), and from the and 
local viscosity model (Eq. 12) with experimental data (MW, = 3.21 x lo5). Each datum represents the 
mean of three or more measurements, and each error bar represents the interval between 2 2  SD from 
the mean. 
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where c is the polymer concentration (in 
grams per cubic centimeter), M ,  is the mo- 
lecular weight of the repeated unit, N is the 
Avogadro number: v is the diffisant radius " 
calculated preferably from Eq. 2 with experi- 
mental data in the absence of polymer. 
Calculating u (Stokes-Einstein radius) in this " \ 

way avoids several problems arisini from 
solvent association (21, 34) and size (18, 40) 
and guarantees a consistent solution at least 
at vanishing polymer concentrations. When 
no experimental data are available, we rec- 
ommend the radius estimation techniques 
described in (15-17). From Eq. 8, +,, is 
always larger than +,, for example, ranging 
from 4.7 times 4, at low polystyrene con- 
centrations to 3.8 times +, at 9% polysty- 
rene. 

Combining Eqs. 4 and 5 produces the 
equation 

where $,, is calculated from Eqs. 8 and 11; 
all of these terms are readily measured or 
estimated for most polymer solutions. Re- 
sulting values of DeE, for q,,* = 71 and 
v,,* = m, are plotted in Fig. 2B, where 
from solution density data 

The agreement with experiment is far better 
than predictions from Eq. 2 or the Hiss- 
Cussler equation (2), and the constants are 
all estimated a priori in a way that is not yet 
possible with the equations of Ogston et a l .  
(26) and Cukier et a l .  (27); we take this as 
evidence for the efficacy of Eq. 12 and 
presume further that some local viscositv 
relation of this type controls most polymer 
solution di&sion. 
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Design of a Monomeric Arsinogallane and Chemical 
Conversion to Gallium Arsenide 

A monomeric arsinogallane containing a covalent gallium-arsenic bond has been 
prepared, and its molecular structure has been determined by x-ray crystallography. 
The compound reacted with tert-butanol at ambient temperature to yield the 111-V 
semiconductor gallium arsenide as a finely divided amorphous solid. During the initial 
stages of the reaction small clusters of  gallium arsenide were apparently present in 
solution. The band gaps of these particles, as observed by their absorption spectra, 
were larger than that of  the bulk material. This work is a step toward the development 
of new molecular precursors for technologically important materials and the study of 
quantum size effects in small semiconductor particles. 

ALLIUM ARSENIDE (GAAs) IS A III- 
V semiconductor, which compares 
favorably in certain respects (for 

example, carrier mobility and band gap) 
with silicon (1). Manufacture of devices 
based on this material depends on metal- 
organic chemical vapor deposition 
(MOCVD), a process involving reaction of 
trimethylgallium with an excess of the high- 
ly toxic gas arsine (AsH3) at elevated tem- 
peratures (2). Many research groups are 
searching for alternative precursors and 
routes to GaAs. We report here the synthesis 
and characterization of the first monomeric 
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arsinogallane, its chemical conversion into 
GaAs, and some observations on quantum 
size effects exhibited by very small particles 
of this semiconductor. 

Addition of 2.0 equivalents of Li(THF);?- 
A ~ ( s i M e ~ ) ~  (3) (THF = tetrahydrofuran, 
Me = methyl) to a pentane solution of 
[(C5Me5)2GaC1]2 (4) followed by filtration, 
evaporation of the solvent, and recrystalliza- 
tion of the product from pentane yielded 
yellow crystals of analytically pure arsinogal- 
lane (CsMe5)2Ga-As(SiMe3)2 (1 in Fig. 1) 
in 63% isolated yield (Scheme 1) (5). The 
compound was very soluble in standard 
organic solvents and decomposed slowly 
when heated above 60°C or exposed to air. 
Cryoscopic determination of the molecular 
weight of 1 in benzene at two different 
concentrations gave molecular weights of 
457 (0.19~1) and 528 (O.lOm), respectively, 
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