
monitoring patient parameters during sur-

PC Software for Artificial Intelligence
Applications

Software tools that have been developed
in the course of Artificial Intelligence (AI)
research are now mature enough to stir
interest outside of AI, and relatively cheap
but powerful hardware make it feasible to
try sich tools on a broad range of problems.
What A1 programmers find essential, all
programmers find desirable-fast program
development and natural expression of
problem-solving knowledge. After contrast-
ing A1 and conventional software, we exam-
ine three types of A1 tool by reviewing
representative PC-based commercial prod-
ucts.

A1 researchers try to make the computer
solve problems that apparently have no di-
rect algorithmic solution. Implementing a
particular data analysis algorithm (for exam-
ple, linear regression) is not an A1 problem,
but writing a program to select an appropri-
ate data analysis technique is. A1 researchers
approach a problem by developing a proto-
type program that is a partial solution. The
researchers then modify the prototype to
improve its performance. A1 researchers
have found conventional programming lan-
guages, such as BASIC or FORTRAN,
deficient with respect to this exploratory
style of programming. The deficiency
springs both from the types of object and
operation supplied in a conventional lan-
guage and from the tradional programming
environment. The objects typically include
numbers of various types, numerically en-
coded characters, arrays, and memory ad-
dresses. The supplied operations provide the
appropriate manipulations of these objects,
for example, adding numbers or testing for
equality of characters. These objects and
operations are low level in that they mimic
what the computer supplies at the hardware
level. Finally, the traditional programming
environment does not provide the develop-
ment tools required for fast prototyping, a
key part of experimental programming.

Symbolic programming languages, such
as LISP, are popular in A1 because they
improve upon conventional languages by
furnishing primitive operations that manip-
ulate symbolic objects and their interrela-
tions. Yet these languages share a deficiency
with their conventional counterparts: both

Institute for A plied Artificial Intelligence, Department
of Computer Skence and Information Systems, DePad
U n i v e r s ~ ~ , Chicago, IL 60604.

are procedural in requiring that the basic
steps of problem-solving be encoded in the
program by the sequencing of statements.
An individual programming statement, such
as an assignment of value to a variable,
derives its meaning from its position within
the sequence, which makes it difficult both
to reason about the statement's correctness
and to change its meaning. A1 programmers
try to overcome this deficiency by building
languages that allow information about the
problem to be expressed as naturally, explic-
itly, and nonprocedurally as possible. (LISP
is so popular in A1 partly because it is easily
extensible: specialized languages can be built
readily on top of it.) A good A1 language,
besides encouraging the fast prototyping of
solutions, should be general enough to cov-
er a broad group of problems.

An A1 tool is typically inspired by some
problem-solving paradigm. We begin with
Personal Consultant Plus (1) as an example
of a backward-chaining rule system. Next
we cover SmalltaWV (2) as an example of an
object-oriented system. We conclude with
Nexpert Object (3) as an example of an
integrated or toolkit system. Because the
three products address different problem-
solving needs, we do not rank them; al-
though we do not compare them against
commercial rivals, we regard all three as
among the best available.

Personal Consultant Plus

Baclzgvound. A natural form of expression
of problem-solving knowledge is the condi-
tional: IF the situation is like this, THEN
this fact is true or this action should be
performed. A number of systems have been
developed that have the IF-THEN rule or
situation-action rule as their major form of
representation. We program a solution to a
class of problems in one of these rule-based
tools by writing a set of rules that collective-
ly describe the problem-solving process. The
modular nature of expression in these tools,
where, ideally, each rule represents an inde-
pendent piece of knowledge about the prob-
lem, makes it easier to develop programs
incrementally.

A given rule can be used in different ways
during problem-solving. Consider, for ex-
ample, a rule that might appear in a program

gery :
If mean arterial pressure <50 mmHg

and arterial C 0 2 pressure is low,
Then cerebral blood flow will be reduced.
Used in the forward direction, reasoning

proceeds from rule antecedent (the IF part,
also called the left-hand side or LHS) to-
ward the consequent (the THEN part,
right-hand side or RHS). Suppose that our
monitoring system maintains a database of
facts. When the antecedent of this rule is
discovered to be true (because appropriate
values of mean arterial pressure and C 0 2
pressure have been observed), the rule can
be fired, placing the conclusion about cere-
bral blood flow into the database (where it
might cause the antecedent of another rule
to be satisfied, a rule, say, whose consequent
action would be to update a display and
trigger a warning alarm).

A rule can also be used in a backward
direction, reasoning from consequent to an-
tecedent. Used this way, the rule given
above would be of interest if the monitoring
program was attempting to determine the
status of cerebral blood flow: the rule's
antecedent describes sufficient evidence to
conclude that the flow is low. The program
then could attempt to determine mean arte-
rial pressure (by direct sensor observation)
and whether C 0 2 pressure is low (a judg-
ment as opposed to a direct measurement).
Additional rules would need to be consulted
to support such a qualitative conclusion.

Any rule-based programming tool has an
inference engine, which is a fixed procedure
for manipulating rules. This engine is "pro-
grammed" by giving it a set of rules describ-
ing the problem. To solve a particular prob-
lem, the inference engine decides which
rules to apply and when to apply them,
based both uDon the structure of the set of
rules it has been given and the parameters of
the particular problem. Thus rules are used
opportunistically, as the situation demands,
and not in some preordained order.

The various rule-based tools differ primar-
ily in the design of their inference engines. A
forward-chaining tool has an inference en-
gine that uses rules only in the forward
direction. A backward-chaining tool has an
inference engine that uses rules only in the
backward direction. Hybrid tools allow each
rule to be used in the direction specified by
the programmer.

Most backward-chaining tools are special-
ized to deal with diagnosis problems, in-

I Software Advisory Panel I
Robert P Futrelle Joseph L Modelevsky
David G. George Davld A Pensak
Daniel F. Merriam Paul F Velleman

SCIENCE, VOL. 240

volving the selection of one or several most
likely candidates from a set of alternatives.
such systems share the same basic computa-
tional model. Problems are described in
terms of parameters, which have values. The
antecedents of the rules test the values of
parameters, and their consequents make
conclusions about the values of other oa-
rameters. Problem-solving is goal-driven:
some parameter is designated as the overall
goal, and the values ultimately concluded for
this parameter constitute the diagnosis. The
system backward-chains through rules that
conclude about the goal parameter, attempt-
ing to determine which of those rules have
true antecedents. In order to test the ante-
cedent of a rule, the values of the parameters
mentioned in it must be known, so these
parameters become subgoals that cause ad-
ditional backward-chaining.

To illustrate the process, consider the
MYCIN system for diagnosis of and therapy
selection for bacterial infections (4). The
diagnostic portion of MYCIN is a back-
ward-chaining rule-based system which has
a goal of determining which organisms
would best explain the patients's symptoms
and lab tests. MYCIN has several goal pa-
rameters, including COVERFOR, whose
computed value is a list of organisms which
must be covered by the therapy. The rule
shown in Fig. 1, in both its internal form
and in an English translation, concludes a
value for the COVERFOR parameter on
the basis of values for the TREATINF,
EXAMSTAIN, SPECSTAIN, TYPE, and
BURNED parameters. For a conclusion to
be made by this rule, the system must
determine the values of the& antecedent
parameters. For some parameters, such as
BURNED, the value is determined by ask-
ing the user directly. Other parameters; such
as TREATINF and TYPE, represent so-
phisticated conclusions; additional rules
must be tried in order to determine their
values.

A backward-chaining tool can have its
inference engine designed to produce dia-
logues with the user of an application that
seem purposeful and focused. For example,
if the inference engine always investigates a
parameter such as COVERFOR complete-
ly before moving on to the next parameter,
then all the auestions about COVERFOR
will be asked at one time instead of being
interspersed with questions about some oth-
er parameter. While the system is using the
rule shown above, attention is focused for a
while on TREATINF, the infection to be
treated; focus later shifts to TYPE, the type
of the organism.

The first major rule-based tool to use
backward-chaining was EMYCIN (4) , de-
veloped at Stanford University from the

If: 1) The infection which requires therapy is meningitis,
2) A: A smear of the culture was not examined, or

B: Organisms were not seen on the stain of the culture,
3) The type of the infection is bacterial, and
4) The patient has been seriously burned

Then: There is suggestive evidence (. 5) that pseudomonas-aeruginosa is
one of the organisms which might be causing the infection.

PREMISE: ($AND (SAME CNTXT TREATINF MENINGITIS)
($OR (NOTSAME CNTXT EXAMSTAIN)

(NOTSAME CNTXT SPECSTAIN)
(SAME CNTXT TYPE BACTERIAL)
(SAME CNTXT BURNED)

ACTION: (CONCLUDE CNTXT COVERFOR PSEUDOMONAS-AERUGINOSA
TALLY 500)

Fig. 1. Example of a rule, both in English translation and in code, from the MYCIN program.

MYCIN system by abstracting away all the
specifically medical knowledge and leaving a
language for writing rules and the inference
engine. Personal Consultant Plus (PC-Plus)
is a direct descendant of EMYCIN. that is
somewhat better organized than the origi-
nal, has certain obvious missing pieces sup-
plied, and is adapted to the PC environ-
ment.

All control in a pure backward-chaining
rule-based system springs from attempting
to determine the values of parameters; there-
fore, the overall expressiveness of the rules is
determined by how much control over this
process is given to the application program-
mer. Of particular interest is control of the
dialogue; more natural dialogues make the
problem-solving process seem more trans-
parent.

Ope~atwn. In PC-Plus, we control the
inference process by setting various parame-
ter properties. For example, the absence of
the PROMPT property on a parameter
means that the iser- wiil not be- asked to
provide the parameter's value. Having a
PROMPT and an ASKFIRST property
means that the user will be asked for a value
before anj7 rules are tried, whereas a
PROMPT and no ASKFIRST property
means the user will be asked for a value only
after rules are tried. A METHOD property
specifies a procedure to call or to calculate a
value. A DEFAULT property can be speci-
fied to provide a value if none of these
procedures work. PC-Plus allows control
over how auestions are asked. Restrictions
can be placed on the kinds of values users
can type in (symbolic values chosen from
some set, arbitrary text typed in by the user,
or numeric values within a certain range)
and how many values are allowed (SING-
LEVALUED parameters can only take on
one value, MULTIVALUED ones can
have several values). PROMPTS can be
constructed automatically by PC-Plus from
TRANSLATIONS provided by the pro-
grammer. For example, the SPECSTAIN
parameter might have the translation "Orga-
nisms were seen on the stain of the culture"

from which the system would construct the
query "Were organisms seen on the stain of
the culture?" The programmer can also cre-
ate graphics (using an outside graphics pack-
age) and incorporate them into the applica-
tion as prompts, help, and display of final
results. A recently added Images utility ex-
tends the graphics capabilities to allow, for
example, input of text by forms and of
numeric values by images of dials and ther-
mometers.

In PC-Plus, parameters are grouped into
frames (called "contexts" in EMYCIN) al-
lowing relevant parameters to be considered
together. Frames are connected into a hier-
archy. In the MYCIN system, for example,
the PATIENT frame at the root of the
hierarchy contains parameters related to
general patient information, such as NAME
and AGE. Subframes subordinate to PA-
TIENT group parameters related to differ-
ent kinds of cultures (positive, negative,
pending, or prior). A frame is a template for
an entity, called an instance of the frame, to
be created when the application is run. The
instance contains the actual parameter values
for a given case. Multiple instances of a
frame can be created; thus there can be
multiple instances of POSITIVE-CUL-
TURE, each having its own values for a
common set of parameters. Parameters des-
ignated as INITIALDATA parameters
within a frame will be asked about when an
instance of that frame is first created. The
system will then attempt to find the values
of any designated GOAL parameters. In
MYCIN, NAME and AGE are INITIAL-
DATA for the root PATIENT frame and
THERAPY is the GOAL. In the POSI-
TIVE-CULTURE frame, DATE-TAK-
E N and SITE are INITIALDATA and
IDENTITY is the goal. These choices help
structure the dialogue with MYCIN to meet
physician expectations; general questions
about the patient are asked to begin the
diagnosis, and identifying features of a cul-
ture are asked whenever the culture is first
mentioned.

Frame instantiation, that is, putting pa-

6 MAY 1988

rameters into a frame, is performed auto- grammer allow English paraphrases of the with the data affected bv them leads to the
matically by the inference engine; for exam-
ple, a rule concluding for THERAPY
might mention IDENTITY, which will
trigger the creation of an instance of POS-
ITIVE-CULTURE, since IDENTITY is a
parameter associated with that frame. Frame
instantiation can be placed under the control
of the user (who could be asked "Are there
any positive cultures?" or "Are there any
more positive cultures?"). More sophisticat-
ed behavior can be induced by having rules
explicitly force instantiation.

The order in which rules are tried is a
major determinant of dialogue focus. If arbi-
trary ordering of the rules leads to unfo-
cused dialogue, the programmer can rank-
order the rules on a numeric scale, or explic-
itly specify that certain rules are to be tried
before others. Moreover, this information
can be decided during a consultation, allow- "
ing a more promising line of reasoning to be
pursued first.

Discussion. PC-Plus provides a develop-
ment interface that helps manage applica-
tion development. There are windows for
editing parameter properties, frame proper-
ties, rule definitions, and so forth. Selection
of editing commands appropriate to the
window is done through a menu or through
control keys. The windowing system itself is
supplied with PC-Plus and predates current
window-mouse-oriented interfaces for PC-
DOS. The windows stack on top of each
other; only the top-most window can be
acted on and it must be exited in order to
access lower windows. On a more positive
note, the interface does help the application
programmer, for example, by performing
syntax checks on rules as they are defined,
allowing immediate reediting in case of er-
ror, and prompting for the definitions of
parameters when they are first encountered
in rules. Rules are written in ARL (Abbrevi-
ated Rule Language). The TRANSLA-
TIONS for parameters provided by the pro-

rule to be generated so that the programmer
can verifj. the correctness of the ARL state-
ments. (~ h e s e paraphrases also provide a
simple explanation mechanism for the user.)

PC-Plus is written in TI-SCHEME, a
dialect of LISP. All LHS tests and RHS
actions actually translate into LISP function
calls. The application programmer can add
new tests and actions by writing LISP code.
These extensions can even be given transla-
tion templates for use in rule translations.
PC-Plus has added a rich set of extensions to
the original EMYCIN capabilities, includ-
ing access to dBASE-I11 and DOS. PC-Plus
sells for $2950. A reduced-functionality ver-
sion called PC-Easy is available for $495. It
provides a nice way for the potential user to
experiment with this techndogy, with the
option of upgrading to PC-Plus if desired.

PC-Plus is an expressive, flexible tool for
producing diagnostic programs. Its only
drawback is not specific to it, but rather is
common to all programming tools built on a
single paradigm: as long as the solution to
the problem reasonablv matches the mecha-
nisms provided by the tool, solutions can be
coded cleanly and succinctly, but as the
match becomes less close. the claritv of the
resulting program declines dramatically. In
particular, purely backward-chaining rule-
based systems have difficulty expressing
complex diagnostic strategies. Although
PC-Plus, through its ability to control frame
instantiation and ordering of rules, is cer-
tainly among the best o f any of the back-
ward-chaining tools in this capability, its
limits come from the paradigm that inspired
it.

Back~~ound. Traditional programming
consists of applying various program steps
to data. These steps are combined to form
procedures. Grouping procedures together

A RATIONAL-NUMBER is kind of NUMBER Object with data
NUMERATOR: INTEGER;
DENOMINATOR: INTEGER range 1.. INTEGER'LAST;

and with
operation "=" (X,Y: RATIONAL-NUMBER) return BOOLEAN;
operation positive" (X: RATIONAL-NUMBER) return BOOLEAN;

Begin
IF X.NUMERATOR > 0 return TRUE else return FALSE

End operation
operation "+" (X,Y: RATIONAL-NUMBER) return RATIONAL-NUMBER;

Begin
return (new(X.NUMERATOR * Y.DENOMINATOR +

X.DENOMINATOR * Y.NUMERATOR,
X.DENOMINATOR * Y.DENOMINATOR))

End operation
operation "-" (X,Y: RATIONAL-NUMBER) return RATIONAL-NUMBER;
operation "I" (X,Y: RATIONAL-NUMBER) return RATIONAL-NUMBER;

end object definition;

Fig. 2. Definition of an object with the use of a generic syntax.

concept of an object: an object has a set of
operators and a state ("private memory")
that can retain the effect of the operations.
For example, we can define a rational num-
ber as an object with a generic syntax (Fig.
? \

For simplicity, we show definitions for
only two operations. Although a rational
number is just a pair of integers, the disci-
pline of objects requires that neither can be
accessed without explicit accessor functions.
As our definition stands, no rational num-
bers may be created because we lack a
('create" function:
operation "newy' (X,Y: INTEGER)
return RATIONAL-NUMBER is

Begin
return (X,Y);

End;

The statement

X:= rational-number new (4, 5):

creates a rational number and assigns it to X.
Invoking an object's operations, such as the
"+" operation, is called message passing.
The same message pattern may invoke dif-
ferent operations depending on the receiver.
Operators such as "/" and "+" are over-
loaded in that they have different meanings
for different objects. For example, "+" for
rational numbers differs from "+" for real
numbers. The ability to send the same mes-
sage to different object types, and having
each respond appropriately, is known as
polymorphism.

SIMULA (1966) introduced the notion
of classes of objects, their hierarchy, and the
concepts of inheritance. A class is a collec-
tion of similar objects and may be the
specialization of superclasses from which it
inherits functionalities and values. For ex-
ample, RATIONAL-NUMBER was de-
fined as a kind of NUMBER, which may
support various operations that could be
inherited by RATIONAL-NUMBER. For
example, we can define the operation '5"
for numbers so that X>Y returns true if X -
Y is positive. The object RATIONAL
-NUMBER, already furnished with the
"-" and positive operations, now can inher-
it the '5" operation. The inheritance works
as follows: If X and Y are RATIONAL
-NUMBER objects, then the expression
"X>Y" passes the ">" message to X with
parameter Y. Because there is no '3" opera-
tion explicitly defined for RATIONAL-
NUMBER, an object-oriented system looks
for the definition in the subsuming class. In
the class NUMBER, ">" could be defined
as "X - Y positive," which invokes the
messages "-" and positive that are explicitly
defined for RATIONAL-NUMBER. In
case an operation is defined at more than

SCIENCE, VOL. 240

one level, the first encountered definition is
applied.

An object-oriented language supports ob-
jects, a hierarchy of classes, and inheritance.
Object-oriented languages combine both
data and computation in single units ("ob-
jects") that interact along well-defined inter-
faces by way of messages. Objects in this
sense are also called Actors in a distributed

Form subclass: #Light
instanceVariableNames:

'location status '
classVariableNames: "
poolDictionaries: "

Light class methods
create

*self new width:2O height:2O
Light methods

seton
status: =true.

placeAt: aPoint
location: =aPoint

turnoff
self isOn mrue: [self set0ff;reverse;displayl

environment. The first uniformly object-
oriented systems resulted from two research
efforts: Smalltalk from the Learning Re-
search Group at Xerox Parc and the Actor
model of computation from the A1 labora-
tory at Massachusetts Institute of Technolo-
gy. We examine the Smalltalk approach to
object-oriented programming with Small-
talldV.

isoff
*status not

setoff
status: =false

display
self disp1ayAt:location

turnon
"if a light is turned on then the changed message will invoke the update: message

in all dependent lights"
self isoff i f l h e : [self seton; reverse;changed;display]

update: aLight
Light = = self ifFalse: [self turnOffl

Object variablesubclass: #TrafEcLight
instanceVariableNames:

'position lights '
classVariableNames: "
poolDictionaries: "

TrafficLight methods

lights: numberOfLights at: place
"this method sets the instance variables of TrafEcLight and displays it at place"
lights: = Array new: (numberoaights max: 1).

lights at: 1 put:((Light create)setOn;placeAt: place ;display).
"the other lights are displayed below the first and set off'
2 to: numberOfLights do:

[:indexlights at: index put: ((Light create)setO&reverse;
placeat:(place + (0 @ 30 * (index - 1))); display)].

"iterating over the array lights we create dependencies between each light
and all the others .-- means not equal"

lights do:
[:eachlight I lights do:

[:dependentlight I eachLight --dependentLight
iflhe:[eachLight addDependent: dependentlight]]]

turnon: lightNumber
(lights at: lightNumber) turnon.

Fig. 3. Definition of a class Light and then the class TrafficLight with SmalltaWV.

Operation. Virtually every component in a
Smalltalk system is an object. The window-
ing facilities, editors, graphics displays, com-
piler, class definitions, and basic data types
are all objects. For example, number is an
object that can receive messages. The expres-
sion

sends the message + to the object 3 with
parameter 5. The expression

sends the message arcTan to the object 1
and then the message * to the result with
parameter 4, which yields 3.14159. Succes-
sive messages can be sent in left to right
order so that

yields the number object 35, not 23.
Smalltalk has more than 100 built-in

classes, all of which are subclasses of the class
Object. For example, the built-in class
Point is defined by:

Object subclass: #Point
instanceVariableNames:
k Y'
dassVariableNames"
poolDictionaries:"

This definition states that Point is a subclass
of Object. Every instance of Point gets
private data variables x and y. There are no
class-wide variables to be shared by all the
instances (classVariableNames is empty)
and no variables to be shared with other
classes (poolDictionaries is empty).

In Smalltalk we invoke an operation by
sending a message. Message passing is, in
effect, procedure invocation. A message's
content, analogous to a procedure's body, is
a method. The class Point has several meth-
ods, which define accessor operations x and
y as well as a create operation @. The
expression

creates a point and assigns it to a global
variable Dot. The expression

Dot x

returns the object 3.
The method "*" is defined by:

* scale
"Multiply a point by scale:
if scale is a Point,
then do component-wise multiplication
else do scalar multiplication."
scale class = = Point

ifTrue: [^(x * scale x) @ (y * scale Y)]
ifFalse: [̂ (x * scale) @ (y * scale)]

The parameter scale is interogated by the
message class as to whether it is a point or a
scalar; ifI'rue and iflalse are conditionals,

6 MAY 1988 SOFTWARE REVIEWS 827

each followed by expressions to be evaluat-
ed; the causes a value to be returned. We
can quickly redefine operations or add them.
For example, we could redefine "*" for
points, but this may not be wise, because the
system may use the original. When we add
or redefine methods, they are compiled and
installed into the method dictionay.

We now present a longer example to give
the flavor of Smalltalk programming, adapt-
ed from (15). We simulate a traffic light in
which only one light is turned on at a time.
We use some preliminary objects. The built-
in class Form represents a nvo-dimensional
array of bits. The width: height: message
creates an instance of Form. Evaluating the
expression

Panell: = Form width: 100 height: 200

and performing the operation:

displays a white rectangle in the upper left-
hand corner of the screen. Semicolons are
used to send multiple messages to the same
object. If we evaluate

Panel1 reverse: displayAt: 0 @ 0

the white rectangle will be replaced by a
black one.

We define a class Light and then the class
TrafficLight in Fig. 3.

If we evaluate the expressions

Tr: = TrafficLight with:3 at: 100 @ 100.
Tr turnon: 2.

we first get a vertical array of three squares
with the to^ sauare black and the others

1 1

white. The second expression renders the
second square black and the others white.

Discussion. What cannot be easily de-
scribed about SmalltalW is the combina-
tion of screen-oriented, mouse-driven tools
such as editors, browsers, inspectors, and
such that make the process of programming
and debugging easy. Most of Smalltalk is
written in Smalltalk and can be modified bv
the user. Potential crashes resulting from
experimentation are reversible by using the
CHANGE.LOG file that records changes to
the system. The collection of all the objects
form the system IMAGE and can be saved
from a session in order to retain changes. As
shipped, SmalltalW comes with-about
7,000 objects and allows about 30,000
more. Although this seems like a large num-
ber, it becomes insufficient for serious appli-
cations. A forthcoming version takes advan-
tage of protected memory on AT-class ma-
chines and thus can support a much larger
number of objects. The new version also has
color as a standard instead of an option. The
part of Smalltalk not written in Smalltalk is a

virtual machine that interprets so-called
"primitive" methods represented by byte
codes. Not all of the 256 possible byte codes
are used by the virtual machine, however,
and the remainder are available for user-
written assembly language routines. Large
programs tend to run slowly in Smalltalk
because of the underlying interpreter and
the use of objects to implement even low-
level mechanisms.

For IBM-compatible PCs, Xerox Corpo-
ration no longer licenses any commercially
available implementation of Smalltalk-80,
which makes Smalltalk%' the de facto stan-
dard. Implementations of Smalltalk-80 are
available for the Macintosh. The two lan-
guages differ slightly so that books and
manuals on Smalltalk-80 (6, 7) can be used
in conjunction with the helpful but limited
SmalltaWV documentation. The standard
SmalltaWV package does not come with the
multiprocessing primitive operations of
Smalltalk-80 that are often used for discrete
event simulation, but some are included in
an extension kit, which also includes a Pro-
log and a rule-based shell. Smalltalk has a
small syntax and the language as a whole,
including the use of message passing to
invoke procedures, is easily learned. The
challenge to the programmer is to master
the extensive built-in classes that are the
analogs of libraries that come with other
"small" languages.

We believe that future programming sys-
tems will absorb the object-oriented para-
digm, a move that is already undenvay.
There are object-oriented extensions for Pas-
cal, C, and LISP. (Microsoft, for instance,
has hinted that it is working on an object-
oriented BASIC!) Effective object-oriented
programming requires the same work as any
other type-proper decomposition and rep-
resentation of the problem. The localization
of data and procedures is attractive, because
it simplifies procedure invocation to mes-
sage passing, and inheritance enables rapid
changes to object representation. SmalltalW
V costs only about SlOO and the extension
kit is about another $50. At these prices, it is
an especially attractive object-oriented sys-
tem.

Nexpert Object

Backzgrawzd. A single-paradigm tool
might be suitable for one part of a problem,
but not for all of it; a second tool would be
needed for another part, and so on. An A1
toolkit is meant for problems that seem to
need a mix of specialized tools. minim ally, a
toolkit should have a hvbrid rule system,
object-oriented programming, and access to
a general-purpose language. Additionally, a

toolkit should interface with conventional
tools such as databases, spreadsheets, graph-
ics packages, and word processors. Nexpert
brings a state-of-the-art toolkit to the PC at
a reasonable price. (Although available on
workstations and larger machines, Nexpert
is reviewed here as a PC-based product.) We
review its component tools individually, but
with an eye on the integration issue.

Operation. Nexpert's main tools are an
object-oriented system and a hybrid rule
system. Its object-oriented component de-
rives from a generic A1 tool known as a
frame-based system. Frames can represent
arbitrary entities and collections of entities
(for example, Isaac Newton, mass, or the set
of natural numbers). A frame has an arbi-
trary number of slots, each with a value. The
frame representing Isaac Newton might
have a slot called profession with alchemist
as its value, whereas the frame representing
the set of natural numbers might have a slot
called smallest-member with 1 as its val-
ue. A slot may have a procedure as its value.
This is known as procedural attachment. For
instance, a natural-numbers frame might
have slot called successor-generator
whose value is a function that -expects a
natural number n and outputs n + 1.
Frames can occur in an inheritance nenvork
that propagates properties and values. For
example, any member of the set natural-
-numbers could inherit both the succes-
sor-generator slot and the function that is
this slot's value.

The jargon of frames is helpful because
different object-oriented systems (for exam-
ple, Smalltalkili and Nexpert) map use ei-
ther the same term (such as "object") to
mean different things or different terms
(such as "instance variable" and "properr\.")
to mean the same thing. Nexpert has 13\70

types of frames: classes, which are collec-
tions, and objects, which ~pica l lp belong to
one or more classes. In Nexpert, slots are
called "properties." (In SmalltalkiV, by con-
trast, a class slot is called a "class variable"
and an object slot is called an "instance
variable.") A Nexpert class or object can
have arbitrarily many properties, and the
inheritance nenvork of objects and classes
can be arbitrarily complex. Nespert supports
multiple inheritance, namely, an object or
class can inherit properties and values from
more than one source. For example, suppose
there is class Transport-Tasks that has a
minimum-duration property with a val-
ue of 18 (minutes), another class Sing-
le-Resource-Tasks that has a prior-
ity property with a value of high, and an
object Transport-Task27 that is a mem-
ber of both classes. The object could inherit
the minimum-duration property and val-
ue from Transport-Tasks and the priori-

SCIENCE, VOL. 240

ty property and value from Single-Re-
source-Tasks. (It is also possible to inherit
a property without the value.) A class can
propagate properties and values down to its
member objects, and objects can propagate
properties and values up to classes that
subsume them; inheritance thus takes the
form of either specialization (class to object
propagation) or generalization (object to
class propagation).

Every property of an object or class has a
value, which defaults to Unknown. A prop-
erty also has properties of its own ("meta-
slots") that determine its behavior in inheri-
tance, initialization, and modification. For
example, suppose the class Transport-
-Tasks should have its minimum-dura-
tion property initialized to 12 instead of
Unknown. On this property we set the
meta-slot called Order of Sources to Init-
Value and specify 12 as the initial value,
which then replaces Unknown: also, we can
specify that this value be inherited down to
all subclasses and members. Meta-slots also
can be used to implement a demon, which is
a piece of code that monitors a property and
reacts appropriately to changes in its value.
For instance, suppose that a warning would
be appropriate whenever a task's duration
exceeds some threshold and that a function
has been written (for example, in FOR-
TRAN or C) to compute thresholds for
different tasks. Through the If Change
meta-slot on a task's current-duration
property, we can have Nexpert invoke the
function whenever this property's value is
updated. We could pass the function what-
ever data seem appropriate for its computa-
tions or database lookups. The function, in
turn, could issue a warning, return a value,
or even create a new Nexpert object. Demons
are a type of procedural attachment that can
take us outside Nexpert into a conventional
language such as C or FORTRAN.

Rules are Nexpert's preferred way to
process objects. In Nexpert, a rule may be
used either forward or backward. It has the
form:

IF condition1 AND condition2
AND . . . conditionN

THEN conclusion AND
action1 AND action2
AND . . . actionN

(The actions are optional.) The rule below
assume a class Machines and an object
Shutdown- Operation:

If Shutdown-0peration.status is
idle And
(Machines).status is broken

Then schedule-a- shutdown is
confirmed And

Shutdown-0peration.status is
set to busy And
Shutdown-0peration.target is
set to (Machines).ID And
(Machines).status is set to under-
repair And
(Machines).processing-state is
set to idle And
Execute predict-downtime@
atomid=(Machines).Type

A left-hand side (LHS) condition typical-
ly tests the value of a property for some
object or class. In the sample rule, the first
condition tests whether the status property
of object Shutdown-Operation has idle
as its value. The second condition screens
for any object in Machines whose status
property has broken as its value. Angle
brackets designate a quantifier. For example,
the condition

(Machines).status is broken

tests whether at least one object in class
Machines has a value of broken for its
status property. Curly brackets designate
another type of quantifier. For instance, if
we wanted to check whether every object in
class Machines had a value of broken for its
status property, we would see this pattern

{Machines}.status is broken

instead of the earlier one. Quantifiers can be
mixed, allowing us to draw distinctions in
the LHS such as these:

1) that at least one machine whose status
is broken have an expected repair time
shorter than 3 hours

2) that every machine whose status is
broken have an expected repair time
shorter than 3 hours

Mixed quantification lends great expressive
power to LHS conditions.

A rule normally fires in a forward direc-
tion whenever all its LHS conditions are
satisfied, although Nexpert allows the user
to control forward-chaining so that, for
example, a rule fires precisely if its condi-
tions do not hold. An LHS condition may
invoke an external procedure and pass argu-
ments to it:

If there is evidence of (drug).FDA-ap-
proval And
(drug).Toxicity is Unknown And
Execute get-drug-toxicity@atomid=
(drug). Toxicity,
(drug).ID-_number, And
(drug).Toxicity is low

Then
good-medicine is confirmed And
(drug).Pinal-rating is set to approved

The first two LHS conditions screen for
drugs with FDA approval but unknown

toxicity, whereas the third invokes a func-
tion (written outside Nexpert) and passes it
the drug's Toxicity and I D n u m b e r prop-
erties. We assume the function get-drug-
toxicity returns a value such as low that
becomes the value of the Toxicity property.
The third LHS condition then checks
whether the drug has low toxicity. The
external procedure thereby serves two pur-
poses: it imports data from outside Nexpert
and acts as a user-defined test. The external
procedure could do other work as well; for
example, it might print a list of competing
drugs with the same toxicity.

A rule's RHS has a conclusion ("hypothe-
sis" in Nexpert jargon) and, optionaily, ac-
tions. The hypothesis defines the rule's ma-
jor topic and, as such, can be used to control
backv;ard and forward chaining. If two rules
share the same RHS hypothesis, then both
become candidates in a backward chain on
that hypothesis. An LHS condition in one
rule also can be the RHS hypothesis in
another. Consider the rules below that, for
emphasis, have a simplified syntax. They
illustrate how rules can be linked, through
RHS hypotheses and LHS onditions, for a
mix of backward and forward chaining.

R1: If big-increase-in-communication
-traffic and
increased-telemetry-testing
Then ELINT-evidence

R2: If infrared-signals-exceed-threshold
and
no-suns~ot-interference
Then space - sensor-detection

R3: If space-sensor-detection and
ELINT- evidence
Then likely-missile-attack

R4: If likely-missile-attack
Then launch-seabased-ICBMs

R5: If likely -missile-attack
Then launch-landbased-ICBMs

We can invoke backward chaining on R3
by making likely-missile-attack a goal to
be confirmed. The backward chaining in-
vokes R1 to confirm ELINT-evidence and
R2 to confirm space-sensor-detection.
If the LHS conditions of R1 and R2 are
satisfied, then the goal likely - missile-at-
tack is confirmed through backward chain-
ing and hence can be used for forward
chaining in R4 and R5. Rules such as these
that share conditions or hypotheses have
what Nexpert calls strong links. There are
weak links as well, which let us declare that
rules are related although they do not share
hypotheses or conditions. To build weak
links, we list for a hypothesis H all of the
other hypotheses that Nexpert is to consider
when processing H; for example, whenever
it backward chains with H as a goal.

A rule's RHS actions can create and delete
objects, set an object's property to a value,

6 MAY 1988

display graphics, alter an inheritance strate-
gy, prompt the user, load a knowledge base,
execute an external procedure, and so on. In
our earlier example, the RHS actions are

Shutdown-0peration.Status is set to busy
Shutdown-0peration.Target is set to (Ma-
chines).ID
(Machines).Status is set to under-repair
(Machines).Processing-State is set to idle
Execute predict-downtime@atomid=(Ma-
chines).Type

The first four actions set an object's property
to some value, and the last invokes the
external procedure predict-downtime. The
syntax for an RHS procedure call is the same
as for an LHS one.

An RHS action can be used to control
rule processing as an application runs. For
example, consider the case in which two
rules share an RHS hypothesis:

R1: LHSl -+ H and Actionsl
R2: LHS2 -+ H and Actions2

Suppose that, if R 1 fires, we want any
subsequent backward chaining to be exhaus-
tive, namely, we want the system to back-
ward chain on every rule that has the goal
hypothesis, regardless of whether the back-
ward chaining succeeds or fails on a given
rule. If R2 fires, however, we want to
backward chain only until we succeed once;
at that point, the backward chaining halts.
Actionsl and Actions2 would implement
the different strategies with a Strategy ac-
tion. Nexpert allows similar dynanlic or run-
time control over inheritance. Such control
adds to problem-solving flexibility.
Discussion. A toolkit is meant for problems

that seem beyond a single-paradigm tool.
Because a toolkit's strength is diversity, its
architecture should be open so that we can
blend the built-in tools with others. Nexpert
is an open system. External procedures can
be invoked from a rule's LHS or RHS as
well as through the meta-slot mechanism;
Nexpert furnishes procedures to access stan-
dard database systems such as dBASE I11
PLUS. Nexpert itself can be called as a
procedure with the calling program enjoy-
ing full control over the tools and the envi-
ronment as a whole. The natural way to use
an A1 toolkit is as a system integrator: it
probably makes more sense to call out of

Nexpert than to call it from the outside, but
it is important that both are possible. Nex-
pert documentation includes source code for
the functions that implement its open archi-
tecture. Nexpert has a modern development
envrionment. Its menu-bars and pull-down
menus list choices in seven basic categories
(for example, Edit and Report), and its pop-
up windows provide appropriate areas in
which to edit rules, display inheritance hier-
archies, inspect an object or class, alter the
environment, run or debug an application,
and so on. On the Apple Macintosh, Nex-
pert uses the host machine's graphical inter-
face; on IBM-type machines, it requires
Microsoft Windows and the vendor recom-
mends a RAM disk. Nexpert is written in C,
which makes it relatively easy to port the
product to different computer systems; in
fact, Nexpert is a library of C modules that
implement the built-in tools and provide
external interfaces. Nexpert applications are
portable across the machines on which it
runs; an application developed on, say, an
IBM PC can run on a Sun workstation and
vice-versa. At a cost of $5000, the PC
version is not cheap, but Nexpert can com-
pete with the most advanced A1 toolkits that
not only cost significantly more but also
require more expensive workstation or
mainframe environments. As a PC-based
toolkit, Nexpert has exceptional features:
object-oriented programming with rich pat-
tern-matching capabilities; multiple and bi-
directional inheritance; run-time control
over inheritance, meta-slots, and procedural
attachment; rule-based programming with
backward and forward chaining; declarative
and dynamic control over rule processing;
LHS and RHS external procedure calls; full
integration of built-in tools; a modern de-
velopment environment; and an open archi-
tecture.

Our review has emphasized that A1 tools
are programming languages inspired by
some problem-solving paradigm. We want
to underscore their status as programming
languages; even if an A1 tool seems to fit a
problem perfectly, its proficient use still

requires the training and practice associated
with any programming language. The pro-
gramming manuals for PC-Plus, SmalltalM
V, and Nexpert Object are all tutorial in
nature, and the corresponding software
packages come with sample applications.
We find the manuals to be uniformly good
introductions that try to anticipate the prob-
lems of a user who is new to the technology.
All three vendors oEer free technical support
by telephone to licensed users.

AI tools are sometimes oversold as a waj7
to make programming easy or to avoid it
altogether. The truth is that A1 tools de-
mand programming-but programming
that allows you to concentrate on the essen-
tials of the problem. If we had to implement
a diagnostic system, we would look first to a
product such as PC-Plus rather than BASIC
or C, because PC-Plus is designed specifical-
ly for such a problem, whereas the~~conven-
tional languages are not. If we had to imple-
ment a system that required graphical inter-
faces and could benefit from inheritance, we
would look first to an object-oriented sys-
tem such as SmalltalMV that provides built-
in mechanisms for both. 1f wd had to imvle-
ment an expert system that called for some
mix of A1 and conventional techniques, we
would look first to a ~ roduc t such as Nex-
pert Object that integrates various problem-
solving technologies. Finally, we might use
FORTRAN if we were concerned primarily
with programming a well-defined numerical
algorithm. AI tools are a valuable comple-
ment to traditional languages.

REFERENCES AND NOTES

1. Personal Consultant Plus, Texas Instruments, Data
Systems Group, P.O. Box 2909, M/s 2195, Austin,
TX 78769-2909.

2. SrnalltaWV, Digitalk, Inc., 5200 West Boulevard,
Century Blvd., Los Angeles. CA 90045.

3. Nexpert, Neuron Data, Inc., 444 High Street, Palo
Alto, CA 94301.

4. B. G. Buchanan and E. H . Shortliffe, Eds. Rule-
Based Expert Systems (Addison-Wesley, Reading,
MA, 1984).

5. T. Kaehler and D. Patterson, A Taste of Smalltalk
(Norton, New York, 1986).

6. A. Goldberg and D. Robson, Smalltalk-80: The
Languge and Its Implementatim (Addison-Wesley,
Reading, MA, 1983).

7. A. Goldberg, Smalltalk-80: The Interactive Program-
ming Enmronment (Addtson-Wesley, Reading, M A ,
1983).

SCIENCE, VOL. 240

