
Helical Repeat and Linking Number 
Surface-Wrapped DNA 

The geometric properties of duplex DNA are systemati- 
cally altered when the DNA is wrapped on a protein 
surface. The linking number of surface-wrapped closed 
circular DNA is the sum of two integers: the winding 
number, @, a function of the helical repeat; and the 
surface linking number, SLk, a newly defined geometric 
constant that accounts for the effects of surface geometry 
on the twist and writhe of DNA. Changes in the helical 
repeat, h, and in the winding number can be deduced 
solely from surface geometry and superhelix density, a. 
This treatment relates the theoretically important proper- 
ties twist and writhe to the more experimentally accessible 
quantities @, h, SLk, and a. The analysis is applied to 
three biologically important cases: interwinding of DNA 
in a plectonemic superhelix, catenated DNA, and mini- 
chromosomes. 

T HE HELICAL REPEAT IS A FUNDAMENTAL STRUCTURAL 

property of duplex DNA. This quantity, h, is commonly 
expressed as the number of base pairs per 360" rotation along 

the helix axis. In order to determine h, it is essential to define the 
local duplex rotation angle. This requires, in turn, specification of a 
local reference frame (1, 2). For example, DNA may be fixed to a 
plane surface, which serves as the reference frame, and the pattern of 
endonuclease scissions can then be determined (3). This procedure 
discriminates strand positions lying next to the surface from those 
away from the surface, and the nuclease digestion periodicity may be 
used to calculate h. The precise value of h for a linear or nicked 
circular DNA depends on base sequence (4, 5) ,  on solution proper- 
ties such as salt concentration (6, 7) and composition (8), and on the 
temperature (6, 7, 9). For a relaxed closed circular DNA, h can be 
deduced from the shifts in electrophoretic mobility that accompany 
small known changes in the DNA length (10). This method 
implicitly assumes that the axis of the circular DNA is nearly planar. 

The axis of a superhelical DNA does not, however, lie in a plane, 
and neither does the axis of a DNA wrapped around a protein (1 1). 
In these cases, the wrapping surface itself may be used as reference 
frame for definition of h. Even in the absence of a physical surface, 
closed DNA may often be described by considering it to wind on a 
suitably chosen virtual surface, and h may then be defined via this 
virtual surface. Tightly interwound superhelical DNA can, for 
example, be considered to wrap on the surface of a spheroid (such as 
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a capped cylinder). Unlike free linear or nicked circular DNA, h for 
surface-wrapped closed DNA is independent of solvent composition 
and temperature, provided that the surface is subject only to smooth 
deformations (12). 

In this article we first show in general how the helical repeat of 
surface-wrapped DNA depends on surface geometry. We then 
derive specific relationships that predict the variation of h with 
superhelix density for a closed DNA wrapped around various 
surfaces. These results follow from the demonstration that the 
linking number can be written as the sum of two experimentally 
accessible integers. These are the surface linking number, SLk, and 
the winding number, cP. SLk is a newly defined surface geometric 
constant that accounts for the effects of surface configuration on 
twist and writhe. cP, which is also defined in terms of the surface 
geometry, is inversely proportional to the helical repeat. We apply 
these results to obtain expressions for the helical repeat of inter- 
wound superhelical DNA, of catenated DNA, and of minichromo- 
soma1 DNA. 

Surface geometry and the DNA winding number. We first 
consider the geometry of a closed DNA whose axis traces out a curve 
on a surface (13), as described in Fig. 1. The best known example of 
such a structure is the nucleosome core, around which the DNA 
wraps nearly twice, as a left-handed helix (curve A), on the surface of 
a cylinder (surface M). We take the curve C to be either of the 
backbone strands of the DNA. Strand C winds about the DNA axis 
A and lies alternately above and below the surface M. 

We next obtain a precise definition of the winding number, cP, of 
C about A. If the DNA is sliced with a plane P that is perpendicular 
to A, we obtain a cross-sectional piece containing a unique point a of 

Flg. 1. Correspon- 
dence between a 
strand of duplex 
DNA and the DNA 
axis when the axis lies 
on a surface. The 
backbone chain (C) 
passes in a right- 
handed sense, alter- 
natively above and 
below the surface 
(M). An imaginary 
plane (P), perpendic- 
ular to the axis curve 
(A) at point a, moves 
along A. The plane 
intersects backbone 
curve C at successive 
points c. The vector 
v is the surface nor- 
mal to M at a. The 
vector v,, is a unit vector along the correspondence line that joins a to c. The 
winding number of C about A is given by the number of revolutions of v,, 
about v as P advances along curve A. 
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Fig. 2. The value of the surface Imk- 
ing number, SLk, for three common 
surfaces. a panewith (A) The surface axis normal curve A v lies point- on [z7 
ing upwards. A, is the curve ob- _--------_ 
tained from A by a small translational 
displacement, E, along v. SLk = 
Lk(A,, A), and in this case SLk = 0. 
(B) The curve A forms the equator of 
a sphere and the surface normal v is 
chosen to point inwards. The curve 
A, lies entirely inside the sphere, and 
is thus unlinked to A. Again, the result is that SLk = 0. (C) The curve A is the axis or median of the 
strip surface that is twisted once in a right-handed sense. The surface normal v makes one revolution 
about the axis as the twisted part of the strip is traversed. In this case SLk = + 1. 

Fig. 3. Examples of spheroidal sur- 
faces. The two distorted surfaces 
can be obtained from the sphere by _,- - - - -- 
smooth deformations. Spheroidal 
surfaces contain neither handles nor 
holes. Any two such surfaces are 
topologically equivalent. Q-0 

t 

A and a unique point c of C. Since both points a and c lie in plane P, 
the unit length vector along the lines that connect them, v,,, also lies 
in P. Proceeding along axis A, v,, remains perpendicular to A and 
rotates about it. T o  measure the extent of this rotation we need a 
reference vector, directly related to the surface M, that also lies in 
plane P. The unit length vector v along the surface normal provides 
such a reference, since it is everywhere perpendicular to M (and 
hence to A). We define Q formally as the number of times that v,, 
rotates about v as A is traversed exactly once. 4, is positive if the 
direction of the rotation is that specified by the right-hand rule and 
negative if the rotation is opposite. Since for a n y  closed DNA both 
v,, and v begin and end at the same place, 4, is necessarily an integer. 
The (average) helical repeat, h, may now be defined as the number 
of base pairs per DNA, N,  divided by the winding number: 
h = NI4,. The helical repeat is positive for right-handed DNA and 
negative for left-handed (for example, Z) DNA. For a relaxed DNA, 
thd winding number is denoted Q0 and the helical repeat is 
ho = N/Qo. 

The winding number, Q, is directly related to the linking number, 
Lk. This is most easily seen with a perfectly relaxed closed DNA, 
which has no net writhe because its axis lies in a plane, on the 
average. In this case the normal vector v always points in the same 
direction and thus defines a constant reference vector bv which to 
measure Q. For this reason the number of times that C revolves 
about A is exactly equal to the linking number; that is, 4, = Lk (a 
rigorous proof of this is presented below). When DNA wraps on a 
nonplanar surface, the direction of the reference vector v is not 
generally constant, nor is the writhe of the DNA generally zero. In 
this case the linking number is not necessarily equal to 4, but is also a 
fhction of the change in the reference vector. We next derive the 
general expression of the linking number of DNA on an arbitrary 
surface. 

The linking number of surface wrapped DNA. We begin with 

the conservation condition for closed DNA (14) that expresses the 
linking number in terms of strand-axis twist, Tw(C,A), and the axis 
writhe, Wr. 

We have shown previously (15) that Tw(C,A) divides into two 
parts: the winding number, 4,; and the surface twist, STw, a term 
that measures how the reference vector changes. 

Tw(C,A) = STw + 4, (2) 

Incorporating Eq. 2 into Eq. I, we obtain 

The meaning of STw may be stated in terms of a displacement 
curve, A,. This is the curve obtained from A by moving it a distance 
E =# 0 along the surface normal vector v. The choice of is arbitrary 
provided that A, never intersects A during the displacement. 
Examples of displacement curves are shown in Fig. 2. We showed 
earlier (15) that these considerations lead to the equality 

STw = Tw(A,, A) 

Since the direction of the displacement is everywhere perpendicular 
to the surface, the twist of A, about A reflects the contribution of 
the surface geometry to the total twist. As is true for all closed 
curves, the linking number of A, with A is the sum of the twist of 
A, about A and the writhe of A (14). 

Because Lk(A,, A) is determined by the surface geometry, we term 
this quantity the surface linking number of the curve A and denote it 
SLk. 

SLk = Lk(A,, A) 

Rewritten in terms of the surface-related quantities, Eq. 4a becomes 

SLk = STw + Wr (4b) 
Examples that illustrate the concept and methods of calculation of 
SLk are presented in Fig. 2. 

The linking number of the surface-wrapped DNA may now be 
expressed as the sum of quantities that can be independently 
determined. Combining Eqs. 3 and 4b leads to the result 

Lk = SLk + 4, (5) 
This important formula states that the linking number of closed 
DNA wrapped on a surface can be written as the sum of two 
integers: SLk and 4,. SLk is the linking number of A, and A and 
may be calculated from the surface geometry. Q is the winding 
number of DNA about the surface normal and can be measured with 
chemical and enzymatic probes. 4, can also be interpreted as * one- 
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Fig. 4. Examples of toroi- 
dal surfaces. The lower 
two surfaces can be ob- 
tained from the undistort- 
ed torus by smooth defor- 
mations. A torus can be 
thought of as a sphere 

'I 3 
with one handle (see leg- 
end to Fig. 3). 

Fig. 5. Representation of an intenvound helix on 
a cylinder having hemispherical caps. This is a 
spheroid, of the type illustrated in Fig. 3. The 
DNA axis is continuous, winding in a right- Q 
handed fashion along the cylindrical section, from 
P to Q and from R to S .  The connections between 
Q and R and between P and S lie along the 
spherical caps. 

Fig. 6. Representation 
of catenated DNA and 
the associated torus sur- 
faces. The toroidal sur- 
face depicted here is reg- 
ular (undistorted), but 
topologically equivalent 
wrappings may be con- 
structed about distorted 
toroidal surfaces, such as those shown in Fig. 5. (A) The catenated rings are 
of equal length, and each winds four times around the torus in a right- 
handed sense. Both rings lie on the surface of the same torus. (8) One of the 
two rings is depicted three times longer than the other. The associated torus 
surfaces are shown for the case in which the helical winding of each 
submolecule is uniform. The larger DNA lies on the surface of the torus and 
the smaller, which is also shown toroidally wrapped, lies completely inside. 

half the number of times the backbone curve C intersects the surface. 
Relaxed closed DNA is nearly planar, hence in this case SLk = 0 and 
the linking number is L b  = Qo. 

Principal applications of Eq. 5 are to DNA wrapped on mathe- 
matically closed surfaces, such as spheroids and toroids. Thus, many 
enzymes are globular proteins, well-represented by spheroids; and 
the collection of core nucleosomes and linker regions in minichro- 
mosomes can be regarded as generating a toroidd structure. In such 
cases, the integer numbers SLk and @ are unchanged under smooth 
deformations. Exarn~les of such smooth deformations are the 
distortion of a sphere into an ellipsoid and the distortion of a 
circular torus into an elongated torus, as shown in Figs. 3 and 4. In 
particular, SLk remains constant if no breaks, tears, or other 
discontinuities are introduced. Since Lk is constant for an unbroken 
closed circular DNA, it follows from Eq. 5 that @ is also constant. 

This constancy of the winding number is important in biochemical 
terms, particularly when the DNA is wrapped on the surface of an 
enzyme (16). 

The relation between the helical repeat and the superhelix 
density. We next show how to evaluate the helical repeat of surface 
wrapped DNA as a function of the superhelix density for various 
values of the surface linking number. The linking difference of a 
closed circular DNA is given by ALk = Lk - L b ,  where 
Lk,, = Qo = N/ho. Combining this expression with Eq. 5, 

ALk = SLk + @ - Lko (6 )  

The superhelix density (or specific linking number) is commonly 
used to characterize closed DNA. This quantity is defined as 
a  = ALMLk,,. Additional insight may be gained by analyzing a  in 
terms of its winding and surface linking components. To do this, 
Eq. 6 is divided by Lko to obtain 

SLk (@ - Lk,,) 
a = - +  

Lk,, Lk,, 

Now Lko is identical to Qo and, putting A@ = @ - @o, the 
superhelix density may be written as 

Thus a  consists of two terms: the first, SLWLk,,, arises from the 
contribution of the surface linking; and the second, A@/Qo, arises 
from the change in winding. Alternatively, since @ = N/h and 
Lko = N/ho, we obtain a relation between the superhelix density and 
the other quantities defined above: 

SLk h a = - + O - l  
Lk,, h 

The above equation may be solved for the helical repeat to give 

ho 
h = 

SLk 
a - - + 1  

Lk,, 

This very general relation makes possible the calculation of the 
helical repeat of any closed DNA on any surface M. It also follows 
from the discussion immediately above that h is unchanged if the 
structure is smoothly deformed. 

Applications of surface winding analysis. We next describe 
specific applications of surface winding analysis to DNA wrapped 
on spheroidal and on toroidal surfaces. A spheroidal surface is either 
an undistorted sphere or a sphere that has been deformed in a 
smooth manner. In particular, spheroidal surfaces contain neither 
holes nor handles (17) (Fig. 3). We choose A as a closed curve 
representing the DNA axis wrapped on such a surface and v as the 
inward pointing normal. In this case A, lies entirely inside the 
surface and thus may be deformed even to a single point without 
crossing A. Since SLk is unchanged under such a deformation, it 
follows that SLk = 0. Therefore, from Eqs. 5 and 7, 

Thus the linking number of DNA on a spheroidal surface is equal to 
the winding number, and the helical repeat is a simple function of 
the relaxed helical repeat and the superhelix density. 

These results are next applied to plectonemically intenvound 
DNA, the form adopted by superhelical DNA in solution (18). This 
case is readily generalized to DNA wrapped on any other spheroidal 
surface, however, because of the invariance of @ under smooth 
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deformation. In Fig. 5 we illustrate a model of DNA winding about 
a particular spheroidal surface, here a cylinder with spherical caps. 
Beginning at the point P, the DNA winds n times in a right-handed 
helix along a cylinder of radius r with pitch 2vp, ending at the point 
Q. The DNA next crosses the top spherical cap from Q to R, winds 
helically n times down the cylinder to point S, and finally completes 
its path by crossing the lower spherical cap from S to P. Since the 
surface is spheroidal, it satisfies the equations immediately above. A 
direct consequence of this result is that for intenvound DNA, h > ho 
if a < 0 and h < ho if a > 0. As a particular example, a for naturally 
occurring plasmid DNA is typically -0.06 (29). Taking ho to be 
10.6 +. 0.1 base pairs per turn (20), it is predicted that h should 
increase to 11.3 k 0.1 for a DNA of native superhelix density. Since 
SLk = 0 for intenvound DNA, it hrther follows from Eq. 4b that 
Wr = -STw. This surprising result shows that for intenvound 
DNA of constant lidung number, the writhe may change without 
changing either the winding number or the helical repeat. This is 
because any change in writhe is entirely offset by an equal and 
opposite change in the surface twist, leaving Q, and h unaltered 
(compare with Eq. 3).  

The second special type of surface is the torus-like surface. This 
class includes the classical round torus as well as its smooth 
deformations (Fig. 4). We assume that the axial path A of the DNA 
winds n times around the handle as it traverses the length of the 
torus. If we let v be the inward pointing surface normal, and E be the 
inner radius of the torus, then A, is the central axis of the torus. 
Then SLk, being Lk(A,, A), is + n  if the axial winding is right- 
handed, and SLk = -n if the axial winding is left-handed. (An 
example of right-handed toroidal winding is given by either ring 
shown in Fig. 6a, where n = 4.) Combining this result with Eqs. 5 
and 7, for the right-handed case 

and for the left-handed case 

Examples of DNA that can be considered to lie on torus-like 
surfaces are the catenanes generated by phage A int-mediated 
recombination (21). Under the assumption that the DNA rings of 
the catenane lie on a virtual torus, then a closed helical trajectory on 
the torus will be traversed as one proceeds along the axis of either 
DNA molecule. In this case the trajectory is known to be right- 
handed. Examples of such catenanes on toroidal surfaces are shown 
in Fig. 6. In Fig. 6a both submolecules are of equal length and the 
same virtual torus is generated by either component. In Fig. 6b the 
rings are of unequal length. Although both rings are of interest, we 
focus our discussion here on the larger ring. Thus we use the virtual 
surface generated by the larger submolecule. The smaller ring lies 
entirely inside this toroidal surface. 

We next apply Eq. 7 to obtain the effect of catenation on the 
DNA helical repeat. We showed above that SLk for DNA on a torus 
is the linking number of the DNA axis with the central axis of the 
torus. If the component rings are of equal length, the axis of either 
one can be deformed into the central axis without intersecting the 
axis of the other. If the submolecules are of unequal length, the axis 
of the smaller of the two can always be deformed into the central axis 

Fig. 7. Cartoon of a mini- 
chromosome. Three cylin- 
ders representing histone 
octamers are wound by 
DNA so as to form three 
nucleosomes. The nucleo- 
somes are connected by 
linker DNA segments. 
Successive nucleosomes 
are connected by deforma- 
ble cylinders; the deforma- 
tions are determined by 
the coiling of the linker 
DNA. 

Fig. 8. Winding of the 
DNA axis on a toroidal 
surface. (A) A circular 
torus is shown, with the 
DNA axis lying always 
on the surface (solid 
line) and never winding 
about the torus central 
axis (dashed line). (B) 
The same torus is shown 
after the introduction of 
two left-handed coils by 
cutting, winding, and re- 
sealing. (C) The toms A B C shown in (B) has been 
deformed so that the central axis is nearly planar. The DNA axis now winds 
twice in a left-handed sense about the central axis of the torus. The geometric 
and topological quantities are discussed in the text. 

without intersecting the axis of the larger (because the smaller ring 
lies entirely inside the toroidal surface). In either case, SLk is 
therefore equal to the linking number of the two DNA axes, the 
catenation number. The catenation number is easily measured by 
electrophoresis or by electron microscopy (21). 

The variation of SLk with a for both an equal length (e) and an 
unequal length (u) catenane has been determined (22). For the 
particular equal length case examined, both rings were 3.5 kb; and 
for the unequal length case, the larger rings was 2.9 kb and the 
smaller ring was 0.9 kb. It was found that cr, = (0.32 
SLk - 0.30)Lb,, and cr, = (0.76 SLk - 0.91)/Lb,,. Combining 
these results with Eq. 7, the expected values of h are 

he = 
ho 

1 - (0.68 SLk + 0.30)/Lb,, 

h, = 
ho 

1 - (0.24 SLk + 0.9l)lLb,, 

In both cases the helical repeat increases with SLk at constant Lko, as 
expected for right-handed intertwining. The effect of intertwining 
on the helical repeat of the larger ring in the unequal length case is 
less than when the rings are equal, as indicated by the smaller 
coefficient of SLk. This may reflect the fact that the larger ring is less 
constrained in this case and hence more nearly resembles a free DNA 
molecule. 

Finally, we address the question of left-handed coiling in the 
nucleosome, such as occurs in the SV40 virion minichromosome. 
Each core nucleosome may be described as a cylinder, the histone 
octamer, around which the DNA wraps approximately 1.8 times 
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(23). The DNA linker regions lie between the individual nucleo- 
somes. We construct a dosed toroidal surface connecting these 
nucleosome cylinders as shown in cartoon form in Fig. 7. Each pair 
of successive cylinders is connected by a deformed cylindrical section 
or piece, all of the same radius, on which the llnker DNA is 
constrained to lie. The specification of each piece is arbitrary, so 
long as the linker DNA lies on it, and the piece takes into account 
any coiling of the linker. One can, in particular, think of the linker as 
forming a generating curve for the cylindrical region. It is especially 
important that the linker DNA not wind about the cylindrical piece. 
These conditions insure that all contributions to SLk due to winding 
about the toms handle come only from intranucleosome winding. 
All other contributions to SLk must therefore come from the coiling 
of that portion of the torus associated with the linkers. 

How SLk may alter when the torus is itself coiled is illustrated by 
the example in Fig. 8. A nearly circular torus is shown in Fig. 8A, 
where the DNA axis A is taken to be the curve lying on top of the 
torus. In this case, A is clearly not linked to the central axis of the 
torus, sq that SLk = 0. If two left-handed coils are introduced by 
cutting, coiling and then resealing (a non-smooth deformation), the 
result is the coiled torus in Fig. 8B. In this case the writhing of the 
DNA axis A is approximately -2. Here STw = 0, since A clearly 
does not twist about the central axis of the toms (always lying above 
it at corresponding points). Therefore, by Eq. 4B, the integer 
SLk = -2. An additional check that SLk = -2 is provided if we 
smoothly deform the coiled toms (Fig. 8B) into the nearly circular 
one (Fig. 8C). In this case, A is deformed into a curve that rotates 
twice around the central axis of the toms in a left-handed sense. 
Since the deformation is smooth, SLk remains -2. 

If a minichromosome is torsionally relaxed in the linker DNA 
regions, all contributions to SLk must arise from the wrapping of 
DNA about the histone octamers. Thus, for a minichromosome of 
this type in which the DNA axis is wrapped left-handed about m 
histone octamers, SLk = - 1.8m and the (average) helical repeat for 
the entire minichromosome is given by 

For the virion SV40 minichromosome N = 5243, m = 26 -t 2 
(24), and ALk = -26 -t 0.5 (25). We take ho to be 10.6 + 0.1 for a 
random sequence DNA (20), and calculate the values L h  = 495, 
u = - 0.053, and 1.8m = 46.8. Employing these data in the above 
equation, the calculated result is h = 10.17. It is well established 
that the helical repeat of DNA is reduced when the double helix is 
wound about a histone octamer to form a nucleosome (26). On the 
basis of deoxyribonuclease I digestion studies, the experimental 
value of h is 10.17 bp per turn for a random sequence DNA wound 
on a single histone octamer (1) and nearer 10.0 bp per turn when 
averaged over a reconstituted oligonucleosome structure containing 
five octamers (2). Our calculated value is based on a single nucleo- 
some model and gives very good agreement with this experimental 
result. The closeness of the agreement might be fortuitous, however, 
in light of the various uncertainties in the experimental measure- 

ments. Thus, introducing the uncertainties in ALk and m stated 
above gives a calculated range in h of 10.10 to 10.26. 

The model chosen here is the s im~le  one in which no net change " 
in SLk occurs in the linker regions. Some contribution of the linker 
DNA to SLk is, however, consistent with the available data. For 
example, additional left-handed linker DNA wrapping of 0.2 turn 
per histone octamer, such as might occur with-the histone H1- 
containing inuacellular SV40 minichromosome (27), reduces the 
calculated value of h by 0.1, to 10.07, a value still within the 
experimental range. We note in particular that the predicted values 
of h arise solely from considerations of the surface geometry and do 
not involve changes in the detailed nature of the physical or chemical 
interactions behveen the DNA and the 
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