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The rate of generation of molecular sequence data is 
forcing the use of computers as a central tool in molecular 
biology. Current use of computers is limited largely to 
data management and sequence comparisons, but rapid 
growth in the volume of data is generating pressure for 
the development of high-speed analytical methods for 
deciphering the codes connecting nucleotide sequence 
with protein structure and function. 

A LMOST 20 MILLION DNA NUCLEOTIDES FROM HUNDREDS 

of organisms have now been sequenced, and the number 
continues to rise nearly exponentially, with a doubling time 

in the range of 2 to 3 years (Fig. 1). For some of the simpler 
organisms such as Escherichza colz, the complete genome will very 
likely be worked out within the next few years; for humans, the 
sequence could be available by the turn of the century (1). The key 
to rapid progress would then change from the generation of data to 
its analysis, from finding the text to reading it. 

The development of methods for generating this information has, 
however, far outstripped the development of methods that would 
aid in its management and speed its assimilation. As a result, we are 
witnessing enormous growth in data of the most fundamental and 
important kind in biology, while at the same time we lack the ability 
to assimilate these data at a rate commensurate with the potential 
impact they could have on science and society. Projections based on 
near-term trends indicate that the problem could rapidly grow 
worse: during the next 5 to 8 years, projects to map and sequence 
the human genome (2,3) are expected to increase data flow to about 
lo6 bases per day-nearly two orders of magnitude more than the 
current rate. 

The management problem (collecting, organizing, standardizing, 
disseminating, and so forth) has been widely discussed during the 
past year, and it will likely be solved during the next several years, 
largely by scientific cooperation (4). The problem of analysis 

requires linking nucleic acid sequences to the expression, structure, 
and h c t i o n  of proteins far more rapidly than is currently possible, 
and will require understanding the series of codes that connect 
sequence with function far better than we now do. The crucial 
messages are embedded in the local geometry of the DNA regions 
that regulate the magnitude and timing of gene expression and in 
the linear amino acid sequence of the protein itself, which, in a given 
environment, determines higher order structure and therefore func- 
tion. 

The Computer as Catalyst 
As a simple example of converging lines of research in mathemati- 

cal and molecular biology, consider the implications of data genera- 
tion for understanding genetic disease. Genes associated with several 
hundred human diseases have now been assigned to chromosomes 
(5) and often to particular regions, but precise localization has been 
difficult. Almost 2 years have passed since the cystic fibrosis gene- 
carried by approximately 1 in 20 Americans of European ancestry- 
was localized to within a megabase on chromosome 7, but the gene 
itself still has not been identified. The precise map of such regions is 
essential for understanding the molecular basis of disease, determin- 
ing, for example, whether the defect is in the gene itself or in its 
reeulation. " 

The efficiency of locating genes can be increased by developing a 
cohesive set of biological, engineering, and mathematical tools. 
These would consist of an ordered set of DNA clones to provide 
material for sequencing and mapping, rapid sequencing methods to 
provide the data for analysis, and new computational methods for 
the analysis itself (3). 

The role of computation can be understood by considering the 
prospect of sequencing a megabase in a day-several hundredfold 
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Fig. 1. The number of 8 -  

sequenced nucleotides in 
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DNA; a, total DNA). 
[Courtesy of J. Fickett, 
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faster than current technologies permit. A 1-megabase region 
containing a gene of interest will likely contain 30 to 40 other genes, 
as well as large regions of noncoding DNA that are present both 
between and within genes. Neither the boundaries of these regions 
nor the identity of the gene will be apparent merely by looking at the 
sequence. Computer algorithms are now being developed, however, 
that combine artificial intelligence techniques, data on molecular 
structure, and principles of theoretical chemistry to distinguish 
genes from intervening sequences and protein coding exons from 
noncoding introns. With such techniques the sequences of each of 
the protein products can be deduced more rapidly than by finding 
and translating the corresponding messenger RNAs. The disease- 
associated protein can then be sought in the cells most likely to be 
associated with the disease. The search would be speeded substan- 
tially by clues to its most likely cellular location. For example, the 
gene product for cystic fibrosis is implicated in the regulation of the 
chloride channel (6) and thus could be either a DNA control protein 
or a regulatory domain of the channel itself. Predictive methods that 
classify the cellular location and function of protein sequences could 
narrow the choice of candidate genes. If the structure of the deduced 
protein sequence were predictable, progress would be even quicker, 
for then specific tight-binding ligands could be designed and 
labeled, which would make identification relatively easy. 

Computational methods that in effect decipher the messages 
encoded in DNA and protein sequences differ widely in their state of 
development. Identification of exon-intron boundaries is about 80 
to 90% reliable (7). However, genes typically contain several such 
boundaries, so that the probability of identifying all of them 
correctly (0.8", where n > 3) is small. The ability to distinguish 
integral from peripheral membrane proteins, or to distinguish 
membrane proteins from all other proteins, is more than 98% 
reliable (8). The ability to predict the three-dimensional structure of 
a protein is possible under certain circumstances, but not with 
suficient accuracy to design a ligand that binds it with high affiity. 

This example is highly circumscribed and omits many possibili- 
ties. Thus, optimization of mapping strategies (9) ,  new approaches 
to linkage analysis (lo), molecular dynamics ( l l ) ,  and systems 
dynamics (12) are not mentioned, nor will they be discussed here. 

Predicting Punctional Sites on Nucleic Acids 
The regions of interest are the locations of genes and all those sites 

involved in gene expression: polymerase-binding sites, control 
protein-binding sites, ribosomal sites, posttranslational modification 
sites, and so on (13). Mathematical identification of such sites is 
probably the most difficult of the set of problems that is discussed in 
this article, in part because the higher order structural data that are 
required for training the learning algorithms are sparse. 

Sequence analysis. Several approaches have been taken to the 

problem of identifying functional regions in sequences. The simplest 
approach is to look for specific sequences -or simple sequence 
properties that correlate with the hnction of interest. For example, 
the dinucleotides GT and AG are well conserved at the 5' and 3' 
termini, respectively, of introns, but, because they occur at many 
other locations along DNA, their presence alone is a poor predictor 
of an exon-intron boundary. Even the longer consensus sequences 
T G A C A  and TATAAT, which occur 35 and 20 base pairs, 
respectively, upstream from messenger RNA start sites in pro- 
karyotes (and thus serve to identify the DNA region recognized by 
RNA polymerase), are not highly reliable predictors: in the absence 
of additional information, the probability of correct promoter 
prediction is about 0.6, since homologous and comparably based 
sequences will occur at many other locations. 

A more subtle property used to distinguish coding from noncod- 
ing regions is based on the observation that codons that specify the 
same amino acid tend to be used with unequal frequencies (14). As a 
result, identical bases in coding regions tend to be in identical codon 
positions, and this in turn implies the occurrence of sequence 
periodicities in coding regions that are missing in noncoding 
regions. The observation can be made quantitative in a number of 
ways, for example, by calculating the amplitude of the Fourier 
transform of the appearance of any of the four bases along sequences 
in coding and noncoding regions. 

~ ( w )  = C (x i  - 3 exp (io) lh: 
where o = 2a 1213. In Eq. 1, Xi is A, G, C, or T and has a value of 1 
or 0, according to whether the base at position i is type X. is the 
number of times base type X appears in the string of N bases, and 
I ( o )  is a measure of its tendency to repeat with period 3. The 
amplitude of periodicities in coding and noncoding regions can thus 
be compared quantitatively and serves as the basis for distinguishing 
the two regions. Using periodicity (though not Eq. l ) ,  Fickett (14) 
was able to distinguish coding from noncoding regions with 75% 
reliability, or with 95% reliability if a third "no decision" category 
was used. 

A systematic approach to the problem of recognizing unknown 
patterns starts with the assemblage of two databases: one with 
sequences known to have the function of interest, and the other with 
sequences known not to have the function. The problem of search- 
ing a database for common but otherwise unspecified properties has 
a long history in the field of artificial intelligence (15), dating from 
the development of the so-called perceptron learning algorithm by 
Rosenblatt in the late 1950s. The method was first ada~ted to 
sequence pattern analysis by Stormo et al. (16) in an attempt to 
locate ribosomal binding sites in a messenger RNA library contain- 
ing 124 genes and over 78,000 bases. 

The storm0 adaptation, once it has recognized the type of 
sequence of interest (for example, coding regions), will yield 
numbers above some threshold when presented with a sequence 
from the group of interest, and nGbers below the threshold 
otherwise. The method often discriminates perfectly between the 
two classes of sequences, functional and nonfunctional, on which it 
is trained, but it is less reliable when applied to sequences outside the 
training set. 

A generalized approach to the problem, which can combine any 
number of ~redictive correlates of function. uses the statistical 
method of discriminant analysis. If attributes are well chosen [I(o) 
and Stormo numbers in the above example], then the range of values 
they have in the functional class will differ widely from the values 
they assume in the nonfunctional class. Thus, let jZ = (xl, xz, . . ., 
x,) be a vector of attributes that is distributed according to some 
probability density function P(xlS') in the functional class, and 
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P(xlS-) in the nonfunctional class, where the parameters in each 
distribution are fixed by the properties of sequences in the training 
set. The rule for deciding whether a sequence -with attribute vector x 
has the function of interest is as follows: allocate to the functional 
dass if 

and to the nonfunctional dass otherwise. In inequality 2, P(S+Ix) 
and P(S-Ix) are, respectively, the conditional (obtained 
by using the Bayes theorem) that a sequence belongs to the 
functional and nonfunctional classes, given that it has attribute 
vector x. The prior probabilities P(S+) and P(S-) are approximated 
by the fraction of sequences in the database in the functional and 
nonfunctional classes, respectively. 

If discriminant analysis is combined with the perceptron algo- 
rithm, exon-intron boundaries can be identified with 80 to 90% 
reliability, an improvement of 10% over either method alone (7). 
Indusion of other correlates of function, even if they are not fully 
orthogonal to the fist  two, would be expected to increase thk 
accuracy of prediction further. 

Both attributes used to predict splice junctions can be quantified 
with no information other than DNA sequence. The jump from 
sequence to function, however, explicitly overlooks higher order 
structure, and the knowledge of such structural details is crucial to 
understanding function. The regions of interest are three-dimen- 
sional structures recognized by other molecules. 
G d  structurt. The local geometry of a DNA sequence can be 

described in a number of ways (17). The most complete description 
is to spec+ the coordinates of every atom. However, a lower 
resolution description that models a base as a homogeneous rcaan- 
gular plank provides a clearer picture of the sources of sequence- 
dependent variability. 

The location of such a plank can be speufied by six coordinates: 
three Cartesian coordinates to locate its center of mass and three 
Eulerian angles to speufy its orientation. Because of chain connec- 
tivity, the center of mass of the planks can be located by two 
coordinates: its radial distance from, for example, the central 
symmetry axis, and its azimuthal angle about the axis (helical twist) 
(Fig. 2). If we now consider an axis running lengthwise along the 
plane of the base pair, two orientational angles can be defined: the 
indination of the base axis with respect to a plane perpendicular to 
the central symmetry axis (base tilt), and the roll of the base pair 
plane about the axis (that is, the dihedral angle formed by the plane 
of the planks and a plane perpendicular to the symmetry axis). There 
remains one additional, internal coordinate arising because the two 
planks are not rigidly attached to one another. As a result, the planes 
of a pair need not be parallel but can be twisted relative to one 
another, like the blades of a propeller. 

Average values for base pair coordinates for two different forms of 
DNA, A and B, are well known, and crystallographic studies have 
provided new insight into base sequence and solvation-dependent 
deviations from these average.. Helix twist can be left-handed for 
certain sequences (18, 19). The variations in the values of the 
coordinates can be substantial-for example, twist ranges from 16" 
to 44" in A DNA. Such variation and the conformational change 
accompanying a switch in handedness suggest the geometric basis 
for variability necessary for selective and specific sequence recogni- 
tion by DNA binding proteins. 

Some progress has been made in relating variations in helical 
twist, roll, and propeller twist to variations in sequence. Calledine 
(20), in particular, has shown how the ranges that these angles can 
assume are mutually dependent and are limited by nearest neighbor 
sequence-dependent steric overlaps. Dickerson (21) used this analy- 
sis to develop a simple method for predicting the effect of sequence 

on the variation of roll, propeller twist, and helical twist; a more 
detailed model has been developed by Tung and Harvey (22). 

Do these relations between sequence variation and structural 
variation provide the bridge that is required to more firmly connect 
sequence to function? Nakata (23) indeed found that the Dickerson 
helical twist angle (but none of the other relations) is an indicator of 
E. coli promoter sequences. However, the relation is weak, indicat- 
ing that although helical twist does contribute to specificity, it does 
not dominate recognition. When the twist function is combined 
with the perceptron method, the classification is correct in -70% of 
the cases. This is an improvement over the use of marker sequences 
alone but is still far from being reliable. However, periodic occur- 
rence of certain dinucleotides produces coupled roll-tilt changes that 
induce DNA curvature (24), which appears to be important in 
DNA-protein recognition (25). 

Effective algorithms for identifying functional sites on DNA 
require a structural database much larger than is currently available, 
not only to uncover the structural regularities that distinguish 
various functional sites, but also to develop reliable potential 
functions that are central to accurate structural prediction algo- 
rithms. The importance of developing methods to predict or 
otherwise determine structure quiddy and accurately is apparent 
when one realizes that even if the code connecting structure to 
function were known, structural determination would be necessary 
to use it. 

Flg. 2. B form of DNA showing positions and orientations of the base pair 
planks. The angle formed by the central symmetry (DNA) axis and the long 
axis of the base pair is called tilt. Roll is rigid rotation of the pair about its 
long axis, and propeller twist is rotation of one member of the pair relative to 
the other, also about the pair's long axis. [Illustration copyright by Irving 
Geis] 
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The obstacles to accurately calculating nucleic acid structure are 
somewhat different from those encountered in protein structure 
prediction (discussed below). Different classes of proteins tend to 
fold in entirely different ways, and solvent plays a major role in 
driving folding. In addition, if the initial protein configuration is far 
from that of the native structure, trapping in local free energy 
minima is a serious problem. For nucleic acids, the average architec- 
ture (that is, average base angles) over regions that are not too large 
is known. The problem is therefore analogous to predicting the 
detailed structure of a protein, given the structure of a closely 
homologous protein. This problem of essentially refining coordi- 
nates can be solved with some success for proteins because an 
empirically established potential energy function is available. The 
same is not true of nucleic acids, for which the crystallographic data 
set is relatively sparse, with more than tenfold fewer structures than 
for proteins. 

A second problem is the role of solvent and ionic strength. 
Solvation will be particularly important for B DNA in which water 
polymers appear to make an essential contribution to stability. In 
addition, sequence-dependent salt-induced transitions between dif- 
ferent forms of DNA are well documented and must be predictable 
even by a minimal theory. The role of solvent and salt is too 
extensive and technical to be adequately discussed in this article 
except to note that an approximate though successful theory has 
recently been developed for computing the salt-dependent part of 
the free energy (26). 

Protein Structure and Function 
An ability to rapidly translate DNA will undoubtedly stimulate 

the development of new methods for gaining rapid insight--even if 
it is only generic-into the structure, function, and cellular location 
of the deduced protein sequence. Perhaps the most direct computa- 
tional approach to obtaining hints about function is simply to search 
a database for homologous sequences of known function (27). 
Among the most dramatic discoveries made in this way is the strong 
homology (>go%) between the protein encoded by the sarcoma 
virus oncogene and platelet-derived growth factor, and between the 
erbB transforming protein of avian erythroblastosis virus and the 
epidermal growth factor receptor (28). These discoveries demon- 
strate the link between the products of transforming genes and the 
intercellular signals known to play a crucial role in cellular growth 
control, and also demonstrate that at least one step in transforma- 
tion is a genetic abnormality in a key growth-control signal. 

Fruitfi.11 homology searches require a large sequence-function 
database, but, as the database grows, searches become slower. At the 
current rate of data generation, most supercomputers require a few 
minutes to compare all sequences generated each day with GenBank. 
If sequencing rates double every 2 years, however, within a decade 
the same supercomputer will require a l i l  24 hours to make the 
comparison. Anticipated increases in computer speed and the 
inherently parallel operations in sequence comparisons will probably 
have little effect on this estimate. The estimate does not apply to 
comparisons allowing insertions and deletions, which would be one 
to two orders of magnitude slower, and would bring the computer 
saturation time closer to 5 years. 

There is no obvious way to avoid this emerging difficulty, 
although some temporary solutions might be possible, for example, 
limiting searches to a representative sample of the database. Alterna- 
tively, the method of characteristic variables could be more fully 
developed, or a relatively small number of structural motifs might be 
sdc ien t  to describe most functional domains (see below) (29). In 
either case, rapid determination of higher order protein structure 

will be a requirement for rapid progress. 
One of the simplest principles connecting sequence to structure, 

and occasionally to activity, is that the solvent-solute system adopts a 
configuration that minimizes the free energy of the interface. 
Examples are numerous: large globular proteins in a polar solvent 
fold so that polar groups generally contact the solvent and apolar 
groups do not (30); membrane-spanning channels form so that 
polar groups point inward lining the channel and apolar groups are 
buried in lipids (31); membrane-binding peptides adopt a confor- 
mation having one face polar and the opposite apolar (32), and 
membrane receptors are anchored by sequences that are predomi- 
nantly hydrophobic (33). 

Although the principle is clear, casting it in a form that permits 
quantitative prediction is difficult. Perhaps the greatest success has 
been the prediction of membrane-buried sequences (33) which can 
be carried out in a statistically precise manner by discriminant 
analysis (38). The method assigns protein segments known to be 
membrane-associated to either a peripheral or an integral category 
and calculates the odds of correct allocation. The odds function can 
itself be used in the more general problem of predicting whether a 
deduced protein sequence, about which nothing else is known, 
contains an internal membrane segment. The main ambiguity will be 
in distinguishing segments that are interior to lipids from those that 
are interior to proteins-both tend to be hidden from polar groups 
and hence, on energetic grounds, both are expected to be hydropho- 
bic. In fact, if one uses the odds function, the distinction can be 
made with better than 95% reliability with the longer lengths of the 
membrane segments being the main parameter distinguishing them 
from segments buried in globular proteins. 

The procedure can be generalized to permit functional classifica- 
tion of a sequence, usually on the basis of just three or four 
characteristic variables (34). Among the more important variables is 
periodicity in sequence properties.'Trhe most general procedure for 
detecting a dominant periodicity is to fit sinusoids of varying 
frequencies to the sequence of hydrophobicity values and look for 
the frequency associated with the best least-squares fit (35). A 
method that gives similar results involves calculating the maximum 
correlation of the hydrophobicity values with a sinusoid. This is 
equivalent to obtaining- the amplitude of the discrete Fourier 
transform of the hydrophobicity values, and essentially involves the 
use of Eq. 1. 

Periodicity exerts a major influence on the structure of peptides at 
interfaces, at the surface of either a protein or a membrane. An 
example of the former category is the globin family, the general 
architecture of which consists of eight a-helical segments in a 
globular arrangement. For globins t h e  dominant characteristic 
variable is a 3.6-residue repeat in hydrophobicity reflecting a large 
component of amphipathic a-helical cylinders, that is, a helices with 
one face predominantly polar (in contact with solvent) and the other 
predominantly apolar (facing inward) (36). On the basis of this and 
two other variables, globins can be differentiated from every other 
protein in the Protein Identification Resource (PIR) database with 
better than 95% accuracy (34). 

Generic classification is still far from being generally applicable. 
Between 53 and 64% of the PIR database (depending on whether 
special proteins are included or omitted) can be allocated to one of 
26 functional.classes, each of which can be characterized by the joint 
occurrence of four or fewer characteristic variables. Of the 26 
groups, 1 7  can be filtered from all other proteins in the database 
with a misclassification error of less than 2%, and the remaining 9 
groups can be filtered with errors not exceeding 13% (34). 

A number of examples exist of simple sequence properties that 
correlate with activity, such as antigenicity. More specifically, the 
portions of a protein that stimulate T helper cells-the cells attacked 
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by the AIDS virus, which are central to an effective immune 
response-can be predicted on the basis of periodic variations in the 
hydrophobicity of residues along certain portions of the molecule 
(37). 

This useful correlate of activity has a simple biophysical explana- 
tion. T cells, unlike antibody-producing B cells, are stimulated not 
by native protein but by portions of a protein after it has been 
enzymatically digested and presented on the surface of another cell, 
usually a B cell or a macrophage. The fragment, which in solution is 
too short to have a well-defined structure, is assumed to be stabilized 
by interaction with the presenting cell. The simplest model is that 
the relatively nonspecific reaction with the presenting cell is hydro- 
phobically driven, which suggests a fragment structure with a 
hydrophobic face in contact with the presenting cell, and opposing 
polar residues available for the relatively specific reaction with the T 
cell receptor. 

If the hypothesis is correct, periodic variation in the hydrophobic- 
ity of residues of antigenic sites would occur with a frequency 
characteristic of known regular structures: 100" for a structures, 
180" for f3 structures, and 135" for three to ten helices. Of 23 sites 
known to be antigenic for helper T cells, 18  were found to be 
amphipathic a helices (38), with the probability of chance coinci- 
dence being less than 1%. This simple structural correlate of activity 
is applicable to both the detection and design of T cell antigenic 
sites, and to a much broader class of peptides including lipoproteins, 
toxins, and a number of hormones (32). 

Although the amphipathic principle for membrane-binding pep- 
tides appears to be reasonably general, T cell antigenicity may be 
applicable to between 60 and 90% of immunodominant sequences. 
The development of a more general procedure will, as with all the 
other lines of investigation discussed in this article, depend on 
accurate three-dimensional structure determination-in this case, of 
the T cell receptor and the major histocompatibility complex 
molecule on the presenting cell. 

Calculating the structure of a large molecule, given only the 
amino acid sequence, is difficult because of the high probability that 
the folding pathway generated by free energy minimization will 
intersect stable but incorrectly folded structures. The likelihood of 
trapping in a local minimum will be reduced, however, the closer the 
starting configuration is to the correct structure. 

A trial configuration can be obtained in a number of ways; for 
example, by using high-field nuclear Overhauser effect (NOE) 
magnetic resonance to place constraints on interatomic distances 
(39) or by using coordinates of homologous regions in proteins 
whose structures are known (40). Analysis of the NOE data can, in 
principle, provide the complete structure of a peptide backbone at 
an average resolution of about 3 A for molecules with masses less 
than lo4 daltons. Such measurements can be combined with free 
energy calculations to determine side chain configurations. Second- 
ary structure can be well characterized by the NOE and can 
sometimes sufficiently constrain the possible three-dimensional con- 
figurations so that a reasonably accurate three-dimensional structure 
can be deduced (41). 

The use of coordinates of homologous proteins with known 
structures has a two-decade history and has been applied to se- 
quences with less than 50% homology. A model of lactalbumin was 
based on the crystal structure of lysozyme (42), which is about 35% 
homologous and a member of the same superfamily (43). Although 
the procedure is important and widely used, it needs firther analysis 
to determine conditions under which it will provide a structure to 
within some specified range of accuracy (44). Equally important for 
general applicability is its integration with algorithms characterized 
by free energy minimization. Beyond that, however,the extent of its 
effect on structure determination will be related to the rate at which 

su~erfamilies become available. and a representative sample of 
skctures in each superfamily is'determined. Although the Gethod 
will undoubtedly remain important, the prospects for obtaining a 
sufficiently large number of structures to make homologous exten- 
sion generally applicable in the near future are not good. 

At the present time, the PIR database lists more than 5000 
sequences and over 1000 superfamilies. The number of sequences 
doubles about every 2 years; the superfamily doubling time is closer 
to 3 years. However, the rate at which crystal structures are entering 
Brookhaven National Laboratory database is linear at about 40 
structures per year. These trends indicate that the rate of structure 
determination will lag increasinglv far behind the rate at which new " ", 
superfamilies are emerging. Homologous extension, although use- 
fhl, cannot substitute for the fbndamental understanding of protein 
folding (45), which would lead to new and more rapid computa- 
tional approaches to structure determination. 

Finally, the concept of exon shuffling could considerably simplif) 
the structure-function problem in higher vertebrates. The idea was 
introduced to explain mosaics of commonly occurring sequence 
patterns, each of which is supposed to be encoded in a single exon 
and to represent an independently folding functional domain (46). 
Many modern proteins would thus have been formed by duplication 
and divergence of such exons, which presumably moved about and 
joined one another in various combinations during evolution. A 
number of such relatively ubiquitous domains, 40 to 80 residues in 
length, have been identified. The crystal structures of globins 
provide direct support for this hypothesis. 

Exon shuffling provides a mechanism for the rapid generation of 
diversity in terms of relatively few structural motifs. Moreover, to 
the extent that the hypothesis is valid, the task of determining the 
structure of a large set of proteins might be reduced to the problem 
of determining the structure of a smaller number of modular units 
and understanding the rules by which they pack. Thus, the amount 
of effort required to determine the structures of a set of proteins 
consisting on average of n modular units would scale approximately 
as the nth root of the number of proteins. The task of understanding 
function would be similarly reduced. 

Where does all this leave us? Data are being generated at an 
increasingly rapid rate, and the drive to assimilate them will 
accelerate the development of new approaches for determining 
molecular structure and function. The computer will also continue 
to develop at an extraordinary rate, and its potential for an 
increasingly important role in molecular biology will undoubtedly 
increase. The full exploitation of computers, however, will only be 
realized by a large cadre of users with strong backgrounds in 
mathematics, theoretical chemistry, and molecular biology. Devel- 
oping the new educational programs that will assure creative use of 
our cutting edge, high-technology capabilities, is therefore a central 
challenge as we prepare for the biology of the 21st century. 
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