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A diverse range of physical phenomena, both observed 
and hypothetical, are described by topological solutions 
to nonlinear gauge field theories. Computer-generated 
color graphic displays can provide a clear and detailed 
representation of some of these solutions, which might 
otherwise be physically unintelligible because of their 
mathematical complexity. Graphical representations are 
presented here for two topological solutions: (i) the 
solutions of a model that represents the filaments of 
quantized magnetic flux in a superconductor, and (ii) the 
solutions of an SO(3) gauge theory corresponding to a 
pair of separated magnetic monopoles. An introduction is 
provided to the gauge field theories giving rise to these 
solutions. 

G AUGE THEORY IS THE GENERIC NAME FOR A CLASS OF 

vector field theories. It encompasses electromagnetism, the 
simplest gauge theory, and a group of theories that are 

generalizations of electromagnetism, called non-Abelian gauge theo- 
ries. The study of gauge theories is of great importance in several 
areas of physics, particularly particle physics, as it is now generally 
believed that all of the fundamental interactions in nature can be 
explained in terms of gauge fields. 

An important development of this research has been the discov- 
ery, in some gauge theories, of solutions with nontrivial boundary 
conditions, called "topological solutions." These are associated with 
a diverse range of phenomena, from quantized magnetic flux tubes 
in superconductivity, to instantons and magnetic monopoles in non- 
Abelian gauge theories. [For an introduction to the subject of 
topological solutions in field theory, see the book by Rajaraman (1) 
and the reprint collection edited by Rebbi and Soliani (2).] 

Frequently, however, an obstacle to understanding these solu- 
tions is their great complexity, which stems from the fact that the 
field equations giving rise to topological solutions are nonlinear. 
Their solution often requires complicated mathematical analysis, 
leading to numerical results in the form of lengthy tables and graphs 
that permit only a limited grasp of the qualitative properties of the 
solutions and the phenomena they represent. 

The situation may be improved greatly by modern computer- 
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generated graphics. It is possible in many cases to generate static and 
dynamic representations of complex physical systems to provide 
intuitive insights not otherwise obtainable. Indeed, computer 
graphic displays are commonplace in many areas of science [see (3) 
for an introduction]. 

In this article we consider two phenomena described by topologi- 
cal solutions to gauge field theories, and present our initial attempts 
to create displays of these solutions. First we consider the Landau- 
Ginzburg model of superconductivity (4 ) ,  whose topological solu- 
tions represent the filaments of quantized magnetic flux (strings, or 
vortex lines) that are observed in type I1 superconductors (5). Then, 
after a brief introduction to non-Abelian gauge theories, we discuss 
generalized magnetic monopoles, which were discovered as topo- 
logical solutions of certain non-Abelian theories by 't Hooft (6) and 
Polyakov (7). (We remark that it is not known whether these 
monopoles actually exist in nature.) 

Flux Quanta in Superconductors 
A simplified model to describe superconductivity was proposed in 

1950 by Landau and Ginzburg (4). In this model, the microscopic 
structure of the superconductor, now understood in terms of the 
electron pairing theory of Bardeen, Cooper, and Schrieffer (BCS), is 
replaced by a complex scalar field + of charge q = 2e that represents 
the condensate of electron pairs. The field + interacts with the 
electromagnetic potential A, and the static field configurations are 
solutions of the equations 

Here the first two equations are simply Maxwell's equations for 
the magnetic field B = curl A, with current density 

associated with the flow of electron pairs (in a real material, a 
contribution to the current from the flow of unpaired electrons 
might need to be included as well). The third equation is the field 
equation for 4, where p2 and X are temperature-dependent parame- 
ters related to the microscopic properties of the electron pairs and f i  
is Planck's constant. 

At high temperatures, the parameter is positive, and the only 
solution to the equations is + = 0 and B = 0,  corresponding to an 
absence of electron pairs-the material behaves like a normal 

27 MY 1988 ARTICLES 1163 



conductor. For a superconductor, the parameter p2 becomes nega- 
tive below a critical temperature T,, and the equations have a 
solution 

This solution corresponds to a superconducting state with density of 
electron pairs proportional to 1'$12, and zero magnetic field inside 
the superconductor. 

However, the equations with F2 < 0 have additional solutions 
with interesting topological properties. These solutions have non- 
zero magnetic field in the superconductor, but the field is confined 
to a long filament (flux tube, or vortex line). The magnitude of the 
field decreases exponentially with distance from the axis of the 
filament, with characteristic length (the screening length, or London 
penetration depth) 

(1, is also the distance to which an external magnetic field penetrates 
the interior of a superconducting surface). 

The density of electron pairs vanishes on the axis of the flw tube, 
and rises to its value in the bulk of the superconductor over a 
distance scale (the coherence length 1,) given by 

The total magnetic flw @ through a cross-secton of the flux tube 
is quantized-it must be an integer multiple of the flu quantum 

@,, = 21rh/q (9) 

Here it is important to note that q = 2c is the charge of the electron 
pair. 

To understand the origin of the flw quantization, write the 
complex scalar field 4 as 

'$ = pe'e (10) 

(with p 3 0, 8 real). Then the current density is given by 

and the magnetic flux through a dosed curve C is given by 

Fig. 1. Two representations of a quantized mag- 
netic flux tube in a superconductor. The density 
of the vertical lines is proportional to the magnet- 
ic flux density. The color variation represents the 
magnitude of 1+12, which varies from zero at the 
center of the flux tube to 212 outside. In addition, 
the vertical displacement of the surfaces in (d) to 
(f) is also proportional to i+12. The length scale is 
provided by the coherence length I, in (a) to (c), 
and by the screening length Is in (d) to ( f ) .  The 
ratios lsll, of screening length to coherence length 
are 0.6, 1.0, and 1.5, from top to bottom. 
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Now let C be a circle in a plane normal to the f l u  tube, with center 
on the axis and radius large compared to I, and I,. The current flow 
around C is negligible, so the magnetic flux is given simply by 

This integral need not vanish, but the field 4 must be single-valued, 
so that the phase angle 0 must change by an integer multiple of 2n  in 
going around the circle, 

(n = 0, k1 ,  k2 ,  . . .) and 

Note that the curve C need not be a circle-any large closed loop 
around the flux tube in a normal plane will do, because the variation 
of the phase angle 0 around C, as defined by Eq. 14, is unchanged by 
continuous deformations of C (and hence can be characterized as a 
topological property of the solution). 

The physically interesting properties of the flux tubes are the 
magnetic field strength B, the density of electron pairs, which is 
proportional to 1+12 ,  and perhaps the energy density. These quanti- 
ties can be plotted on conventional graphs, but the information can 
also be depicted in various color graphic representations, as shown 
in Fig. 1. 

The presence or absence of flux tubes in actual superconductors 
depends on the interaction between flux tubes, which in turn 
depends on the ratio l,/l, of the screening length to the coherence 
length. If 1, < I, (type I superconductor), magnetic flu is complete- 
ly expelled from the interior of the superconductor (Meissner effect) 
and no flux tubes remain. If I, > I, (type 11), on the other hand, 
magnetic flux in the superconductor persists in flux tubes that form a 
triangular lattice over a cross section of the superconductor (this 
lattice minimizes the interaction energy of the flux tubes, which is 
positive when I, > I,). The total magnetic flux through a cross 
section of the superconductor is an integer multiple of the flux 
quantum Qo. For further discussion, see, for example, (8, 9). 

Non-Abelian Gauge Theories 
There is a long history of the study of symmetry principles in 

physical systems [for an introduction, see (lo)]. Perhaps the most 
widely understood symmetries are the three-dimensional rotational 
symmetries of atoms and molecules, and the translational and 
rotational symmetries of crystal lattices, but more abstract symme- 
tries play an essential role in theories of the fundamental interactions 
of nature. 

Of special interest here are the symmetries and related conversa- 
tion laws--extensions of the familiar concept of electric charge- 
associated with the internal structure of elementary particles. Early 
examples are the approximate symmetries of isospin-first proposed 
by Heisenberg in 1947 to account for the similarity between proton 
and neutron-and its extensions used to classify the rich spectrum of 
baryons and mesons explored at particle accelerators in the 1950s 
and 1960s. These symmetries are described by transformations of 
the internal degrees of freedom (coordinates) of elementary parti- 
cles, just as rotations and translations are described by transforma- 
tions of spatial coordinates. 

One further level of abstraction, crucial to contemporary theories 

of elementary particles, is to consider internal symmetry transforma- 
tions that act independently at each space-time point. These are 
called (local) gauge transformations, and were already known from 
the quantum mechanics of charged particles, where the transforma- 
tions of the particle wave hnction have the form 

*(x) -+ exp{iqa(x))*(x) (16) 
Here q is the charge of the particle, and a(x) is an arbitrary real 
function of space and time coordinates. Note that the "phase factor" 
exp{iqa) has magnitude 1, so that this transformation does not alter 
the probability density l+(x) 12. In fact, the requirement of invariance 
under the gauge transformations of Eq. 16, together with corre- 
sponding transformations of the electromagnetic potential (the 
"gauge field" of the theory), can be used as a starting point for the 
formulation of quantum electrodynamics. 

The generalization of the gauge transformations of Eq. 16 to 
internal symmetries, with the simple phase factor replaced by a 
unitary matrix acting on the internal degrees of freedom, was 
introduced by Yang and Mills in 1954. (The group formed by the 
transformation is said to be non-Abelian, which means that multipli- 
cation of the matrices involved in the gauge transformations is not 
commutative.) However, it was not until the 1960s that theories 
based on invariance under these generalized gauge transformations 
were proposed as a unified theory of the weak and electromagnetic 
interactions by Glashow, Salam, and Weinberg. The now accepted 
theory of strong interactions (quantum chromodynamics, or QCD), 
which is based on invariance under gauge transformations of the 
"color" degree of freedom of quarks, was first constructed in the 
early 1970s [an elementary technical introduction is given in ( l l ) ] .  

The main obstacle to appreciating the relevance of the physically 
appealing gauge theories was the fact that the vector fields ("gauge 
fields") associated with the gauge transformations, analogous to the 
photon of electromagnetic theory, are apparently required to be 
massless (like the photon), and no such fields other than the photon 
had been observed. However, in a non-Abelian gauge theory, the 
gauge fields are no longer neutral, unlike the photon, which carries 
no electric charge. In QCD, it is believed that only states that are 
neutral under the gauge transformations of color are observable- 
free quarks have never been seen experimentally, and the known 
baryons and mesons are colorless composite states of quarks and 
antiquarks. Hence free gauge fields ("gluons") are expected to be 
unobservable-like quarks, they are seen only indirectly in compos- 
ite state hadrons (known as "glueballs") or as "jets" of hadrons 
produced at high-energy accelerators. 

In the unified theory of weak and electromagnetic interactions, 
the requirement of massless gauge fields is evaded by a mechanism 
(generally known as the Higgs mechanism) that can generate 
massive gauge fields. In this theory, there is a scalar field 4 (the 
Higgs scalar) that has a nonzero value in the state of lowest energy 
(the vacuum), just as the scalar field in the Landau-Ginzburg model 
of superconductivity has a nonzero value given by Eq. 5. This 
vacuum state no longer has the symmetry of the original theory (a 
useful analogy is the ground state of a ferromagnet-even though 
the interactions between atoms are spherically symmetric, the 
ground state is not, since the direction of the magnetization defines 
a special direction in space). In these circumstances, the excitations 
of the vacuum corresponding to gauge fields that do not represent 
symmetries of the vacuum appear as massive vector particles. In the 
electroweak theory, these are identified with the W and Z particles 
discovered at CERN in 1982. 

Although the scalar field has been introduced to generate a mass 
for the W and Z particles, it is not well understood. Indeed, many of 
the outstanding problems of elementary particle physics center on 
the properties of the Higgs scalar. Where is the particle (or particles) 
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corresponding to the field? What are the properties of these 
particles? What is the origin of the nonzero value of the field in the 
vacuum of the theory? 

Magnetic Monopoles in Non-Abelian Gauge 
Theories 

Maxwell's equations for the electromagnetic fields E and B have a 
symmetry between electric and magnetic fields in the absence of 
sources. However, the sources do not display this symmetry- 
electric fields are generated by electric charges, whereas magnetic 
fields are generated by currents associated with moving electric 
charges. Although this picture is in complete agreement with 
present experimental knowledge, it is useful to contemplate the 
consequences of the existence of isolated magnetic charges, or 
monopoles. 

An important result, derived by Dirac in a pair of classic papers 
(12), is that the fundamental unitsge andg, of electric and magnetic 
charge, respectively, are related by 

where n is an integer (throughout this section we have set 
c = f i  = 1). The topological origin of this relation as a condition for 
the consistency of the gauge transformations of Eq. 16 in the 
presence of magnetic charges was later clarified by Yang (13). One 
attractive consequence of Eq. 17  is that it provides a natural 
explanation of the observed quantization of electric charges in units 
of the electron charge e (or, more recently, the quark charge el3). 

Although magnetic monopoles are allowed within the framework 
of standard electromagnetic theory, they are not compulsory, and it 
is interesting to consider what happens when electromagnetism is 
embedded into a non-Abelian gauge theory. In 1974, 't Hooft (6) 
and Polyakov (7) noted that in a theory with gauge group S0(3) ,  
corresponding to rotations in a three-dimensional internal space 
(with the same structure as rotations of ordinary three-dimensional 
space), there are static (time-independent) solutions to the field 
equations that have many of the properties associated with magnetic 
monopoles. In particular, there is a localized source from which 
emerges a long-range magnetic field characteristic of a monopole. 
However, the fields within the source are non-singular, so that the 
total energy in the configuration is finite and calculable, and the 
mass of the associated particle can be predicted (unlike the masses of 
quarks and leptons in the standard model, which must be introduced 
as parameters to be determined from experiment). 

To describe these static solutions, we introduce* fields of the 
theory. These consist of asriplet of scalar fields 4 = (4") and a 
triplet of vector potentials A = (Aa). Here a = 1, 2, 3 is an index 
that labels the components of a vector in the three-dimensional 
internal symmetry space (to be called isospin space for brevity). The 
arrow denotes a vector in isospin space; boldface type a vector in 
ordinary space. -+ 

The magnetic fields B = (Ba) are related to the vector potentials 

by 

Here V is the usual derivative operator; (a, b, c) denotes a cyclic 
permutation of (1, 2, 3), a n d g  is a parameter that corresponds to 
the electric charge in electromagnetic theory. 

The field equations for static fields can then be written as 

where A and v are parameters associated with the scalar fields, 

analogous to those in5oduced in Eqs. 3 and 5, and D is an operator 
that acts on a vector V = (Va) in isospin space according to 

The extra terms proportional t o g  in Eqs. 18 and 21 are required so 
that Ba and DVa will actually be components of a vector in isospin 
seace. -+ -+ 

Finite energy solutions of Eqs. 19  and 20 must have 4 4 -+ 3 
at spatial infinity. The s imples~solut io~ corresponding to the low- -+ 
est energy (vacuum) state, has 4 = v , a constant isospin vector 
with 7 7 = 3. The direction of 7 is undetermined. but two 
solutions with different directions of are related by a (gauge) 
rotation in isospin space, and hence are to be considered equivalent. 
(In the analogous case of a ferromagnet described above, the 
direction of the magnetization in the ground state is well defined, 
but its orientation in space is arbitrary.) Two of the three gauge 
fields acquire a mass by the Higgs mechanism, but one massless 
gauge field remains, because the vacuum still has a symmetry 
corresponding to rotations about the direction in isospin space 
defined by the vector 7. We can identify this massless field with the 
usual electromagnetic field. -+ -+ 

There are also static solutions+with 4 . 4 -+ $ at infinity in 
which the direction of the vector + in isospin space varies smoothly 
from point to point on the "sphere at infinity" (S,) in ordJnary 
space. In the simplest such solution, the isospin direction of 4 at a 
point on S, can be identified with the direction of the radius vector 
from some origin to the point on S,. This solution is the 't Hooft- 
Polyakov monopole (6, 7)-application of Gauss' Law to the 
associated magnetic field shows that the total magnetic charge of the 
configurationis 

More generally, as ~ o i n t s  in space cover the sphere S,, T must 
cover the sphere T . 4 = 3 in isospin space an integer number n 
times-this is the analogue of the phase condition Eq. 14. The 
magnetic charge of the corresponding solution is then given by 

For a deeper discussion of these points, see the comprehensive 
review by Goddard and Olive (14). 

These general properties do not guarantee the existence of 
solutions with n > 1. Indeed, static (time-independent) solutions 
exist only in the special limit A -+ 0, while retaining the boundary -+ -+ 
condition 4 . 4 -+ 9 at infinity. This is called the Prasad-Sommer- 
field limit, after those who obtained the analytic single monopole 
(n = 1) solution in this limit (15). The existence of static multi- 
monopole (n > 1) solutions in the Prasad-Somrnerfield limit is a 
consequence of the fact that the scalar field 4 becomes massless as 
A -+ 0. It turns out that in this case the long-range magnetic 
repulsion between monopoles is exactly balanced by a long-range 
attraction due to the interaction with the scalar field. Very little is 
known about the (necessarily) time-dependent solutions with 
A f 0. Nonetheless, the study of the static solutions provides a 
useful starting point for the study of the properties of such 
monopoles. 

In the Prasad-Sommerfield limit, the field equations Eqs. 19 and 
20 simplify to first-order form 

-+ -+ 
B = -D+ (24) 

Equation 24 still represents a set of coupled nonlinear partial 
differential equations whose solution has involved the use of mathe- 
matical techniques that were only developed in the 1970s [see (2) 
for a representative sample]. What has finally emerged, after many 
important contributions not chronicled here, is a complete set of 
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formal solutions corresponding to a collection of n monopoles at We should remark that no monopoles have actually been ob- 
arbitrary positions (16-19). However, even the simplest such served; neither is their existence required in the standard QCD- 
solution, corresponding to two monopoles (n = 2), is extremely electroweak theory. However, they are predicted to exist in more 
complicated and as such physically unenlightening. Numerical ambitious "grand unified" theories that incorporate the color and 
methods must be used to evaluate the solution, and computer electroweak gauge groups into a larger gauge group, although the 
graphics are certainly a great asset in appreciating its very interesting density of such monopoles in the universe may be so low as to make 
properties. their detection quite unlikely. 

The pictures in Fig. 2 are plotted fiom the two-monopole 
solution derived by Forgdcs ct a(. (19) [gauge group S0(3), A = 01. 
To our knowledge this is the first t h e  that the two-monopole 
system has been studied graphically in such detail. Concluding Remarks 

Figure 2, a to e, showsthitotal energy density (that is, the sum of 
the magnetic and Higgs energy densities) for various monopole 
separations. When the monopoles are far apart (Fig. 2a) they look 
like a pair of isolated Prasad-Sommerfield monopoles. As they 
approach one another, however, the energy density evolves in a 
curious way (Fig. 2, b to e). It is not symmetrically distributed about 
the axis joining the monopoles (unlike the electric field of two 
stationary electrons or the magnetic field of a bar magnet). Neither 
is it spherically symmetric when they are coincident (Fig. 2e). In the 
latter case it is symmetric about an axis, but that axis is perpendicular 
to the line of approach of the monopoles. This is in accordance with 
a general result that n > 1 solutions are not spherically symmetric 
and are axially symmetric only if the magnetic sources are coincident 
(20). + 

Figure 2f plots the squared-magnitude of the scalar field, I+ 12, at 
an intermediate monopole separation. This quantity tends to 9 at 
spatial infinity. 

We have demonstrated, by means of two specific examples, that 
computer-generated color graphic displays are a usell  tool in 
understanding the qualitative nature of complicated solutions fiom 
gauge theory. Indeed, such representations of the two-monopole 
system may well provide new insights into this and mathematically 
similar sytems. 

We dose with some remarks concerning a new trend in computer 
architecture that promises to make such pictures much quicker and 
cheaper to produce, and hence more widely available. It is the use of 
parallel processing, which is often well suited to this type of 
problem. 

Consider, for example, plotting a quantity whose dependence on 
a set of parameters is given by a known analytic (but possibly 
complicated) fbrmula. Then the calculation of that quantity 
throughout some region of parameter space can easily be "farmed 
out" to a network of processors, each running the same code and 
working on a portion of the total region of interest. This technique 

Fig. 2. A pair of static SO(3) magnetic mono- 
poles at various separations. (a to e) Suikes of 
constant total energy density (magnetic + Higgs 
energy density). The scparations, measured be- 
tween the zeroes of the Higgs field, are 10,4, 3, 
2, and 0, respectively (in units of clM, c = electric 
charge, M = gauge partide mass). The energy 
density values are: blue = 1, green = 2, yd- 
low = 3, red = 4 (in units of 0.02 MIc5). The 
energy is not symmetrically distributed about the 
axis joining the monopoles. Neither is it spherical- 
ly symmetric when the monopoles are coincident, 
although in this case it is symmetric about an axis 
perpendicular to their line of approach. t Sur- \) faces of constant Higgs field squared, 161 , for a 
monopole separation of 4. The 161' values are: 
dark blue = 0.4, light blue = 0.2, green = 0.1, 
yellow = 0.05, red = 0.025 (with ri2 = 1 in Eq. 
20). 
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was used in the present study to generate the two-monopole data for 
plotting. The calculation was performed on a "Meiko Computing 
Surface" containing 16 Inrnos T414 transputers. In principle the 
problem could be farmed out to a processor array of arbitrary size 
with proportionate speed up. 

Similarly, the actual plotting can be farmed out, each processor 
working on a subset of the complete picture. Although the displays 
presented here were generated using conventional computers, an 
algorithm for three-dimensional solid modeling on a processor array 
is currently under development. With this technology it should be 
possible to plot such pictures in seconds rather than hours. 
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