
The Science of Patterns 

The rapid growth of computing and applications has 
helped cross-fertilize the mathematical sciences, yielding 
an unprecedented abundance of new methods, theories, 
and models. Examples from statistical science, core math- 
ematics, and applied mathematics illustrate these changes, 
which have both broadened and enriched the relation 
between mathematics and science. No longer just the 
study of number and space, mathematical science has 
become the science of patterns, with theory built on 
relations among patterns and on applications derived 
from the fit between pattern and observation. 

M ODERN MATHEMATICS JUST MARKED ITS 3 0 0 ~ ~  BIRTH- 

day. The publication in 1687 of Newton's Principia 
Mathematzca established mathematics as the methodolog- 

ical paradigm of theoretical science. Newton perceived patterns in 
the accumulated astronomical data of his time; he abstracted from 
these patterns certain general principles (whence Principia); then he 
used these principles to deduce patterns both known and unknown 
in the behavior of planetary bodies. His was a science of patterns- 
rooted in data, supported by deduction, confirmed by observation. 

By the end of the 19th century, Newton's creation had flowered 
magnificently, producing unprecedented intellectual blossoms. Eu- 
ropean giants such as Euler, Lagrange, and Weierstrass had elaborat- 
ed and refined the calculus, establishing the foundations for modern 
analysis. James Clerk Maxwell used Newton's derivatives to write 
the laws of electromagnetism, and Georg Bernhard Riemann ap- 
plied differentials to geometry in apt (albeit unintentional) prepara- 
tion for Albert Einstein, who soon would discover in Riemannian 
geometry the key to a general theory of gravitation. 

At the same time, on a separate continent, the people of the 
United States were beginning their second century without mathe- 
matical or scientific giants in their midst. Yet in 1888, two centuries 
afier Principia, a few far-sighted individuals founded what is now the 
American Mathematical Society, thereby setting in motion a process 
that created the world's strongest environment for mathematics 
research. In recognition of this anniversary, American mathematics 
is now celebrating its 100th birthday. 

Forces for Change 
Many educated persons, especially scientists and engineers, harbor 

an image of mathematics as akin to a tree of knowledge: formulas, 
theorems, and results hang like ripe fruits to be plucked by passing 
scientists to nourish their theories. Mathematicians, in contrast, see 
their field as a rapidly growing rain forest, nourished and shaped by 
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forces outside mathematics while contributing to human civilization 
a rich and ever-changing variety of intellectual flora and fauna. 
These differences in perception are due primarily to the steep and 
harsh terrain of abstract language that separates the mathematical 
rain forest from the domain of ordinary human activity. 

The dense jungle of mathematics has been nourished for millennia 
by challenges of practical applications. In recent years, computers 
have amplified the impact of applications; together, computation 
and applications have swept like a cyclone across the terrain of 
mathematics. Forces unleashed by the interaction of these intellectu- 
al storms have changed forever-and for the better-the morpholo- 
gy of mathematics. In their wake have emerged new openings that 
link diverse parts of the mathematical forest, making possible cross- 
fertilization of isolated parts that has immeasurably strengthened the 
whole. 

Throughout the 20th century, mathematics has grown rapidly on 
many fronts. The classical core has remained rooted in the Newtoni- 
an mathematics of analysis, a synthesis of algebra and geometry 
applied to the study of how things change. But even as this core has 
expanded under explosive post-World War I1 growth, it has been 
supplemented by major developments in other mathematical sci- 
ences-in number theory, logic, statistics, operations research, 
probability, computation, topology, and combinatorics, in addition 
to algebra, geometry, and analysis. 

In each of these subdisciplines, applications parallel theory. Even 
the most esoteric and abstract parts of mathematics-number theory 
and logic, for example-are now used routinely in applications (for 
example, in computer science and cryptography). Fifty years ago G. 
H. Hardy could boast of number theory as the most pure and least 
useful part of mathematics (1 ); today number theory is studied as an 
essential prerequisite to many applications of coding, including data 
transmission from remote satellites, protection of financial records, 
and efficient algorithms for computation. 

In 1960, at a time when theoretical physics was still the central 
jewel in the crown of applied mathematics, Eugene Wigner wrote 
about the "unreasonable effectiveness" of mathematics in the natural 
sciences: "The miracle of the appropriateness of the language of 
mathematics for the formulation of the laws of physics is a wonder- 
ful gift which we neither understand nor deserve" (2, p. 14). Indeed, 
theoretical physics has continued to adopt (and occasionally invent) 
increasingly abstract mathematical models as the logical foundation 
for current theories: Lie groups and gauge theories, exotic expres- 
sions of symmetry, have joined fermions and baryons as fundamen- 
tal tools in the physicist's search for a unified theory of both 
microscopic and macroscopic forces of nature. 

During this same period, however, striking applications of mathe- 
matics emerged across the entire landscape of natural, behavioral, 
and social science. Moreover, applications of one part of mathemat- 
ics to another--of geometry to analysis, of probability to number 
theory-provide renewed evidence of the fundamental unity of 
mathematics. Despite the ubiquity of connections among problems 
in science and mathematics, the discovery of new links retains a 
surprising degree of unpredictability and serendipity. Whether 
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planned or unplanned, the cross-fertilization between science and 
mathematics in problems, theories, concepts, and paradigms has 
never been greater than it is now, in the last quarter of the 20th 
century. In 1988 one can say with some justification that the 
effectiveness of mathematics is even more "unreasonable" than ever 
before. 

Paralleling the growing power of applications of mathematics has 
been the extraordinary impact of computing. It is ironic but 
indisputable that computers were made possible by application of 
abstract theories of mathematicians such as Boole, Cantor, Turing, 
and von Neumann, theories that just a few decades ago were widely 
derided by critics of the "new math" as wild abstractions irrelevant 
to practical purposes. It is doubly ironic that the computer is now 
the most powerfUl force changing the nature of mathematics. Even 
mathematicians who never use computers may frequently devote 
their entire research careers to problems generated by the presence 
of computers. Across all parts of mathematics, computers have 
posed new problems for research, provided new tools to solve old 
problems, and introduced new research strategies. 

Although the public often views computers as a replacement for 
mathematics, each is in reality a power tool for the other. Indeed, 
just as computers provide new opportunities for mathematics, so 
also mathematics makes computers so incredibly effective. Mathe- 
matics provides abstract models for natural phenomena, as well as 
algorithms for implementing these models in computer languages. 
Applications, computers, and mathematics form a tightly coupled 
system yielding results never before possible and ideas never before 
imagined. 

The Mathematical Sciences 
Rapid growth in the nature and applications of mathematics 

means that the Newtonian core-calculus, analysis, and differential 
equations-is now just one part of a more diverse mathematical 
landscape. Yet most scientists have explored only this original 
territory, because that is all that was included in their curriculum in 
high school, college, and graduate school. With the exception of 
statistics, an old science widely used across all disciplines that has 
become largely mathematical during the 20th century, the narrow 
Newtonian legacy of analysis is the principal connection between 
practicing scientists and the broad mathematical foundations of their 
disciplines. The dramatic changes in the mathematical sciences of the 
last quarter century are largely invisible to those outside the small 
community of research mathematicians. 

Today's mathematical sciences, like yesterday's Gaul, can be 
divided into three parts of roughly comparable size: statistical 
science, core mathematics, and applied mathematics. Each of these 
three major areas is led (in the United States) by a few thousand 
active researchers and receives approximately $50 million in federal 
research support annually. Although the boundaries between these 
parts overlap considerably, each province has an identifiable charac- 
ter that corresponds well with the three stages of the mathematical 
paradigm established by Newton: data, deduction, and observation. 

Statistical science investigates problems associated with uncertain- 
ty  in the collection, analysis, and interpretation of data. Its tools are 
probability and inference; its territory includes stochastic modeling, 
statistical inference, decision theory, and experimental design. Statis- 
tical science influences policy in agriculture, politics, economics, 
medicine, law, science, and engineering. Advances in instrumenta- 
tion and communication (to gather and transmit data) have posed 
new challenges to statistics, leading to rapid growth in new methods 
and new applications. 

Core mathematics investigates properties of number and space, 

ideas rooted in antiquity. Its tools are abstraction and deduction; its 
edifices include functions, equations, operators, and intinite-dimen- 
sional spaces. Within core mathematics are found the traditional 
subjects of number theory, algebra, geometry, analysis, and topolo- 
gy. After a half-century of explosive specialized growth, core 
mathematics is experiencing a renaissance of renewed integrity based 
on the unexpected but welcome discovery of deep links among its 
various components. 

Applied mathematics fits mathematical methods to the observa- 
tions and theories of science. It is a principal conduit for scientific 
ideas to stimulate mathematical innovation and for mathematical 
tools to solve scientific problems. Traditional methods of applied 
mathematics include differential equations, numerical computation, 
control theory, and dynamical systems; such traditional methods are 
today being applied in major new areas of applications, including 
combustion, turbulence, optimization, physiology, and epidemiol- 
ogy. In addition, new tools from game theory, decision science, and 
discrete mathematics are being applied to the human sciences where 
choices, decisions, and coalitions rather than continuous change are 
the apt metaphors for description and prediction. 

All attempts to divide mathematics into parts are necessarily 
artificial and perpetually in flux: statistical science, core mathemat- 
ics, and applied mathematics represent just one of many possible 
structures that may help one understand the whole. These divisions 
do not represent intrinsic differences in the nature of the discipline 
so much as differences in style, purpose, and history; they may more 
aptly describe types of mathematicians than types of mathematics. 
Others have attempted to portray the nature of modern mathematics 
in somewhat different terms [see, for example, (341 .  What is 
important about these labels is that they help focus attention on 
certain characteristics of the mathematical sciences, not that they 
themselves represent inherent or essential compartments. 

One feature that is inherent in mathematics and is essential to 
understand its role in science is this: today's mathematical sciences 
are very different from what they were a quarter-century ago when 
most of today's scientists last studied mathematics. Computers, 
applications, and cross-fertilization have combined to transform the 
mathematical sciences into an extraordmarily diverse and powerful 
collection of tools for science. Without even asking permission, 
mathematicians have quite literally rebuilt the foundations of sci- 
ence. The work is not finished, but its new shape is sufficiently 
visible that all who use mathematics should take the time to explore 
its new features. 

Statistical Sciences 
Both computers and statistics deal with data: what computers 

record, transform, and manipulate, statisticians interpret, summa- 
rize, and display. This confluence of problem source with problem 
solver has radically transformed (some would say restored) statistical 
science to a data-intensive discipline. Phenomena described by 
traditional statistical distributions (normal, Poisson, and so forth) 
represent only a tiny part of the enormous quantity of data captured 
by computers all over the world. Here are three examples of what 
the dominance of data has done in the statistical sciences. 

Spatial statistics. The increasing use of electronic scanning devices 
(for example, in tomography, airborne reconnaissance, and environ- 
mental monitoring) has produced an urgent need for sophisticated 
analysis of data with inherent spatial structure. Image enhancement, 
the visual clarification of blurred images, is the most common 
application. Other important tasks include the visual representation 
of data to enable an observer to detect hidden patterns and the 
statistical compression of data in real time to permit efficient storage 
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and subsequent analysis without loss of important information. 
Research in spatial statistics utilizes a wide variety of mathemati- 

cal, statistical, and computational techniques. Problems of separat- 
ing signal from noise borrow techniques from engineering; ill-posed 
scattering problems use methods of numerical linear algebra; 
smoothing of data requires statistical techniques of regularization. 
And underlying all this is the inherent geometry of the problem, 
which in many cases is dynamic and nonlinear. 

Nonparametric modeling. The most fully developed part of tradi- 
tional statistics involves models based on assumed distributions 
determined by a small number of continuously varying parameters. 
Yet most real data (for example, census information or satellite 
imaging) are a mixture of variables that are partly parametric and 
partly nonparametric or partly continuous and partly discrete. 
Without plausible a priori assumptions concerning the distribution 
of nonparametric data, traditional statistical methods were often 
unreliable-although still frequently used. Now, however, large 
data sets of mixed parametric and nonparametric variables make it 
possible for statisticians to use computationally intensive methods to 
estimate statistics (for example, regression coefficients) with reliable 
error bounds for nonparametric variables. (Of course, the computer 
has made such methods not only possible but necessary by enabling 
science to inundate us with massive data sets.) 

Bootstrap and jwkknife statistics. Many applications of statistics 
(notably survey analysis and clinical data from innovative medical 
protocols) involve small data sets from which one would like to infer 
meaningful ("significant") patterns. Bradley Efron at Stanford Uni- 
versity has pioneered an innovative method of using limited data to 
generate more data with the same statistical characteristics (whence 
"bootstrap" methods). 

In particular, bootstrap methods use computational methods to 
resample the given data repeatedly in order to generate millions of 
similar possible data sets, which yield accurate approximations to 
various complex statistics. By comparing the value of these statistics 
for the given sample with the distribution obtained by repeated 
resampling, one can determine whether the observed values are 
significant (6). Jackknife methods are related to bootstrap tech- 
niques, but the way they reduce bias in the statistical procedures is to 
repeatedly slice away part of the data. 

Core Mathematics 
The forces that impinge on mathematics-primarily applications, 

computers, and cross-fertilization-influence the core ("pure") parts 
of the subject in profound ways. To illustrate the nature of the 
changes, I will use two rather different areas of impact, computation 
and geometry, as widely separated mileposts along a vast continuum 
of mathematics. 

Core mathematics has changed under the influence of computers 
as much as the more applied areas of the mathematical sciences, but 
in different ways. Most noticeable is the shift in research interests to 
questions motivated by computation. But computers have also 
changed the way conjectures are invented and tested, the way proofs 
are discovered, and-in an increasing number of cases-the nature 
of proof itself. 

The archetype event in computer-assisted mathematics was the 
1976 proof of the century-old four-color conjecture, which was 
based on a computer analysis of thousands of reduction patterns to 
bridge a gap between mathematical theory and human analysis of 
cases. This event shook the very epistemology of mathematics (7,8). 
Ten years later, in 1986, the International Congress of Mathemati- 
cians set forth the state of worldwide mathematics at a 10-day 
conference at the University of California at Berkeley. Of the 16 

plenary lectures surveying the current state of mathematics, more 
than half were on topics linked in some way with computation. Here 
are some examples. 

Bieberbach conjecture. Louis de Branges of Purdue University 
discussed his proof of the 70-year-old Bieberbach conjecture con- 
cerning the size of coefficients in the power series expansions of 
certain analytic functions of a complex variable (9). At a crucial stage 
in the proof, de Branges had reduced the entire argument to 
verifying an inequality between two polynomials: this was done by 
computer to a sufficient degree to provide convincing circumstantial 
evidence of the validity of this line of argument. The final link in the 
formal argument was supplied by a theoretical proof of this 
inequality, actually known and proved in the theory of special 
functions long before de Branges needed it. 

Factom'ng intgers. Henrick W. Lenstra of the University of 
Amsterdam applied algebraic geometry to one of the oldest prob- 
lems in mathematics-how to find the prime factors of an integer 
(10). Integer factorization moved from a badnvater to high priority 
in mathematics simply because of its application in computer-based 
cryptography: a code based on the product of two large prime 
numbers cannot be broken with current algorithms because there is 
no known efficient method of recovering the two factors from 
knowledge only of the product. 

Lenstra attacked the problem of factoring by using elliptic curves, 
the set of zeroes in a suitable projective plane of cubic polynomial 
equations in three variables. Points on these curves form an Abelian 
group, whose properties lead directly to the fastest algorithm yet 
discovered for factoring large numbers. Similar analyses are being 
carried out for factoring polynomials efficiently (1 1). Elliptic curves, 
the primary tool in these new algorithms, are the central objects 
involved in Gerd Faltings's 1983 proof of the Mordell conjecture 
(12), surely one of this decade's most stunning mathematical 
achievements. 

Computational complexity. Arnold Schonhage of the University of 
Tiibingen applied the theory of computational complexity-the 
analysis of the inherent difficulty in solving problems-to the basic 
task of solving equations, beginning with the simplest, ax = b, for 
ordinary numbers (13). The traditional solution, division, has not 
been of interest to mathematicians since the Middle Ages, yet now it 
is a subject of intense research. Only recently has it been proved that 
the known methods of performing division of complex numbers is 
the best way possible-in the sense that no method can involve 
fewer real arithmetical operations. The methods used in this funda- 
mental analysis of arithmetic presage similar analysis for the entire 
range of computer algorithms, enabling mathematicians to deter- 
mine limits of computational feasibility as well as areas ripe for 
further improvement. 

Iterated maps. Stephen Smale of the University of California at 
Berkeley examined the classical problem offinding zeroes of polyno- 
mials in the very modern context of iterated maps and computation- 
al complexity theory. The prototypical example is Newton's method 
for finding a zero of a function Ax) : 

In the pre-computer style, this method was applied one point at a 
time, beginning with a reasonably good guess so that the sequence 
of points converged rapidly to a zero of the function. 

Smale studied Newton's method globally, looking at the mapping 
of the entire complex plane onto itself generated by Newton's 
method for a particular polynomial (14). The distribution of points 
that eventually map to zero is an example of a "fractal" set that 
displays many of the chaotic properties typical of turbulence. 
Smale's analysis applied global iteration to the simplex method of 
solving linear programming problems, leading to a proof of the 
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empirical fact that, on average, the simplex method behaves very 
well indeed. His methods also lead directly to new models for chaos 
that have extensive applications in physics and chemistry (15, 16). 

Geometry 
If computers typify the modern era of mathematics, geometry 

epitomizes its classical roots. Historically, geometry, the study of 
space, has been one of the major pillars of core mathematics. For 
various reasons, its role in the mathematics curriculum has declined 
over the past 20 years, so that even those with university degrees in 
mathematics often have little acquaintance with geometry beyond an 
archaic and typically rigid encounter with Euclidean proofs in high 
school geometry. In sharp contrast to this curricular decline is the 
renaissance of geometry in research mathematics. In a very real 
sense, geometry is once again playing a central role on the stage of 
mathematics, much as it did in the Greek period. 

A principal actor in the study in modern geometry is a "mani- 
fold," a term used by geometers to describe surfaces and spaces that 
are locally like Euclidean space. Manifolds form the natural locus for 
solutions to differential equations, and in turn their geometry 
imposes structure on the analytic nature of these solutions. Thus 
manifolds are of importance not just to geometry but to all parts of 
classical analysis. 

Two of the three 1986 Fields Medals-the "Nobel prizes" of 
mathematics-went to Michael Freedman of the University of 
California at San D i e ~ o  and Simon Donaldson of Oxford Universitv 

V 

for work in the geometry of four-dimensional manifolds (17). 
Freedman showed that the Poincark conjecture concerning spheres 
is true for four-dimensional manifolds, thereby resolving the next- 
to-last case of this 80-year-old conjecture. (only dimension three 
remains unsettled.) Freedman's methods showed that the topologi- 
cal classification of four-dimensional manifolds mimics the algebraic 
classification of quadratic forms. 

Donaldson used the Yang-Mills field equations of mathematical 
physics, themselves generalizations of Maxwell's equations, to study 
instantons in four-dimensional space, thereby reversing tradition by 
applying methods from physics to the understanding of pure 
mathematics. By exploiting those properties of differenrial equations 
that reflect the wave-particle duality of matter, Donaldson was able 
to develop an entireiy new approach to the study of fundamental 
problems of geometry. 

One consequence of Freedman's and Donaldson's work was the 
discovery that in four dimensions there are differentiable manifolds 
that ar; topologically but not differentiably equivalent to the 
standard Euclidean four-dimensional space. Such "exotic" spaces are 
unique to dimension four, which also happens to be the natural 
domain of the space-time continuum of our physical world. Wheth- 
er these unique properties are accidental or significant is something 
that will require much further investigation. Indeed, the geometrical 
theory created by this work has already led to applications in string 
theory, thereby feeding back into physics spinoff benefits of ideas 
originally borrowed from physics. 

Computergaphiw. Geometry and computers intersect in one of 
the most lively and attractive interstices of the mathematical sci- 
ences: computer graphics. Although most well-known uses of 
computer graphics are in areas of applied mathematics, visual 
techniques are making a real impact in traditional core mathematics 
as well as in the teaching of mathematics at all levels. 

To produce realistic graphics on a computer requires considerable 
theoretical interaction among geometrical representation, algebraic 
encoding, and computer algorithms. In return, computer graphics 
methods have provided crucial assistance in many mathematics 

problems: new minimal surfaces have been found with the aid of 
computer graphics, and the visual displays of iterative maps (in the 
widely known "fractal" pictures) make visible patterns that would 
never have been noticed by analytic means alone. Fractal patterns 
have provided an apt description of a large class of physical 
phenomena, ranging from fracturing of glass to texture in surfaces 
(1 8-20). 

Geometric computing is beginning to prove very useful also in 
core areas of mathematics remote from geometry, because super- 
computers can calculate and display in visual form roots of equations 
and other mathematical objects. This enables mathematicians for the 
first time to "see" the content of the abstract theorems they prove 
and thereby to make new conjectures suggested by the eye rather 
than by the mind. (In recognition of this new frontier, several of the 
world's leading geometers have recently received funding to estab- 
lish a Geometry Supercomputer Project to carry out research in this 
area in both the United States and Europe.) 

Applied Mathematics 
Applied mathematics is distinguished from core mathematics not 

so much by content or method as by objective: in applied mathemat- 
ics, value is measured by the degree to which new methods improve 
scientific understanding or technological applications. 

The roots of the scientific revolution lie in the introduction by 
Galileo of empirical methods to replace the speculative explanations 
of classical Greek natural philosophy. Newton introduced theoreti- 
cal science by showing that empirical data can be explained by 
mathematical results deduced from basic axioms. In our time, John 
von Neumann pioneered the computational paradigm in which the 
results of theoretical science are used to simulate r e a l i ~  on a modern 
computer. As a consequence, computational methods now pervade 
all aspects of applied mathematics (21, 22). 

Necessitv is the mother of invention, in mathematics as in life. 
Because thk needs of science stimulate thk growth of mathematics, as 
science expands and grows so does mathematics. The consequence 
has been an explosive growth in the nature and range of applied 
mathematics. Four very different areas will serve to illustrate both 
the diversity and the innovation of present research. 

Biological sciences. Nothing better illustrates the potential for 
mathematics in the biological sciences than the many traces of 
mathematics behind the Nobel prizes (23). For example, the 1979 
Nobel Prize in medicine was awarded to Allan Cormack for his 
application of the Radon transform, a well-known technique from 
advanced classical analysis, to the development of tomography and 
computer-assisted tomography (CAT) scanners. One of the recipi- 
ents of the 1985 Nobel Prize in chemistry was biophysicist Herbert 
Hauptman, who took his Ph.D. in mathematics and who is presi- 
dent of the Medical Foundation of Buffalo. Hauptman was cited for 
fundamental work in Fourier analysis pertaining to x-ray crystallog- 
raphy. 

Indeed, recent research in the mathematical sciences suggests 
dramaticallv increased ~otential for fundamental advances in the life 
sciences with methods that depend heavily on mathematical and 
computer models. Structural biologists have become genetic engi- 
neers, capturing the geometry of complex macromolecules in super- 
computers and then simulating interaction with other molecules in 
their search for biologically active agents. Using these computation- 
al methods, biologists can portray on a computer screen the 
geometry of a cold virus-an intricate polyhedral shape of uncom- 
mon beauty and fascinating geometric features-and search its 
surface for molecular footholds on which to secure their biological 
assault. 
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Geneticists are beginning the monumental effort to map the entire 
human genome, an enterprise that requires expertise in statistics, 
combinatorics, artificial intelligence, and data management to or- 
ganize billions of bits of information coming from al over the 
world. Ecologists, the first mathematical biologists, continue to use 
the extensive theories of population dynamics to predict the behav- 
ior and interaction of species, taking into account such realistic 
complications as sex-specific mortality, reproductive biology, and 
predator-prey data. Neurologists now use the theory of graphs to 
model networks of nerves in the body and the neural tangle in the 
brain. And, finally, physiologists use contemporary algorithms 
applied to 19th-century equations of fluid dynamics to determine 
such things as the effects of turbulence in the blood caused by 
swollen heart valves or clumps of cholesterol. 

Control theory. One of the most widespread uses of mathematical 
techniques is in the control of systems; applications range from 
quality control on an assembly line to flight control of a high- 
performance aircraft. Control theory is one of the many mathemati- 
cal products of World War 11, and until recently it has been 
dominated by the original paradigm of a single input-single output 
system that can be represented mathematically as a single-valued 
function of one variable. Such models are sficiently simple to 
permit an experienced engineer to optimize system performance by 
adjusting parameters in the model by trial and error. 

However, the advent of computer-controlled systems has opened 
up a new and very complex frontier of systems with many inputs and 
many outputs. The prototypical example of enormous complexity 
for such systems is the design of very large scale integrated circuits. 
The problem of finding efficient control laws for such systems has 
been approached by means of the Kalman digital filter and, more 
recently, by an extension of interpolation theory to matrix-valued 
analytical functions and to a full calculus of operators. 

One benefit of the new theories has been to increase the flexibility 
of control system design. Instead of being restricted to traditional 
methods introduced by Norbert Weiner that minimized mean 
square error, designers can choose, with these new systems, to 
minimize worst case errors. Such options are of crucial importance 
when prevention of failure (for example, in nuclear power plants or 
in aircrafl control) is of primary importance. Such benefits will come 
as circuit design shifts from scalar to matrix patterns, based on 
highly sophisticated mathematical theories of interpolation. 

The availability of computers to carry out complex calculations 
has opened up many additional frontiers in control theory. For 
example, the theoretical basis for reconstructing an optimal signal 
from distorted versions received by multiple detectors uses tech- 
niques from the theory of analytic functions in several complex 
variables. New projective (Karmarkar-like) algorithms for linear 
programming have made possible automated control of rapid 
processes (for example, high-performance aircraft) not previously 
possible. Certain nonlinear control problems, such as the motion of 
an airplane while engaged in short landing and takeoff, can often be 
transformed via Lie algebras into a linear feedback law that can then 
be computed with the use of traditional methods that are both 
computationally stable and sufficiently simple to carry out in real 
time. 

Stochastic dz~wential equations. The laws of nature are expressed 
most eloquently in the language of differential equations. Maxwell's 
equations for electromagnetic fields, Newton's equations for plane- 
tary motion, and Navier-Stokes equations for fluid flow are as 
articles in nature's constitution. They express the way nature 
changes in terms that make possible both mathematical analysis and 
scientific investigation. 

But in practice, the data available to a scientist are never known 
exactly and may be subject to significant random variations. In some 

cases, key variables are totally unknown or are obscured by noise. A 
common case, represented mathematically by what are known as 
stochastic differential equations, occurs when the system is subject to 
external white noise. Typical examples include diffusion processes in 
communication theory, chemical processes, stock market analyses, 
epidemiology, queueing theory, and population genetics. 

All these examples share certain common features. Most impor- 
tant, like a fair coin whose probability of heads does not depend on 
the outcome of previous tosses, they are processes without a 
memory of the past. In mathematical jargon, they are what are 
known as Markov processes. In addition, they are subject to random 
influence of key variables-whence the stochastic nature of the 
problem. 

Stochastic differential equations are one of the key areas of 
probability theory. Recent research has yielded important links to 
other parts of mathematics. In particular, certain statistics of the 
stochastic systems (for example, mean exit times of a diffusion 
process) turn out to be solutions of ordinary (nonstochastic) partial 
differential equations. This in turn has yielded interesting insights 
linking random processes in one system with geometry and analysis 
in another, notably mathematical physics. 

The behavior of the solar system under the random influence of 
passing comets and stars is an example of a dynamical system 
governed by a stochastic differential equation. Since random distur- 
bances may destabilize dynamical systems (even if the disturbances 
are smal), the investigation of stability is a matter of utmost 
importance. Only recently have researchers been able to determine 
conditions under which the trajectories of solutions to stochastic 
flows will cluster in stable patterns. [Some researchers think the 
stock market is subject to the same types of instability, in which 
behavior near a "strange attractor" can lead to sharp oscillations that 
are inherently unpredictable (24).] 

Physics. Reconciling quantum field theory with general relativ- 
ity-the physics of the small with the physics of the large-is 
perhaps the major theoretical problem in physics. Because of the 
enormous difference in scale between gravitational effects and 
quantum effects, realistic experiments are of little value in suggesting 
avenues for exploration. 

The leading current attempt at reconciliation of microcosmic with 
macrocosmic physics is the theory of strings, a construct in which 
the dimensionless points of four-dimensional space-time are re- 
placed by thin strings in ten dimensions, where the intrinsic 
structure of the extra dimensions, like that of what we perceive to be 
"empty" space, occurs at a scale too small for our perception. Pursuit 
of this hypothesis (which can probably never be tested by experi- 
ment) leads naturally to higher dimensional symmetries in which are 
embedded the special symmetries, the fundamental invariants, of 
both macro- and microscopic physics (25). 

Knot theory. Fifty years ago mathematicians developed the theory 
of operators, motivated in part by the need to find mathematical 
models of quantum mechanics. Operator theory flourished as a 
branch of functional analysis, which was pursued both for its pure 
mathematical interest and for its continued applicability to quantum 
physics. In recent years, investigation of new types of operators 
yielded new methods of classification that in turn have led to the 
discovery of important relations between operator algebras and the 
classification of knots, a vexingly difficult problem that had previ- 
ously defied all attempts at solution. 

The key to classification of knots is a scheme to encode knot 
patterns in algebraic terms so that algebraic manipulations corre- 
spond to physical actions on the knot (26, 27). This makes it 
possible, for the first time, to determine whether one knot can be 
transformed into another or unlinked completely into a straight line. 
Underlying both the new types of operators and the new classifica- 
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tion of knots is a new algebraic structure whose characteristics were 
revealed by its appearance in knot groups, in certain areas of 
statistical mechanics, and in exactly solvable models. As happens so 
often in mathematics, the significance of the new structure emerged 
in recognition of its ubiquity: that the same pattern appeared in 
several places is precisely why the technique takes on special 
power. 

Recently biologists studying the replication of DNA have teamed 
up with mathematicians working in knot theory because DNA in 
the cell is normally coiled into a tight knot. How DNA can replicate 
and then pull apart if it is tightly knotted is difficult to imagine-like 
the magician's trick of effortlessly separating two intertwined rope 
knots. From motivation and application in quantum mechanics 
through esoteric research in pure mathematics and then to the 
unfolding of DNA is an amazing, albeit not atypical, example of the 
many interconnections among diverse parts of mathematics. 

Patterns 
These examples from contemporary mathematical science illus- 

trate metaphors of the mathematical method that originated 300 
years ago in the Newtonian synthesis: data, deduction, and observa- 
tion. They also reveal the effects of the major forces for change in the 
mathematical sciences: computers, applications, and cross-fertiliza- 
tion. Hundreds of other examples could have illustrated the same 
points; those chosen here are neither the deepest nor the most 
important. They do suggest, however, the variety and scope of 
today's mathematics. 

Mathematics is often defined as the science of space and number, 
as the discipline rooted in geometry and arithmetic. Although the 
diversity of modern mathematics has always exceeded this defini- 
tion, it was not until the recent resonance of computers and 
mathematics that a more apt definition became fully evident. 

Mathematics is the science of patterns. The mathematician seeks 
patterns in number, in space, in science, in computers, and in 
imagination. Mathematical theories explain the relations among 
patterns; functions and maps, operators and morphisms bind one 
type of pattern to another to yield lasting mathematical structures. 
Applications of mathematics use these patterns to "explain" and 
predict natural phenomena that fit the patterns. Patterns suggest 
other patterns, often yielding patterns of patterns. In this way 
mathematics follows its own logic, beginning with patterns from 
science and completing the portrait by adding all patterns that derive 
from the initial ones. 

To  the extent that mathematics is the science of patterns, comput- 
ers change not so much the nature of the discipline as its scale: 
computers are to mathematics what telescopes and microscopes are 
to science. They have increased by a millionfold the portfolio of 
patterns investigated by mathematical scientists. As this portfolio 
grows, so do the applications of mathematics and the cross-linkages 

among subdisciplines of mathematics. 
Because of comDuters. we see more than ever before that mathe- 

matical discovery is like scientific discovery. It begins with the search 
for pattern in data-perhaps in numbers, but often in geometric or 
algebraic structures. Generalization leads to abstraction, to patterns 
in the mind. Theories emerge as patterns of patterns, and signifi- 
cance is measured by the degree to which patterns in one area link to 
patterns in other areas. Subtle patterns with the greatest explanatory 
power become the deepest results, forming the foundation for entire 
subdisciplines. 

Texas physicist Steven Weinberg, echoing Harvard mathemati- 
cian Andrew Gleason, suggests that the reason why mathematics has 
the uncanny ability to provide just the right patterns for scientific 
investigation may be because the patterns investigated by mathema- 
ticians are all the patterns there are (23). If patterns are what 
mathematics is all about, then the "unreasonable effectiveness" of 
mathematics may not be so unreasonable after all. 
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