
Soar: A Unified Theorv 

Originally a research project in artijcial intelligence, the program 
seems to provide a general model of human thought 

This is one of an occasional series of articles on 
cognitive science and artiicial intelligence: the 
study of the mind as an i n f m t i o n  processor. A 
previous article (1 July 1988, p .  27) traced the 
history of Soar and how it works. 

THE COMPUTER PROGRAM known as Soar 
made its public debut as a "unified theory of 
cognition" in the spring of 1987, when 
artiscial intelligence (AI) pioneer Men 
Newell was invited to give the annual Wil- 
liam James lectures at Harvard University. 

The Camegie-Mellon University profes- 
sor had been participating in the creation 
and development of Soar for nearly 5 years 
at that mint and he had become convinced 

I ' 
that it was no longer just another AI project. 
In Newell's view Soar was the prototype for 
a new way of working in AI and cognitive 
psychology alike-an example of how re- 
searchers could go beyond "microtheories" 
that explain only one or two experimental 
d t s  at a time, and instead devise theories 
of human cognition that encompass reason- 
ing, learning, perception, motor control, 
language, cognitive development, emotion, 
and perhaps even such ineffable qualities as 
awareness, all within a single coherent 
fiamework. 

In short, Newell was convinced that Soar 
could be a catalyst for a reformation in the 
way research is done in all the cognitive 
sciences. And the eight W i a m  James lec- 
tures accordingly became his manifesto: 
"Unified Theories of Cognition," he de- 
clared, "are within reach and we should 
strive to attain them." 

What he was not asserting, he hastened to 
add, was "that there is somehow one such 
theory and we should all get together on it." 
Soar is neither perfect as it stands nor is it 
the only kind of unified theory one could 
imagine. Indeed, Soar has some notable 
predecessors as a unified theory, with per- 
haps the most influential being the Act* 
program developed by Camegie-Mellon 
psychologist John R. Anderson in the 1970s 
and early 1980s to model memory and 
learning. So if anyone thinks he or she has a 
better idea, Newell said, then by all means 
develop it; the competition will- benefit ev- 

eryone. But in the meantime, Soar would 
serve as his exemplar, his own effort to show 
what a unified theory of cognition ought to 
be like. 

Newell certainly seems to have struck a 
chord. The lectures themselves were report- 
edly greeted with at least one standing ova- 
tion. (They will soon be published as a 
book.) Moreover, the AI researchers and 
cognitive psychologists contacted by S h c e  
are generally agreed that Newell is right- 
that unification in some form or another is 
the way to go, and that Soar is indeed one of 
the most impressive attempts to date in how 
to achieve it. "It should make people sit up 
and take notice," says Anderson, who is 

Allen Newell. "Don't bite my f i n g e l o o k  
where I'm pointing!" 

already using Newel's lectures in his own 
psychology courses. 

So what is Soar? 
In his lectures, Newell starts his answer by 

first asking some fundamental questions 
about theories of cognition in general. Why, 
for example, should such a theory be written 
as a computer program at all? Why not use 
differential equations, say, or even plain 
Engllsh? 

The reason, he says, is that a computer 
program is the most natural way to do what 

the theory itself has to do--namely, account 
for the information processing we do in our 
brains. Indeed, that is what the "cognitive 
revolution" of the past 30 years has been all 
about. AI, cognitive psychology, large seg- 
ments of neuroscience, linguistics, philoso- 
phy, and even anthropology-all are predi- 
cated on the idea that thought can be under- 
stood in terms of the ebb and flow of 
information. And in that sense, computers 
and brains are fundamentally alike, however 
different they may be in organization and 
structure. 

But then, exactly what kind of program 
should this hypothetical unified theory be? 

One thing it clearly cannot be is a conven- 
tional programming algorithm, says New- 
ell-at least not if "algorithmn means an 
unambiguous, precisely dehed procedure 
that tells the computer what to do at every 
step along the way. What one wants instead 
is something a little more subtle. Think of a 
computerized spreadsheet such as Lotus 1-2- 
3: as it comes fiom the box it has structure, 
but no content. It simply provides a general 
template for numerical computation. Yet it 
is endlessly flexible in the sense that it can be 
filled with specific data and used for a near- 
infinity of projects. In much the same way, 
he says, a unified theory of cognition ought 
to be a cognitive architecture. It ought to be a 
g e n m  h e w o r k  that makes learning, 
reasoning, and all the rest possible. And yet 
it ought to be endlessly flexible in the sense 
that it can be filled with specific knowledge 
that allows it to function in a near-infinity of 
situations in the world. 

Soar, of course, is precisely such an archi- 
tecture. Developed in the early 1980s by 
Newell and his former students John E. 
Laird, now at the University of Michigan, 
and Paul S. Rosenbloom, now at the Uni- 
versity of Southern Wornia,  it was origi- 
nally an effort to address some long-stand- 
ing problems in the way AI programs are 
engineered. Indeed, one of the first things 
Newell, Laird, and Rosenbloom did with 
Soar was to test it on a wide variety of classic 
AI tasks, ranging tiom games and puzzles to 
such knowledge-intensive "expert system" 
tasks as medical diagnosis and computer 
hardware configuration. 

As Soar successfully mastered those tasks, 
however, and as Newell, Laird, Rosen- 
bloom, and their students began to move on 
to more diflicult tasks such as language 
understanding and various kinds of learn- 
ing, they became increasingly convinced that 
Soar had exady what was needed for a 
general theory of human cognition. For 
example: 

Cognition as problem-solving. Soar is 
basically a program that solves problems- 
any kind of problem. In formal terms it will 
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start fiom a given initial state (say, a certain 
configuration of pieces on a chess board), 
and then systematically search for a sequence 
of actions that will take it to a given final 
state (the opponent's King in checkmate). 

More generally, says Newell, Soar fulfills a 
basic requirement of any intelligent system: 
its reasoning is directed in pursuit of its 
goals. There is ample evidence this kind of 
step-by-step reasoning is what happens in 
human problem solving: the model was 
actually first articulated back in the 1950s 
and 1960s by Newell, his Carnegie-Mellon 
colleague Herbert A. Simon, and computer 
scientist Clifford Shaw on the basis of exten- 
sive experiments on humans. Furthermore, 
says Newel, this kind of reasoning arguably 
applies even when the problem-solving is far 
from obvious-say, when we contemplate a 
sunset. Even then, we go from an initial 
state (sensory input fiom our eyes) to a final 
goal state (a comprehension of what we are 
seeing--sky, trees, clouds, washes of color, a 
ruddy sun, peace, beauty . . . ). That journey 
from input to comprehension may be very 
fast. But it does not happen spontaneously. 
Indeed, in other situations it can be very 
slow and confusing, especially when we 
encounter something we have never seen 
before. And that task of finding our way is 
precisely what is meant by problem solving. 

Working memory. If we t h i i  of a 
problem-solver as moving from mental state 
to mental state in search of a goal, then he, 
she, or it obviously needs some way of 
keeping track of what the current state is. 
Humans keep this information in a storage 
area known as working memory, which 
roughly corresponds to the set of thiings we 
are paying attention to at any given mo- 
ment. (An older name is "short-term memo- 
ry.") Working memory seems to function 
rather like a mathematician's blackboard, in 
that it holds not just current information, 
but partial results of problem-solving that 
might be useful later. Soar, like many other 
A1 programs, uses a very similar storage area 
fbr this purpose. And by no coincidence, 
this area is also referred to as working 
memory. 

Long-term memory. In addition to 
keeping track of the current situation, a 
problem-solver also has to make choices 
about what to do next. And that means in 
turn that it has to have access to facts, 
experiences, skills, and know-how-knowl- 
edge that it can use to make those choices 
intelligently. 

In humans this sort of information resides 
in a storage area known as "long-term mem- 
ory." In Soar it exists as a mass of condition- 
action rules: "IF this is the situation, THEN 
do that." On any given experimental run the 
program typically contains hundreds of such 

Soar's cocreatonr. The Soar research effbrt, which now involves some 35people nationwide, is led 
by Newell, John Laird (lef), and Paul Rosenbloom (right). 

rules, each of which is constantly scanning 
the contents of working memory in search 
of items that correspond to the conditions 
on its IF side. Whenever one of the rules 
does detect a match, it "fires" and issues the 
commands on its THEN side. The program 
obeys, and thus moves step by step toward a 
solution. 

The parallels between human memory 
and SO& rule-based memorv are not &- 
stantly obvious, but are suggestive nonethe- 
less. Originally introduced by Newell and 
Simon in the late 1960s, rule-based pro- 
gramming was explicitly intended as a way 
to model human problem-solving behavior. 
In the two decades since then. moreover. it 
has been widely used by cognikve psycholo- 
gists and A1 researchers alike, not least be- 
cause the rules provide such a convenient 
and flexible way of representing knowledge. 
A fact, for example, might be written as "IF 
object X is a crow, THEN X is probably 
black." A bit of procedural know-how might 
become "IF the goal is to start the car, 
THEN begin by putting the key in the 
ignition." 

What Newell does in making the leap to a 
unified theory of cognition is simply to take 
the analogy literally. He envisions each rule 
as modeling the stimulus-response behav- 
ior of a network of neurons. Indeed, he 
prefers to think of it not as a rule per se, but 
& an individual piece of memory: To fire a 
rulc+"IF X is a milk-chocolate Easter bun- 
ny, THEN X will taste creamy and sweet," 
for example-is to access that memory. 

1 Now, -in ordinary rule-based programs, 
such as expert systems, this rules-as-memory 
interpretion would not be viable, says 
~ewell. The problem is that only one rde 
can be in control at any given time. Indeed, 
A1 programmers have had to devise all kinds 
of schemes for resolving conflicts when sev- 
eral rules want to mkecontrol at once. In 
Soar, however, a modification first imple- 

mented by John Laird for his 1983 thesis 
allows all the rules to have their say at once; 
only afterward does the program weigh all 
the suggestions and make a decision. In 
effect, says Newell, the rules fire in parallel- 
which is exactly what one needs to do to 
emulate the massively parallel architecture of 
the brain, where billions of neurons are 
always operating simultaneously. 
\t~urthermore, says Newell, the rules-as- 

memory interpretation is not just qualita- 
tive. If a rule really does correspond to the 
action of a network of neurons, then it 
ought to take about 20 milliseconds to 
& + h a t  is, about ten times longer than the 
typical response time of an individual neu- 
ron. And given that, he says, the Soar model 
of problem-solving makes testable predic- 
tions for the time scale of all kinds of higher 
level cognitive activity. 

As an example, imagine a simple stimulus- 
response task such & a button 
when a light goes on. Using the Soar model 
together with the 20-millisecond time scale 
fbr the firing of individual rules, Newell 
calculates that the response time should be 
about 220 milliseconds. In actual experi- 
ments the times average about 200 millisec- 
onds. All in all, says Newell, he and his 
student Bonnie John have modeled 27 such 
stimulus-response tasks from the experimen- 
tal literature: with an average deviation be- 
tween theory and experiment of only 12%. 

In short, concludes Newel, "Soar is to be 
used not only as a theory of problem-solv- 
ing, but as a-detailed model i f  microcogni- 
tion." 

Autonomy and adaptability. Yet an- 
other fundamental reauirement of an intelli- 
gent system is that it should not depend 
upon a programmer to tell it what to do. 
The world is too complicated and unpredict- 
able, and there is no way that a prog'ammer 
can anticipate every situation in advance. So 
the system has to be able to decide for itself, 
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based on the needs of the moment. 
According to the common perception of 

computers, of course, this is impossible. 
Computers are held to be blind idiot sa-
vants, perfectly capable of dunning an inno-
cent customer with bill after bill for $0.00. 
Right or wrong, they do exactly what their 
programmers tell them to do and nothing 
more. Even in AI, where a great deal of 
effort has gone into making programs more 
flexible than that, a typical mle-based system 
will abruptly slam to a halt when it encoun-
ters a situation that its rules do not cover. It 
has no way of knowing what to do next. 

In Soar, however, a second in~lovation 
implemented by Laird builds in flexibility 
and resourcefi~h~essfrom the start. Whenev-
er Soar comes up against an impasse where 
its rules do not tell it what to do next, it 
automatically sets itself a subgoal-"solve 
this imnpasse"and then brings all its prob-
lem-solving abilities to bear. Its behavior is 
reminiscent of the way human doctors 
would react to a patient with unfamiliar 
symptoms: instead of just throwing up their 
hands because they could not make a diag-
nosis instantly, they would try to work 
around the roadblock by reasoning about 
basic anatomy and physiology, or by recog-
nizing an analogy to more familiar cases, or 
even by experimenting with therapies on a 
trial-and-error basis. They would try some-
thin^. And in much the same way, Soar will 

draw on any body of knowledge that seems 
useful, any set of facts and procedural tricks 
that will help it achieve a resolution. Thus, 
says Newell, "Soar does not have to be 
programmed to behave." 

w Learning from experience. A final re-
quirement on any intelligent system is that it 
be able to learn from experience. Otherwise, 
it might be condenlrled to repeat the same 
actions and the same mistakes over and over 
again like a stereotypical computer. 

In Soar, however, this kind of learning 
occurs automatically. Anytime its subgoal-
ing mechanism resolves an impasse, Soar 
simply remembers how. That is, it creates a 
new condition-action rule that tells it what 
to do the next time it encounters a similar 
situation, using a process known as "chunk-
ing." And once that rule is in place, Soar 
never has to deal with that impasse again. 

This approach to learning immediately 
gives Soar some interesting properties, says 
Newell. The very fact that it learns only 
when it is solving a problem means that its 
learning is highly individualistic; like hu-
mans (and unlike a preprogrammed com-
puter), it remembers only what it has experi-
enced and only what it has focused on. 
Furthermore, and for the same reason, Soar 
possesses a human-like ability to be idiosyn-
cratic and illogical; there is nothing that says 
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that its experience will lead to rules that are 
mathematically precise and completely con-
sistent with each other. 

But even more interesting, says Newell, is 
that this one simple chu~lkingmechanism 
seems to account for a wide range of human-
like learning behaviors. A prime example is 
the improvement of mental and physical 
skills with practice, a phenomenon that was 
studied by Soar co-creator Paul Rosen-
bloom for his 1984 thesis research. In hu-
mans, skill acquisition is characterized by 
"the power law of practice," which says that 
a person's performance on a given task will 
almost invariably speed up as some power of 
the number of practice trials. (The power 
varies from task to task.) Indeed, this is one 
of the most solidly established regularities in 
all of cognitive psychology; it has been 
demonstrated in tasks ranging from the 
reading of upside-down text to the rolling of 
cigars by hand in a cigar factory. 

What Rosenbloom was able to show, says 
Newell, is that this purely empirical finding 

"Soar," says Newell, 
"does not have to be 
programmed to behave." 

has a natural explanation in terms of chunk-
ing. Chunking, by its very nature, takes a 
con~plex,slow piecc of problem-solving and 
replaces it with a simple, fast stimulus-re-
sponse reflex: "IF this is the situation, 
THEN do that." Moreover, these new rules 
accun~ulateevery time Soar works through a 
practice session. The upshot is that the 
program's performance will get faster each 
time it repeats the task-at a rate that does 
indeed approximate a power law. 

Another, more subtle form of learning has 
to do with recovery from error. Soar-like 
humans-is perfectly capable of drawing the 
wrong lessons from its experience. It some-
times creates rules that are too specific, or 
else so general that they are just plain 
wrong. Worse, Soar has no way to delete 
an incorrect rule from memory, any more 
than a human can forget his or her name just 
by deciding to. So the potential is cata-
strophic: one can all too easily imagine the 
program piling up errors until its reasoning 
resembles a kind of hopelessly muddled 
schizophrenia. 

Not surprisingly, the problem of how to 
deal with incorrect knowledge is still a very 
ac~ivearea of research in the Soar project. 
Recently, however, Newell and his student 
Rex Flynn have been exploring a way for 
Soar to make an end run around the prob-
lem. Assuming that Soar can recognize the 

error in the first place, they have shown that 
the program ca, reformulate its problem-
solving strategies so that it never again gets 
into a situation where the incorrect rule can 
fire. The rule is still there, but it is impotent. 
Intriguingly, this approach seems to pro-
duce a style of learning similar to that of very 
young children: successive cycles of strategy 
reformulation lead Soar through stages of 
cognitive development much like those 
studied by the pi6neering child psychologist 
Jean Piaget. "And this opens up the possibil-
ity of modeling the transition mechanismsin 
detail." savs Newell. , , 

So what can one conclude from all this? 
Obviously, that Soar is an impressive piece 
of research: "The thing I like is that (the 
Soar group] tries to solve a whole bunch of 
hard and interesting problems simulta-
neously," without a lot of ad hoc additions, 
says A1 researcher John McDermott of the 
Digital Equipment Corporation. "It's a very 
responsible piece of science." 

&id vet, bne  also has to conclude that , , 

Soar is still a long way from being a satisfac-
tory unificd theory of cognition. As Newell 
himself is the first-to ad&it. there are ~ len tv  

L d 

of things about human cognition that Soar 
has not accounted for, with two obvious 
examples being emotion and consciousness. 
Nor does it have more than a rudimentary 
ability (so far) to cope with the external 
world via sensors and manipulators. And 
even in areas it supposedly does cover, such 
as learning, the accounts are often quite 
sketchy. 

Nolietheless, Newell sees a great deal of 
virtue in sticking with Soar as it is and 
secing where it leads. "'This is a prograrnma-
ble system," he says. "And when you a reach 
a problem, you could always just patch in 
another module to fix it. But then, as the 
system became more and more baroque you 
would lose predictability because it ~ i o whas 
arbitrary degrees of freedom." If one listens 
to the architecture instead, he says, the 
structure of the program may suggest solu-
tions that were never anticipated by its 
creators. This has actually happened 111 sev-
eral cases already, including the recovery 
from error probl-em mentioned above. "So 
you say, Wow! And you tend to believe the 
architecture." 

In sum, then, it seems safe to say that Soar 
has a long way to g-and that it could go a 
long way. Whether one agrees with its as-
s~unptionsor not, whether it ultimately 
succeeds or not, the creators of Soar have at 
least tried to lead the way by example. As 
Newell himself is fond of saying, in a quota-
tion from the late neuroscientist Warren 
McCulloch: "Don't bite my finger-look 
where I'm pointing!" 

M. MITCHELLWALDROP 
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