
Fermat's Last Theorem 
Remains Unproved 
U.?len alapanese mathematician recently ofered a proof of 
Fermat's Last Theorem, it seemed that one of mathematics' most 
famous open problems might at last have been solved, but the 
excitment proved to be premature 

THE RECENT ATTEMPT by an eminent Japa- 
nese mathematician to solve the famous 
problem known as Fermat's Last Theorem 
?ell short of the mark, the victim of an 
assumption that turned out to be unwar- 
ranted. Less than 6 weeks after the proof 
first became publicly known, its aithor, 
Yoichi Miyaoka, retracted it, and experts in 
the theory see little chance that the obstacle 
that was discovered will be overcome anv 
time soon. Miyaoka's work sheds light on a 
difficult field of mathematics, but "without a 
new idea, Ferrnat's Last Theorem will not be 
solved this way," according to one observer. 

News that Miyaoka, a professor of mathe- 
matics at Tokyo Metropolitan University, 
had possibly proved Fermat's Last Theorem 
electrified the world mathematics communi- 
ty. Miyaoka's proof was based on new ideas 
that make arithmetical analogs of results in 
geometry. The trouble is caused by a critical 
geometric component that does not seem to 
have a good analog. Miyaoka tried an inge- 
nious "geometric" substitute, but closer ex- 
amination revealed that the ersatz compo- 
nent is not up to the task. 

Fermat's Last Theorem is undoubtedlv 
the most famous open problem in mathe- 
matics. The theorem states quite simply that 
the equation xn + yn = zn has no positive 
integer solutions x,y,z if the exponent n is 
greater than 2. Pierre de Fermat formulated 
this conjecture around 1637. It is called a 
theorem only because Fermat claimed to 
have "a marvelous proof," which he said was 
too long to squeeze into the margin of his 
book. 

The problem has withstood the efforts of 
generations of mathematicians, yielding 
only individual cases, which by now include 
all exponents up to 150,000. (The theorem 
need only be proved for the exponent n = 4 
and exponents that are prime numbers, be- 
cause if it is true for a given exponent then it 
is also true for any multiple of that expo- 
nent. For instance, if x = a, y = b, z = c were 
a solution to  the equation x6 + y6 = z6, then 
x = a2, y = b2, z = c2  would be a solution to 
the equation x3 + Y3 = z3.) 

Fermat did find room to write down a 

proof for the exponent n = 4, and the Swiss 
mathematician Leonhard Euler gave a proof 
for n = 3 in the 18th century. In the 1840s, 
several mathematicians worked on a general 
proof which, like Miyaoka's, foundered on 
an unwarranted assumption: they had as- 
sumed that the unique factorization of inte- 
gers into primes (such as 60 = 2 x 2 x 3 x 
5) would hold for number systems that 
extend beyond the ordinary integers. In 

"Without a new idea, 
Fermat's Last Theorem 
will not be solved this 
way" 
actuality, unique factorization is rather rare. 
For instance, 2 x 3 and (1  + v - 5 )  
(1 - v - 5 )  are distinct factorizations of 6 in 
a number system that treats v - 5  as an 
integer. 

Ernst Eduard Kummer went on to sys- 
tematize the violation of unique factoriza- 
tion, and developed a theory that allowed 
him to prove Fermat's Last Theorem for a 
large number of prime exponents. Kum- 
mer's work has grown into a major branch 
of mathematics known as algebraic number 
theory. It is much too early to know if the 
gap in Miyaoka's proof will lead to any 
similar developments, but Fermat's Last 
Theorem is generally regarded as more im- 
portant for the theories that have grown 
around it than for the result in itself. 

The announcement of Miyaoka's proof 
was not a complete surprise. Considerable 
progress in number theory has made the 
prospect of proving Fermat's Last Theorem 
seem less unlikely than it had before. In 
particular, there are two new routes to the 
theorem that mathematicians believe stand 
the best chance yet of eventually yielding a 
proof. Each approach shows that Fermat's 
Last Theorem is a consequence of another 
deeper and far more important unsolved 
problem in number theory. In other words, 
while the truth of Ferrnat's Last Theorem is 

of no direct benefit, a counterexample to the 
theorem would entail all kinds of unpleasant 
mathematical consequences. 

The trail taken by Miyaoka was first 
blazed about a year ago by A. N. Parshin in 
Moscow. Parshin proved that if an arithmet- 
ical analog to a certain inequality in differen- 
tial geometry were true, then Ferrnat's Last 
Theorem would also be true. Parshin's result 
is part of a program, initiated in Russia by S. 
Arakelov in the 1970s, to create an arithmet- 
ical version of geometry. This theory, which 
bristles with the technical terminology of 
modern algebraic geometry (Fermat's "mar- 
velous proof" most likely did not refer to 
vector bundles, schemes, or cohomology 
groups), essentially treats the solutions to  
arithmetical equations as if they were two- 
dimensional surfaces. The theory achieved a 
spectacular success in 1983, when Gerd 
Faltings, now at Princeton University, used 
the geometric theory to solve a 60-year-old 
problem known as Mordell's conjecture. 
Mordell's conjecture states that certain equa- 
tions which, as surfaces, have two or more 
"holes," can have at most a finite number of 
rational solutions. 

Faltings's result applies to the Fermat 
equation by proving that there are at most a 
finite number of rational solutions to the 
equation xn + yn = 1 when n is greater than 
3. (Rational solutions to this equation cor- 
respond to integer solutions of the Fermat 
equation by writing X = xlz, Y = ylz with a 
common denominator z.) Unfortunately, 
Faltings's result does not determine any 
explicit finite range for the rational solutions 
to lie in. 

Parshin showed that the arithmetical ver- 
sion of a certain inequality involving geo- 
metric invariants of surfaces-an inequality 
that Miyaoka proved for the geometric case 
in 1974-would lead by a series of steps to a 
bound on the size of possible exponents for 
which Ferrnat's Last Theorem could be 
false. With luck, the bound would be less 
than 150,000, in which case the proof 
would be complete. Otherwise, computers 
might be called upon to mop up. But it is 
also possible that the bound itself might be 
unspecified, in which case the theorem 
would be true for all "sufficiently large" 
exponents but an indeterminate number of 
counterexamples could conceivably survive. 

Miyaoka's work is directed at proving the 
arithmetical inequality. Miyaoka, who is an 
expert in algebraic geometry but a relative 
newcomer to the arithmetical theory, pro- 
ceeded by analogy with the geometric case. 
But according to Enrico Bombieri, a profes- 
sor of mathematics at the Institute for Ad- 
vanced Studies in Princeton, the translation 
is not straightforward. "Things go over, but 
with some qualifications," Bombieri says. 
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"The nalve extension doesn't go through." 
The problem, according to Barry Mazur 

of Harvard University, is the lack of a good 
arithmetical analog of a crucial geometric 
object known as the tangent bundle. Mazur, 
who helped Miyaoka analyze the proof, 
explains that Miyaoka had "a very interest- 
ing idea" to replace the tangent bundle with 
a "generic" bundle, with the assumption 
that the generic bundle can be chosen so as 
to have suitably nice properties. This seems 
not to be the case. 

The effort is not wasted, however. Mazur 
says that Miyaoka has carried the idea of 
substituting generic bundles for the tangent 
bundle back to the original geometric case. 
"Given any choice of a bundle, you'll get 
some inequalities," Mazur says. "It's a per- 
fectly reasonable and interesting geometric 
question to ask what's the structure of this 
whole complex set of inequalities." Answer- 
ing such questions will very possibly lead to 
a deeper understanding of Miyaoka's origi- 
nal geometric proof. 

The other promising new route to Fer- 
mat's Last Theorem stems from the theory 
of elliptic curves, which studies a class of 
equations falling outside of Faltings's result: 
interpreted as geometric surfaces, elliptic 
curves have only one hole, whereas Fal- 
tings's result applies to surfaces with two or 
more; the distinction is critical, since the 
equations corresponding to elliptic curves 
can and sometimes do have infinitely many 
rational solutions. In 1986, Gerhard Frey 
proposed that Fermat's Last Theorem could 
be proved as a consequence of an important 
open problem in the theory of elliptic curves 
known as the Weil-Taniyama conjecture. 
This conjecture asserts that each elliptic 
curve has an associated analytic function 
with very special properties. The conjecture 
is known to be true for many individual 
curves, and can be proved for any given 
curve. It is considered to be important be- 
cause the properties of the analytic functions 
contain information related to the solutions 
of the corresponding equations. 

Frey's idea was to show that a counterex- 
ample to Fermat's Last Theorem could be 
used to construct an elliptic curve that is a 
counterexample to the Weil-Taniyama con- 
jecture. (Curiously, the same elliptic curve 
plays a role near the end of Parshin's argu- 
ment.) The connection hinged on yet anoth- 
er conjecture, which Ken Ribet of the Uni- 
versity of California at Berkeley managed to 
prove. The Weil-Taniyama conjecture re- 
mains open, but Fermat's Last Theorem is 
now known to be one of its many conse- 
quences. BARRY A. CIPRA 

Barry A. Cipra is a mathematician and writer 
based in Northfield, Minnesota. 

When Good Proofs Go Bad 
How can there be any doubt over the correctness or incorrectness of a mathematical 
proof? Why does it take experts to analyze a proof? Isn't it just a matter of checking 
the logic at each step? 

Perhaps. But mathematicians skip over many routine and familiar steps, much the 
same way that a practiced musician plays chords without analyzing every finger 
position-they only back up when something doesn't sound right. "Routine" and 
"familiar" are relative terms; experts trained in one specialty are oftentimes oblivious 
to t l ~ e  terminology and techniques of another specialty, even in cases where the two 
specialties treat the same problems. 

Moreover, even if all the steps are given and the proof is in a field familiar to 
everyone, logical errors can be hard to locate---even if the result is obviously false. The 
reader is invited to try his or her luck at finding the mistake in the following proof that 
all triangles are isosceles (in fact, equilateral). The proof, which has appeared in many 
places, is reprinted here from An Itttroduction to Number Theory, by Harold Stark. (It 
should not be confused in any way with Miyaoka's work on Fermat's Last Theorem, 
though, in spite of lxing a geometric proof in a book on number theory.) 

"Let M be the midpoint of BC and let D be the intersection of the perpendicular 
bisector of BC and the angle bisector of L B A C  (see Figure 1 ) .  Let E be the point on 
AB such that A B  I DE and let F be the point on A C  such that A C  i DF. Now BM = 
C M  by construction, L B M D  = L C M D  (=  90') by construction and DM = DM. 
Therefore, triangles BMD and C M D  are congruent (angle, side, angle theorem). Thus 
BD = C D  and L M B D  = L M C D  (corresponding parts of congruent triangles are 
equal). Next, DE = DF (a point on an angle bisector is equidistant from the sides) 
and L B E D  = L C F D  by construction. Therefore, triangles BED and CFD are 
congruent (two right triangles with two equal sides and equal hypotenuses are 
congruent--or, by the Pythagorean Theorem, the other sides are also equal and then 
we can use the side, angle, side, or the side, side, side theorems). Therefore, L D B E  = 
L DCF (corresponding sides of congruent triangles are equal). Thus L M B E  = 
L M C F  (sums of equals are equal). This says that A A B C  is isosceles with equal angles 
at B and C and thus the sides opposite these angles, A B  and A C ,  are equal. 

" . . . It is commonly stated that the error consists of the fact that D is drawn above 
BC, whereas D is actually below BC. Thus, the reader may enjoy proving that A B  = 
A C  from Figure 2 (the letters have the same meaning as before). The proof is 
practically identical to the one given using Figure 1 ." B.A.C. 

Fig. 1 Fig. 2 
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