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that had been formulated after extensive 
interviews with human doctors. 

The power of these systems was some- 
thing of a surprise even to their creators; in a 
few cases the programs outperformed even 
the human experts. And indeed, expert sys- 
tems have been largely responsible for the 
boom in commercial A1 applications that 
began in the early 1980s. They also helped 
feed the widespread perception that general- 
ity in the Newell-Simon sense was a chime- 
ra, that the road to intelligence lay through 
ever more intensive applications of highly 
specific knowledge-a principle inevitably 
paraphrased as "Knowledge is Power." 

Nonetheless, as even the most ardent 
knowledge engineers have had to admit, 
expertise alone was not enough. Suppose, 
for example, that our expert system for 
physics were presented with an unusual 
problem that its rules did not cover. A 
human physicist would simply go back to 
first principles and start from there, using 
whatever general reasoning methods he or 
she needed. Yet the expert system (at least in 
its simplest form) would come to an abrupt 
halt. It would have no idea of what to do. 

By the late 1970s these limitations had 
inspired a great deal of research in the A1 
community, much of which is still going on. 
Indeed, Newell's Carnegie Mellon col- 
leagues were doing quite a bit of that re- 
search themselves. Ultimately, however, 
Newell and his student John Laird took a 
very different tack. Convinced that general- 
ity and expertise were really just two ends of 
a continuum, they wanted a system that 
would encompass both approaches, and that 
would smoothly bridge the gap between 
them. Achieving such a system thus became 
Laird's thesis project. And his solution be- 
came the basis of Soar. 

As a starting point, Laird went back to the 
theory of problem-solving that Newell, Si- 
mon, and Shaw first set forth back in the 
1950s. According to that model, all the 
mental activity being devoted to a given task 
takes place within a cognitive arena called 
the problem space. A problem space in turn 
consists of a set of states, which describe the 
situation at any given moment, and a set of 
operators, which describe how the problem- 
solver can change the situation from one 
state to another. In chess, for example, the 
problem space would be "a chess game," a 
state would consist of a specific configura- 
tion of pieces on the chess board, and an 
operator would consist of a legal move, such 
as "Knight to King-4." The task of the 
problem-solver is to search for a sequence of 
operators that will take it from a given initial 
state (say, with the pieces lined up for the 
start of the chess game) to a given solution 
state (the opponent's king in checkmate). 
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Blocks World 

Problem-solving in the Blocks World 
problem space. Starting j o m  an initial 
state-the configuration of  blocks on the lej-the 
problem-solver has thvee operatovs that it can 
apply to change the blocks to a new state: move 
block A onto block B ,  move block A to the joor ,  
and move block B onto block A. T h e  task is to 

find a sequence of  such operators that will produce 
the stack A B C  shown on the vight. 

The Newell-Simon-Shaw model of prob- 
lem-solving is widely accepted within the A1 
community. Indeed, it seems general 
enough to account for any kind of goal- 
directed reasoning, from game playing to 
language comprehension to the question- 
answering of expert systems. So Laird incor- 
porated the framework in toto. However, 
that still left the question of guidance: given 
that a certain sequence of operators will 
solve the problem at hand, how is the 
computer supposed to find that sequence? 

The standard answer in A1 is that the 
computer (or for that matter, a human 
problem-solver) has to have access to knowl- 
edge about the problem-rules of thumb 
that will help it avoid the dead ends and that 
will guide it along the most promising 
paths. And the standard way of encoding 
that knowledge is the "production system"? 
architecture, which was originally intro- 
duced by Newell and Simon in the late 
1960s in the course of their work on human 
problem-solving, and which was subse- 
quently embraced by expert systems design- 
ers and a wide variety of other A1 program- 
mers as well. The idea here is to encode each 
bit of knowledge as a condition-action rule 
of the form, "IF this is the case, THEN do 
that." A program that models elementary 
school subtraction, for example, might con- 
tain a rule that reads in English, "IF you are 
working on a given column, and the bottom 
number is greater than the top number, 
THEN look at the next column to the left in 
order to borrow." 

For Laird, the production system archi- 

t The name comes from the work of the logician Emil 
Post, who first referred to condition-action rules as 
"productions" in the 1940s. 

Lecture seemed an obvious starting point. 
However, it was certainly not the ~ % ~ l e t e  
answer. And indeed, before he was through, 
his efforts to bridge the generalitylexpertise 
gap had led him to make two key changes. 

To understand those changes, think of a 
production system as a society of little de- 
mons-the condition-action rules. These de- 
mons spend most of their time in quiet 
contemplation of something called "work- 
ing memory," which is a kind of internal 
blackboard that records data about the cur- 
rent situation. However, when one of them 
sees something it likes-that is, when the 
conditions on the IF side of the rule match 
the current situation in working memory- 
it jumps up and shrieks out the command 
listed on its THEN side: "DO this." The 
program obeys, taking whatever actions are 
demanded and making the appropriate 
changes to working memory. And then ev- 
eryone settles down again to wait for anoth- 
erdemon to jump up. 

Now, so far, so good: if all goes well the 
computer will simply follow the orders of 
each shrieking demon in turn, moving from 
step to step until it reaches a solution to the 
problem at hand. But what happens if things 
do not go well? What happens if none of the 
demons has anything to say-that is, if none 
of the rules apply to the situation at hand? 
Worse, what happens if several demons are 
activated simultaneously and start struggling 
for power? 

This issue of conflict resolution is in fact a 
long-standing problem in AI, one that has 
provoked a great deal of research with decid- 
edly mixed results. Laird, however, was able 
to make it a non-issue. His first change, in 
effect, was to teach the demons some man- 
ners. Instead of having each one shriek out a 
command when its conditions were met, he 
had them express opinions such as "operator 
Q1 (take your opponent's queen) is better 
than operator Q2 (take your opponent's 
pawn)," or "operator Q 7  (sacrifice your 
bishop) is best." At the same time, he modi- 
fied the production system as a whole to 
operate like an exceedingly polite business 
conference. Instead of letting the activated 
demons fight over who ge;s to give the 
orders, Laird simply let all of them have 
their say. Only when everyone's opinions 
were on the table would the program decide 
what to do. 

In itself, of course, there was nothing in 
this "elaboration-decision cycle" to keep t\vo 
different demons from nominating the same 
operator for both the "best" and "worst," 
and thus producing the same kind of con- 
flicts as before. However, Laird's approach 
was to treat such impasses not as a crisis, but 
as an opportunity. His second big change 
was a mechanism that he and Newell called 
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"universal subgoaling." Think of the way a 
commuter might deal with a traffic jam by 
turning off on the first available side street 
and finding a new route home: in much the - 
same way, Laird's program would automati- 
cally deal with each impasse by setting up a 
new problem-"solve this impasse'-and 
goingto work on it. 

More than anything else, says Newell, it 
was universal subgoaling that allowed Soar 
to overcome the rigidity of the early expert 
systems. "Conflict resolution is no longer 
done by a fixed mechanism, but a general 
one," he says. At every point, "Soar can 
bring its entire problem-solving apparatus 
to bear." 

At the same time, he says, the elaboration- 
decision cycle provided exactly the kind of 
universalitv that he and Laird set out to 
achieve. Since Soar only makes its decisions 
after all the rules have been heard from, it 
automatically uses the most powerful 
knowledge it has available. For example, if 
Soar has no guidance knowledge whatso- 
ever, it will be forced to look at each prob- 
lem state in turn until it stumbles across the 
goal. But if the system has at least a little bit 
of knowledge-that is, if its rules do express 
a few  references for one action over anoth- 
er-then it will begin to behave in ways that 
resemble general methods such as Hill- 
Climbing or Means-Ends analysis. And if it 
has a lot of knowledge, so that it always has 
a clear preference for what to do next, then 
its behavior will be that of an expert. 

Indeed, by the time Laird had completed 
his thesis project in 1983 there was only one 
logical gap left in Soar. The program needed 
a way to learn, so that it could work its way 
along the novice-expert continuum without 
having to have its knowledge programmed 
in by hand. And that, says Newell, was 
precisely the capability provided by Laird's 
fellow student, Paul Rosenbloom. 

In the beginning, ironically, Rosenb- 
loom's thesis project had little to do with 
Soar. His goal was to devise a computer 
program that would model the way hukans 
improve with practice on a variety of tasks, 
using a learning method known to psychol- 
ogists as "chunking." Nonetheless, as the 
work progressed he and Laird became con- 
vinced that their approaches were comple- 
mentary. Along with Newel1 they even made 
an informal pact that, once their respective 
theses were finished. thev would fuse their , ,  
efforts into single research project. And in- 
deed, says Newell, "in one of those great 
leaps that all researchers dream about, a 
completely general scheme of chunking was 
incorporated into Soar in a matter of a day 
or two." On Monday, 10 January 1984, 
Laird and Rosenbloom sat down to work. 
By Wednesday, 12 January, the revised pro- 
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gram was up and running. 
The basic idea of chunking is simple: 

whenever Soar resolves an impasse, it re- 
members how. More precisely, Soar encodes 
the results of its problem-solving as a new 
condition-action rule-a "chunk"-and 
then stores it away in memory where it 
operates like any other rule. Its conditions 
are the relevant contents of working memo- 
ry at the time the impasse arose; its action is 
the new solution. 

If the basic idea of chunking is simple, 
however, the consequences are large: 
SOAR'S problem-solving is now cumula- 
tive. It does not have to keep reinventing the 
wheel. The next time it encounters a similar 
impasse, it can leap directly to the solution 
without repeating the intervening steps. 
"The next time," says Newell, "it never even 
sees the impasse." And thus SOAR can 
spontaneousiy pass from the slow, painful, 
trial-and-error problem-solving characteris- 
tic of a novice, to the near-instantaneous 
insight characteristic of an expert. It does 
not have to be programmed with expertise, 
because it can learn expertise. 

By this point it was clear to Newell, Laird, 
and Rosenbloom alike that Soar was more 
than just another thesis project. Granted, it 
was not the first A1 program able to grapple 
with hard intellectual tasks. Nor was it the 
first AI program able to learn from experi- 
ence. But it combined those abilities in a 
remarkably elegant way. More important, its 
very generality made it a natural framework 
for integrating and synthesizing the results 
of earlier AI research. And in the years since 
1984, Newell, Laird, and Rosenbloom have 
spent a great deal of their time doing just 
that. Newel1 has put a small army of younger 
graduate students to work on Soar-related 
projects at Carnegie Mellon, while Laird 
and Rosenbloom are doing the same at 
Michigan and Southern California. The 
Soar project as a whole now involves some 
35 individuals nationwide. 

One of the group's first goals was to test 
the Soar architecture by reimplementing a 
variety of classic A1 programs. In each case 
they left the basic architecture untouched; 

the only thing they changed was the set of 
rules, which gave Soar the appropriate 
knowledge about the problem at hand. The 
results were as successful as they could have 
hoped. Soar has followed in the steps of 
General Problem Solver by solving the Tow- 
er of Hanoi, the Missionaries and Cannibals 
problem, and similar puzzles. It has demon- 
strated its ability to use a whole range of 
general reasoning methods, including 
Means-Ends Analysis and Hill-Climbing. It 
has proved that it can learn from experience 
on any given problem-and that it can then 
reapply that experience to improve its per- 
formance on new and different problems. 
And it has successfully tackled a variety of 
knowledge-intensive expert system tasks in 
incarnations such as Neomycin-Soar (medi- 
cal diagnosis), and Designer-Soar (design- 
ing computer programs). 

Perhaps the most notable test, however, 
was R1-Soar, which reimplemented one of 
the largest and most famous of the practical 
expert systems. R1  itself, which currently 
contains thousands of rules, is used by the 
Digital Equipment Corporation to config- 
ure its VAX line of minicomputers. Since 
R1-Soar was intended as a laboratory test it 
contained only about 25% of the original's 
functionality. Nonetheless, within that lim- 
ited domain its performance was compara- 
ble with the orignal. Moreover, because of 
its chunking ability, R1-Soar was able to 
start over on a configuration problem that 
had originally taken it 1731 steps to solve, 
and then solve it again with only 7 steps. 
The R1  programmers at Digital were suffi- 
ciently impressed that they are now incorpo- 
rating some Soar-ish features into a major 
revision of the program. 

The lessons learned in such efforts have 
given rise to several rounds of refinements 
to the basic Soar architecture-version 5 is 
almost complete-and have set the stage for 
more challenging research projects. At the 
same time, the group's rapidly accumulating 
experience helped convince Newel1 that the 
program had the potential to be a unified 
theory of human cognition. 
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