
during ontogeny of the peripheral nervous 
system. 

Although the developmental potential of 
premigratory NC cells may be restricted, our 
results suggest that regional differences in 
the extracellular matrix encountered during 
migration in the embryo provide environ- 
mental cues responsible for cell line segrega- 
tion during development of the neural crest. 
Further investigation is required to elucidate 
whether the local extracellular matrix in- 
structs developmentally labile NC cells to 
express a specific phenotype or whether the 
matrix promotes selective survival and pro- 
liferation of phenotypically committed sub- 
populations. The experimental technique 
developed in this study offers opportunities 
for addressing these questions at the molec- 
ular level and for characterizing the factors 
in the extracellular matrix that govern vari- 
ous developmental processes. 
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Cellular Transcription Factors and Regulation of IL-2 
Receptor Gene Expression by HTLV-I tax Gene Product 

Expression of the interleukin-2 receptor (IL-2Ra) gene is activated by the transcrip- 
tional activator protein, Tax (previously referred to as the tat gene product), encoded 
by the human T-cell leukemia virus (HTLV-I). Multiple protein binding sites for 
specific DNA-protein interactions were identified over the upstream IL-2Ra tran- 
scriptional regulatory sequences. However, only one region, which includes the 
sequence motif GGGGAATCTCCC, was required for activation by both the tax gene 
product and mitogenic stimulation. Remarkably, this sequence also bound the nuclear 
factor NFKB, which is important for induction of K-immunoglobulin gene expression. 
A model is presented whereby regulation of cellular gene expression by the HTLV-I 
tax gene product occurs via an indirect mechanism that may involve a post-translation- 
a1 modification of preexistent cellular transcription factors. 

T HE HUMAN T-CELL LEUKEMIA VI- 

rus (HTLV-I) is the etiological 
agent of adult T-cell leukemidlym- 

phoma (ATL) (1). The genome of this 
retrovirus encodes a nuclear transcriptional 
activator protein, Tax (previously referred to 
as the tat protein), (2) that activates gene 
expression directed by the viral long termi- 
nal repeat (LTR) sequences (3). Likewise, 
expression of the tax gene activates expres- 
sion of several cellular genes including the 
interleukin-2 receptor (IL-2Ra) (4, 5 ) .  

HTLV-I sequences responsive to the tax 

gene product are present on three 21-bp 
repeats within the LTR (6, 7 ) .  Recent qtud- 
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ies suggest that activation of LTR-directed 
gene expression occurs via an indirect mech- 
&ism that may involve activation of a con- 
stitutively expressed cellular transcription 
factor that binds to the 2 1-bp element (8). 

The existence of a virus-encoded tran- 
scriptional activator protein led to the hy- 
pothesis that immortalization of primary 
lymphocytes following HTLV-I infection 
results from alteration of cellular gene 
expression by the tux gene product. Consist- 
ent with this prediction, studies with trans- 
genic mice confirm that expression of the tux 
gene leads to malignancy (9). An attractive 
target for activation by Tax is the IL-2Ra 
gene, since both ATL and virus transformed 
cell lines constitutively express IL-2Ra on 
their surface (10) and growth factor recep- 
tors have been h~l ica ted  as mediators of 
transformation (11). Indeed, recent tran- 
sient expression studies show that IL-2Ra 
gene expression is regulated by expression of 
the HTLV-I tax gene product (4, 5). 

The physiologically active, high-afiinity 
form of the IL-2 receptor is a combination 
of the 55-kD protein coded by the "TAC" 

Fig. 1. The IL-2Ra mutations. 
Sequential 5' deletions were creat- 
ed with Bal 31 exonuclease (25). 
Plasmids ILR-3721-244 and 
ILR-2441-327 contain synthetic 
oligonucleotides that correspond 
to the indicated nucleotides of IL- 
2Ra DNA. Site-directed mutagen- 
esis (26) was used to create plas- 
mid ILR-4211-225A1. AU IL- 
2Ra fragments were cloned ac- 
cording to established protocols 
(27) 5' to an enhancerless HTLV- 
I promoter CAT gene cassette 
(plasmid pC55) (7). Tax induction 
is scored +I- since, in most in- 
stances, the level of gene expres- 
sion in the absence of Tax was too 

or IL-2Ra gene and the 70-kD protein 
coded by the IL-2RP gene (12). Expression 
of the IL-2Ra gene in response to signals 
that mimic antigenic stimulation is under 
tight transcriptional control (13), whereas 
expression of the p gene is thought to be 
constitutive (14). Certain HTLV-I-infected 
cell lines that express the high-affinity form 
of the receptor express elevated levels of the 
IL-2Ra mRNA (10). 

When nuclear extracts prepared from a 
wide variety of cell lines were used in gel 
retardation and methylation interference 
analyses, multiple protein binding sites were 
revealed within the IL3R  transcriptional 
control sequences present between nucleo- 
tides -476 to -225 (15). To establish the 
functional significance between host-factor 
binding and tux regulation of IL-2Ra gene 
expression, we made a series of 5' deletion 
mutations (see Fig. 1) within the upstream 
IL-2Ra regulatory sequence and tested the 
mutants for activity in the presence of the 
rax protein. So as to measure effects contrib- 
uted solely from the IL-2Ra 5' sequences 
and not the promoter region, we placed the 

- 5 5  +325 Tax 
Induction 

low to quantitate. 
NFKB G@XACmCC 

m i -  

Fig. 2. Activity of IL-2Ra mutations. Representative CAT assays (28) obtained from Jurkat cells, 
transfected with 3 pg of the plasmids indicated, in the presence (+) or absence (-) of Tax (A) 
expressed from plasmid pH tax-1 (7, or (B) after induction with PHA or PMA (30). CAT assays 
from 30-min reactions are shown. 

upstream sequences 5' to an HTLV-I pro- 
moter CAT gene cassette sequence lacking 
an enhancer (Fig. 1). Previous studies 
showed that the HTLV-I LTR sequences 
present from -55 to +325 are not in 
themselves Tax-responsive (7) but respond 
well to heterologous enhancer signals (7). 
As shown in Fig. 2, CAT gene expression 
directed by IL-2Ra sequences -1240 to 
-225 was activated in the presence of 
Tax, in,accord with previous findings (4). 
S1 nuclease analysis of CAT RNA indi- 
cates that activation is at the transcriptiond 
level and that RNA ihitiates at the correct 
position within the HTLV-I promoter. On 
the basis of the 5' deletion analysis (Fig. l) ,  
a region critical for the Tax response is 
present between IL-2Ra nucleotides -300 
to -257. To confirm this prediction we 
linked a synthetic oligonucleotide cor- 
responding to nucleotides -327 to -244 
5' to the HTLV-I promoter (plasmid 
ILR-3271-244) and tested for Tax respon- 
siveness. As shown in Figs. 1 and 2, se- 
quences within this region do confer the 
Ta-responsive phenotype. Moreover, re- 
sponsiveness is retained when this region is 
either inverted in the reverse orientation 
(plasmid ILR-2441-327) or moved a dis- 
tance (plasmid ILR-2251-421) from the 
promoter. Thus,  IS observed with activation 
of HTLv-I gene expression, activation of 
IL-2Ra gene expression by Tax is controlled 
by an inducible enhancer sequence. 

Analysis of the sequence elements present 
within the -327 to -244 region did not 
reveal the existence of consensus sequences 
for binding of known transcriptional regula- 
tory factors, including AP-1 (I@, SP-1 
(17), or factors that bind to the upstream 
region of CAMP inducible genes (18) or the 
HTLV-I 21-bp element (7). However, the 
sequence element GGGGAATCTCCC 
bears striking similarity to the sequence 
G G G G A m c c  for the K-immunoglob- 
ulin enhancer binding factor, NFKB (19, 
20). To examine whether this sequence ele- 
ment was required for Tax regulation, we 
deleted it from plasmid ILR-4211-225 
using site-directed mutagenesis. As shown 
in Fig. 2, plasmid ILR-4211-225A1, 
which lacks the 15-bp encompassing nucleo- 
tides -266 to -252, is no longer Tax- 
responsive. We conclude that this region is 
essential for Tax-mediated regulation of 
gene expression. 

The similarity between the sequence pre- 
sent within the IL-2Ra Tax-respodsive ele- 
ment and the NFKB binding site suggested a 
role for NFKB or a related protein in trans- 
activation. To test this possibility, we ex- 
cised IL-2 receptor sequences from plasmids 
ILR-4411-225 and ILR-4411-225A1. 
The DNA fragments were then end-labeled 
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1 2  3 4 5 6  7 8 9 1 0 1 1  munodeficiency virus type 1 (HN-1) and 
thus two copies of authentic NFKB binding 
sites (23)], led to the expected marked in- 
crease in CAT gene expression. Similarly, 
activation was evident with plasmid 
ILR-4211-225. In contrast, no activation 
was achieved after removal of the NFKB 
binding sequence. Thus, the sequences re- 
quired for activation by mitogenic stimuli 
are identical to those that confer responsive- 
ness to the tax protein. 

The experiments reported here suggest 
that activation of IL-2Ra gene expression 
by the HTLV-I tax protein occurs through 
an interaction with, or activation of, a host 
transcri~tion factor with ~rowrties similar. 

different cellular protein with the same rec- 
ognition site may be bound in different cell 
l6es; it has already been reported that a 
different nuclear factor, H2TF1, b i d s  to a 
site similar and sometimes identical to the 
NFKB binding site (24). Alternatively, the 
pathway for activation of this factor by Tax 
may not operate in other cell types. Further 
studies to address these possibilities should 
lead to a better understanding of the role of 
Tax in cell immortalization. 
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p-1671+80 (22) [the latter contains LTR 
sequences - 167 to +80 of the human im- 

I 

the post-translational modification of a con- 
stitutively expressed transcription factor 
fiom an inactive to an active configuration 
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Role of the Gastropod Shell and Operculum in 
Inhibiting Predation by Fishes 

In contrast to the diets of other cottid fishes and most teleosts, the diet ofAsemichthys 
try& is dominated by gastropod mollusks. Access to this underused prey appears to 
be made possible by morphological specializations of the neurocranium that allow 
Asemichtlys to puncture the shells of its prey during mastication. Unpunched, the shell 
and operculum act as a barrier to digestion; more than 40% of the unpunched 
gastropods emerged alive in the feces. Asemichtlys adjusted its punching behavior in an 
apparently adaptive way; other prey lacking such barriers to digestion were rarely 
punched. The ability of some shelled invertebrates to avoid digestion may make them 
less desirable as prey for many fishes that cannot masticate this kind of prey. The ability 
of shelled mollusks to survive in the digestive tracts of vertebrates may provide a 
dispersal mechanism for otherwise sedentary species. 

A MAJOR GOAL OF FUNCTIONAL MOR- dation by this species highlight the value of 
phology is the identification of the a key morphological feature of the prey that 
potential adaptive roles of morpho- may inhibit wider exploitation by fishes. 

logical structures in organisms ( I ) .  Of equal Asemichthys taylmi is a member of the 
interest. albeit more difficult in practice. is Cottidae. a familv of benthic teleostean fish- 

es found primarily in the temperate and 
boreal Northern Hemisphere. The range of 
Asemichthys extends from southeastern Alas- 
ka to Puget Sound, Washington. Cottids are 
diverse and abundant in intertidal and near- 
shore subtidal habitats of the northeast Pa- 
cific where they are important predators of 
benthic invertebrates, primarily crustaceans 
(5). The diet ofAsemichthys differs from that 
of other cottids (6). Gastropods predomi- 
nate (40% of the diet by mass), with three 
prosobranch gastropod genera (Alainia, 
Mavgarites, and Lacuna) being the most 
common (7). Predation on a secondary 
prey, gammarid amphipods (20% by mass), 
also reflects the strong influence of gastro- 
pods in that one gammarid species common 
in the diet ofRtemichthys is a Batesian mimic 
of Lacuna and M a t p i t e s  (8). 

Most teleostean fishes swallow their prey 
intact with a minimum of mastication (9). 
Most prey in the stomachs of cottid fishes, 
including Asemichthys, are intact. However, 
most snail shells consumed by this species 
show a distinct pattern of damage, ranging 
from a major punch (Fig. 1A) to a row of 
small holes (Fig. 1B) at a single site on the 
shell. Rremichthys lacks the structural modifi- 
cations (robust bones and molariform teeth) 
of the primary jaws or the pharyngeal jaws 
that allow molluscivorous teleosts to crush 
their prey. The key morphological innova- 
tions producing these holes are found on the 
vomer. the anteroventral element of the 

the identification of limits impos;d by mkr- 
phologv on ecologv and behavior. Predator- 
prey interactions involving gastropod mol- 
lusks have provided several clear insights 
into this relation between form and func- 
tion. Abundant paleontological and neonto- 
logical evidence documents the strong influ- 
ence of predation on shell form ( 2 ) .  Experi- 
ments reveal the role of such gastropod shell 
features as thickness, spire height, surface 
ornamentation, and aperture size in thwart- 
ing predators such as crabs and fish (3). 

tiOns a general plan can a Fig. 1. (A) Scanning electron micrograph of an Alvinia shell punched by the vomer of RremichtLy 
teleostean predator (Rtemichthys tayhi)  ac- tnyla'. Scale bar, 500 pm. (B) Scanning electron micrograph of a punched by shell of L w n u  sp. Note 
cess to this underutilized Drev resource (gas- the scratch marks and the small holes in the shell made by individual teeth. Scale bar, 1000 pm. (C) 

I i L" 

tropods), ~ ~ r t h ~ ~ ,  cases of unsuccessful pre- Scanning electron micrograph of the anteroventral region of the neurocranium of a typical cottid, 
Artediw harrin~toni (53-mm standard lenmh). Scale bar. 250 um. (D) Scannine electron microma~h of 
the anteroven&al region of the neur&rkium of hem'chtbs' taYla' ( 4 8 k n  standard kigth). 

kpment of~io lo  ica1 sciences, university ofcalifor. Replacement teeth in the process of migrating anteriorly into the main row can be seen on the right side 
nia, Santa Barbara, ?A 93106. of the vomer. Scale bar, 250 pm. 
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