Toward a Unified
Theory of Cognition

Soar is a computer program that can learn from experience—and
that may also explain the basic mechanisms of thought

This is one of an occasional series of articles on
cognitive science and artificial intelligence, the
study of the mind as an information processor.
Next: How Soar works as a unified theory.

DEPENDING UPON WHOM one asks, the
idea is outrageous, brilliant, premature,
doomed, or even blasphemous. But accord-
ing to artificial intelligence (AI) pioneer
Allen Newell of Carnegie Mellon Universi-
ty, it is an idea whose time has come:
“Unified Theories of Cognition,” he de-
clares, “are within reach and we should
strive to attain them.”

Anyone who has spent more than about
30 seconds with Newell lately knows just
how enthralled he is with this prospect. He
can happily expound upon the subject for
hours on end. And yet his purpose is quite
serious: nothing less than a reformation in
the way research is done in the cognitive
sciences. He is trying to wean his allies in
cognitive psychology from “microtheories”
that explain only one or two experimental
results at a time. He is likewise trying to
shake his fellow AI researchers out of their
habit of writing ad hoc programs that focus
only on one little aspect of, say, vision or
language understanding. Instead, he wants
them to start putting the pieces together. He
wants them to start thinking in terms of a
single, integrated set of information-pro-
cessing mechanisms that can explain every
aspect of human thought—reasoning, learn-
ing, perception, motor control, language,
development, emotion, and even awareness.

“Even if the mind has parts, modules,
components, or whatever, they all mesh
together to produce behavior,” he says. “It is
one mind that minds them all.”

Among the Al researchers and cognitive
psychologists contacted by Science, the reac-
tion to Newell’s proselytizing is typically
something like “If’s an intriguing idea”™—
followed by a strong dose of Wait-and-See.
People do listen: for more than 30 years,
Newell has been one of the most influential
theorists in any branch of cognitive science.
Yet people are understandably skeptical:

I JULY 1988

given the fragmentary nature of our knowl-
edge about cognition, they wonder if we are
really ready for a unified theory. And in-
deed, Newell is well aware that the burden
of proof is on him.

So he is specific. For more than a year
now he has been promoting a candidate
theory that is embodied in a working com-
puter program known as Soar,* which he
has developed in collaboration with his for-
mer students John E. Laird of the University
of Michigan and Paul S. Rosenbloom of the
University of Southern California. In sim-
plest terms, Newell’s theory is that all cogni-
tion involves some form of problem-solv-
ing; Soar is accordingly a general-purpose
program for solving problems. It incorpo-
rates specific knowledge about the world as
a set of rules that guide it in solving prob-
lems. And it learns from experience by re-
membering how it solves problems.

To get a feel for how this theory works in
more detail, however, it is worth going back
to the issues that first gave rise to Soar. And
to do that, it helps to start with a specific
question: what would it take to
write a program that solves
homework problems in elemen-
tary physics?

Since there are a wide variety
of such problems—static equi-
librium, harmonic oscillators,
friction, and so forth—one obvi-
ous way to proceed might be to
try for generality: give the pro-
gram a handful of generic rea-
soning methods that it could
apply and reapply in all sorts of
situations.

As it happens this was precisely the ap-
proach taken by Newell, his Carnegie Mel-
lon colleague Herbert Simon, and computer
scientist Clifford Shaw in their pioneering
work on human problem-solving back in the
1950s and 1960s. By analyzing the behavior
of human subjects they were able to identify
quite a number of these general reasoning
techniques. Examples included such tradi-
tional favorites as Trial-and-Error and Hill-

*For reasons made clear below, Soar stands for State,
Operator, And Result.

Climbing (that is, do whatever seems best at
the time), as well as a very common tech-
nique known as Means-Ends analysis, which
can be paraphrased as “If I'm over here and
my goal is over there, then I should try to
reduce the difference.” Newell and Simon
accordingly made Means-Ends analysis one
of the cornerstones of a program known as
General Problem Solver, which they devel-
oped in 1957 as a model for human prob-
lem-solving.

As advertised, General Problem Solver
was quite versatile. In its various incarna-
tions over the next decade it was able to
solve a variety of puzzles, and even prove
theorems in symbolic logic. By the early
1970s, however, it had also clarified the
limitations of pure generality. Most impor-
tant was that a general problem solver is
forever condemned to be a novice: in much
the same way that a beginning physics stu-
dent will flounder around with his or her
first homework assignment, a general pro-
gram’s reasoning will always
be characterized by
false starts and
dead ends. It has
no way to simply
recognize the solu-
tion, the way an
experienced phys-
ics teacher will say
“AHA! Thats a
conservation of
energy problem.”

Thus, many Al
researchers turned

Allen Newell. “Unified theories are within our reach.”

to a second approach: instead of striving for
general intelligence, focus on a specific do-
main—in this case, elementary physics—and
try to gain problem-solving power by encap-
sulating the highly specialized knowledge of
human experts. This idea quickly gave rise to
a class of programs known as expert systems,
which were developed by several Al groups
in the early and mid-1970s. Mycin, to take
the best known example, was an early expert
system written at Stanford University in
1975 to do diagnosis of infectious diseases.
At its heart was a mass of about 250 rules

RESEARCH NEWS 27

that had been formulated after extensive
interviews with human doctors.

The power of these systems was some-
thing of a surprise even to their creators; in a

few cases the programs outperformed even -

the human experts. And indeed, expert sys-
tems have been largely responsible for the
boom in commercial Al applications that
began in the early 1980s. They also helped
feed the widespread perception that general-
ity in the Newell-Simon sense was a chime-
ra, that the road to intelligence lay through
ever more intensive applications of highly
specific knowledge—a principle inevitably
paraphrased as “Knowledge is Power.”

Nonetheless, as even the most ardent
knowledge engineers have had to admit,
expertise alone was not enough. Suppose,
for example, that our expert system for
physics were presented with an unusual
problem that its rules did not cover. A
human physicist would simply go back to
first principles and start from there, using
whatever general reasoning methods he or
she needed. Yet the expert system (at least in
its simplest form) would come to an abrupt
halt. It would have no idea of what to do.

By the late 1970s these limitations had
inspired a great deal of research in the Al
community, much of which is still going on.
Indeed, Newell’s Carnegie Mellon col-
leagues were doing quite a bit of that re-
search themselves. Ultimately, however,
Newell and his student John Laird took a
very different tack. Convinced that general-
ity and expertise were really just two ends of
a continuum, they wanted a system that
would encompass both approaches, and that
would smoothly bridge the gap between
them. Achieving such a system thus became
Laird’s thesis project. And his solution be-
came the basis of Soar.

As a starting point, Laird went back to the
theory of problem-solving that Newell, Si-
mon, and Shaw first set forth back in the
1950s. According to that model, all the
mental activity being devoted to a given task
takes place within a cognitive arena called
the problem space. A problem space in turn
consists of a set of states, which describe the
situation at any given moment, and a set of
operators, which describe how the problem-
solver can change the situation from one
state to another. In chess, for example, the
problem space would be “a chess game,” a
state would consist of a specific configura-
tion of pieces on the chess board, and an
operator would consist of a legal move, such
as “Knight to King-4.” The task of the
problem-solver is to search for a sequence of
operators that will take it from a given initial
state (say, with the pieces lined up for the
start of the chess game) to a given solution
state (the opponent’s king in checkmate).

28

Blocks World
Problem Space

Problem-solving in the Blocks World
problem space. Starting from an initial
state—the configuration of blocks on the lefi—the
problem-solver has three operators that it can
apply to change the blocks to a new state: move
block A onto block B, move block A to the floor,
and move block B onto block A. The task is to
find a sequence of such operators that will produce
the stack ABC shown on the right.

The Newell-Simon-Shaw model of prob-
lem-solving is widely accepted within the Al
community. Indeed, it seems general
enough to account for any kind of goal-
directed reasoning, from game playing to
language comprehension to the question-
answering of expert systems. So Laird incor-
porated the framework in toto. However,
that still left the question of guidance: given
that a certain sequence of operators will
solve the problem at hand, how is the
computer supposed to find that sequence?

The standard answer in Al is that the
computer (or for that matter, a human
problem-solver) has to have access to knowl-
edge about the problem—rules of thumb
that will help it avoid the dead ends and that
will guide it along the most promising
paths. And the standard way of encoding
that knowledge is the “production system”
architecture, which was originally intro-
duced by Newell and Simon in the late
1960s in the course of their work on human
problem-solving, and which was subse-
quently embraced by expert systems design-
ers and a wide variety of other Al program-
mers as well. The idea here is to encode each
bit of knowledge as a condition-action rule
of the form, “IF this is the case, THEN do
that” A program that models elementary
school subtraction, for example, might con-
tain a rule that reads in English, “IF you are
working on a given column, and the bottom
number is greater than the top number,
THEN look at the next column to the left in
order to borrow.”

For Laird, the production system archi-

+ The name comes from the work of the logician Emil
Post, who first referred to condition-action rules as
“productions” in the 1940s.

tecture seemed an obvious starting point.
However, it was certainly not the complete
answer. And indeed, before he was through,
his efforts to bridge the generality/expertise
gap had led him to make two key changes.

To understand those changes, think of a
production system as a society of little de-
mons—the condition-action rules. These de-
mons spend most of their time in quiet
contemplation of something called “work-
ing memory,” which is a kind of internal
blackboard that records data about the cur-
rent situation. However, when one of them
sees something it likes—that is, when the
conditions on the IF side of the rule match
the current situation in working memory—
it jumps up and shrieks out the command
listed on its THEN side: “DO this.” The
program obeys, taking whatever actions are
demanded and making the appropriate
changes to working memory. And then ev-
eryone settles down again to wait for anoth-
er demon to jump up.

Now, so far, so good: if all goes well the
computer will simply follow the orders of
each shrieking demon in turn, moving from
step to step until it reaches a solution to the
problem at hand. But what happens if things
do not go well? What happens if none of the
demons has anything to say—that is, if none
of the rules apply to the situation at hand?
Worse, what happens if several demons are
activated simultaneously and start struggling
for power?

This issue of conflict resolution is in fact a
long-standing problem in Al, one that has
provoked a great deal of research with decid-
edly mixed results. Laird, however, was able
to make it a non-issue. His first change, in
effect, was to teach the demons some man-
ners. Instead of having each one shriek out a
command when its conditions were met, he
had them express opinions such as “operator
Q1 (take your opponent’s queen) is better
than operator Q2 (take your opponent’s
pawn),” or “operator Q7 (sacrifice your
bishop) is best.” At the same time, he modi-
fied the production system as a whole to
operate like an exceedingly polite business
conference. Instead of letting the activated
demons fight over who gets to give the
orders, Laird simply let all of them have
their say. Only when everyone’s opinions
were on the table would the program decide
what to do.

In itself, of course, there was nothing in
this “elaboration-decision cycle” to keep two
different demons from nominating the same
operator for both the “best” and “worst,”
and thus producing the same kind of con-
flicts as before. However, Laird’s approach
was to treat such impasses not as a crisis, but
as an opportunity. His second big change
was a mechanism that he and Newell called

SCIENCE, VOL. 241

“universal subgoaling.” Think of the way a
commuter might deal with a traffic jam by
turning off on the first available side street
and finding a new route home: in much the
same way, Laird’s program would automati-
cally deal with each impasse by setting up a
new problem—*“solve this impasse”—and
going to work on it.

More than anything else, says Newell, it
was universal subgoaling that allowed Soar
to overcome the rigidity of the early expert
systems. “Conflict resolution is no longer
done by a fixed mechanism, but a general
one,” he says. At every point, “Soar can
bring its entire problem-solving apparatus
to bear.”

At the same time, he says, the elaboration-
decision cycle provided exactly the kind of
universality that he and Laird set out to
achieve. Since Soar only makes its decisions
after all the rules have been heard from, it
automatically uses the most powerful
knowledge it has available. For example, if
Soar has no guidance knowledge whatso-
ever, it will be forced to look at each prob-
lem state in turn until it stumbles across the
goal. But if the system has at least a little bit
of knowledge—that is, if its rules do express
a few preferences for one action over anoth-
er—then it will begin to behave in ways that
resemble general methods such as Hill-
Climbing or Means-Ends analysis. And if it
has a lot of knowledge, so that it always has
a clear preference for what to do next, then
its behavior will be that of an expert.

Indeed, by the time Laird had completed
his thesis project in 1983 there was only one
logical gap left in Soar. The program needed
a way to learn, so that it could work its way
along the novice-expert continuum without
having to have its knowledge programmed
in by hand. And that, says Newell, was
precisely the capability provided by Laird’s
fellow student, Paul Rosenbloom.

In the beginning, ironically, Rosenb-
loom’s thesis project had little to do with
Soar. His goal was to devise a computer
program that would model the way humans
improve with practice on a variety of tasks,
using a learning method known to psychol-
ogists as “chunking.” Nonetheless, as the
work progressed he and Laird became con-
vinced that their approaches were comple-
mentary. Along with Newell they even made
an informal pact that, once their respective
theses were finished, they would fuse their
efforts into single research project. And in-
deed, says Newell, “in one of those great
leaps that all researchers dream about, a
completely general scheme of chunking was
incorporated into Soar in a matter of a day
or two.” On Monday, 10 January 1984,
Laird and Rosenbloom sat down to work.
By Wednesday, 12 January, the revised pro-

1 JULY 1988

Learning from expe- Problem
rience. When Soar
reaches an impasse in its
problem-solving—that is,
when it does not know
what to do next—it auto-
matically sets up a subgoal
to resolve the impasse.
When it succeeds, it goes
back to where it left off and

Problem

simultaneously encodes a
new “chunk” of knowl-
edge that will keep it from
ever having to suffer that particular impasse again.

gram was up and running.

The basic idea of chunking is simple:
whenever Soar resolves an impasse, it re-
members how. More precisely, Soar encodes
the results of its problem-solving as a new
condition-action rule—a “chunk”—and
then stores it away in memory where it
operates like any other rule. Its conditions
are the relevant contents of working memo-
ry at the time the impasse arose; its action is
the new solution.

If the basic idea of chunking is simple,
however, the consequences are large:
SOAR’s problem-solving is now cumula-
tive. It does not have to keep reinventing the
wheel. The next time it encounters a similar
impasse, it can leap directly to the solution
without repeating the intervening steps.
“The next time,” says Newell, “it never even
sees the impasse.” And thus SOAR can
spontaneously pass from the slow, painful,
trial-and-error problem-solving characteris-
tic of a novice, to the near-instantaneous
insight characteristic of an expert. It does
not have to be programmed with expertise,
because it can learn expertise.

By this point it was clear to Newell, Laird,
and Rosenbloom alike that Soar was more
than just another thesis project. Granted, it
was not the first Al program able to grapple
with hard intellectual tasks. Nor was it the
first Al program able to learn from experi-
ence. But it combined those abilities in a
remarkably elegant way. More important, its
very generality made it a natural framework
for integrating and synthesizing the results
of earlier Al research. And in the years since
1984, Newell, Laird, and Rosenbloom have
spent a great deal of their time doing just
that. Newell has put a small army of younger
graduate students to work on Soar-related
projects at Carnegie Mellon, while Laird
and Rosenbloom are doing the same at
Michigan and Southern California. The
Soar project as a whole now involves some
35 individuals nationwide.

One of the group’s first goals was to test
the Soar architecture by reimplementing a
variety of classic Al programs. In each case
they left the basic architecture untouched,

p I ohunk 1
asse i chunk -
mp Soelving
Problem resolve
Solving Impasse

the only thing they changed was the set of
rules, which gave Soar the appropriate
knowledge about the problem at hand. The
results were as successful as they could have
hoped. Soar has followed in the steps of
General Problem Solver by solving the Tow-
er of Hanoi, the Missionaries and Cannibals
problem, and similar puzzles. It has demon-
strated its ability to use a whole range of
general reasoning methods, including
Means-Ends Analysis and Hill-Climbing. It
has proved that it can learn from experience
on any given problem—and that it can then
reapply that experience to improve its per-
formance on new and different problems.
And it has successfully tackled a variety of
knowledge-intensive expert system tasks in
incarnations such as Neomycin-Soar (medi-
cal diagnosis), and Designer-Soar (design-
ing computer programs).

Perhaps the most notable test, however,
was R1-Soar, which reimplemented one of
the largest and most famous of the practical
expert systems. R1 itself, which currently
contains thousands of rules, is used by the
Digital Equipment Corporation to config-
ure its VAX line of minicomputers. Since
R1-Soar was intended as a laboratory test it
contained only about 25% of the original’s
functionality. Nonetheless, within that lim-
ited domain its performance was compara-
ble with the orignal. Moreover, because of
its chunking ability, R1-Soar was able to
start over on a configuration problem that
had originally taken it 1731 steps to solve,
and then solve it again with only 7 steps.
The R1 programmers at Digital were suffi-
ciently impressed that they are now incorpo-
rating some Soar-ish features into a major
revision of the program.

The lessons learned in such efforts have
given rise to several rounds of refinements
to the basic Soar architecture—version 5 is
almost complete—and have set the stage for
more challenging research projects. At the
same time, the group’s rapidly accumulating
experience helped convince Newell that the
program had the potential to be a unified
theory of human cognition.

a M. MiTCHELL WALDROP

RESEARCH NEWS 29

