
Dynamic Pattern Generation in 
Behavioral and Neural Svstems 

In the search for principles of pattern generation in 
complex biological systems, an operational approach is 
presented that embraces both theory and experiment. The 
central mathematical concepts of self-organization in 
nonecluilibrium systems (including order parameter 
dynamics, stability, fluctuations, and time scales) are used 
to show how a large number of empirically observed 
features of temporal patterns can be mapped onto simple 
low-dimensional (stochastic, nonlinear) dynamical laws 
that are derivable from lower levels of description. The 
theor~etical framework provides a language and a strategy, 
accompanied by new observables, that may afford an 
undetrstanding of dynamic patterns at several scales of 
analysis (including behavioral patterns, neural networks, 
and individual neurons) and the linkage among them. 

A LTHOUGH THE AMOUNT OF INPORMATION NECESSARY TO 

describe the individual states of neurons and muscles is very 
large, animals, nevertheless, possess a high degree of coordi- 

nation. Indeed, coordinated motor activities-from walking to 
talking-present an example, par excellence, of the dynamic patterns 
found in nature. Yet the manner by which complex biological 
systems are coordinated to produce functionally specific ordered 
behavior or spatiotemporal patterns remains one of the great 
unsolved problems of biology ( I ) .  A major drawback is that the laws 
or principles governing pattern generation in biological systems are 
not known, though it would surely be significant to find them (2). 
In complex systems it is generally not possible, even if it were useful, 
to determine the detailed behavior of every degree of freedom. The 
problem is to select only the relevant parameters of the system, 
thereby reducing unnecessary information. An increasingly voiced 
concern among neuroscientists, for example, is that enormous 
advances in knowledge of cellular and synaptic phenomena have 
occurred in the last decade, but insights into the organizational 
principles of neural and behavioral function remain few (3, 4). The 
time may be ripe, therefore, to complement studies of cellular 
mechanisms with unifying concepts, particularly with regard to 
cooperative effects like coordination and pattern generation. Coop- 
erative phenomena in nature are typically independent of the 
particular molecular machinery or material substrate that instantiates 
them (5, 6). For example, locomotion is fundamentally a rhythmi- 
cally c:oordinated pattern shared by all animals that is realized by a 
wide diversity of anatomical structures and neural mechanisms. It is 
possible, therefore, that principles of coordination may lie at the 

level of the patterns themselves, and that a focus on pattern 
(including the dynamical features of self-organization, stability, and 
adaptability) could provide the conceptual leap necessary to advance 
our understanding of biological coordination. 

In this article, we aim to show that it is possible to understand 
behavioral pattern generation on several levels of description (kine- 
matic, electromyographic, neuronal) by means of the concepts and 
tools of stochastic nonlinear dynamics. We will provide evidence, in 
certain cases, that once the essential macroscopic variables character- 
izing coordinated movement patterns are identified, it is possible to 
derive these patterns by cooperatively coupling individual micro- 
scopic components. In demonstrating that dynamical concepts are 
useful at several levels of obsenration, we wish to overcome the 
language barrier that currently exists among scientists who observe 
complex systems at very different scales of analysis. In the process, 
we seek to provide a minimal set of dynamical laws for pattern 
generation in complex, biological systems. 

The Dynamics of Pattern Formation: 
Concepts, Definitions, and Measures 

It is well known that spatial and temporal patterns in nonequilib- 
rium physical and chemical systems can emerge spontaneously (6- 
8). This, "self-organized" (9) pattern formation is a collective 
phenomenon and results from the interaction of a large number of 
subsystems. To  explain what we mean by self-organization in this 
context, a few theoretical concepts must be introduced. 

Nonequilibrium systems generally obey dissipative dynamics. The 
term dissipative, as used here, means that many independent 
trajectories of the system with different initial conditions eventually 
approach each other in state space. That is, given sufficient time all 
trajectories will converge on a certain limit set, the attractor. 
Assuming that the relevant microscopic variables are known and can 
be lumped together in a (potentially very high dimensional) vector 
q, we may write down a quite general dynamic equation for such 
systems (1 0) : 

q = N(q, parameters, noise) (1) 

where N is, in general, a nonlinear function of the microscopic state 
vector q. This function may also depend on a number of parameters 
representing, for instance, environmental conditions, as well as 
random forces that reflect the many degrees offreedom acting on the 
system but which are unaccounted for in the state vector q. The 
latter two dependencies will be discussed at length below because 
they are of decisive conceptual importance for the strategy we shall 
develo~. 

Typically, when parameters in Eq. 1 change continuously, the 
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Fig. 1. (A) The experimental configuration for studying phase transitions. On a given 
trial the subject oscillates his or her index fingers bilaterally in the transverse plane, 
that is, abduction-adduction. Continuous finger displacement is sampled at 200 Hz 
by means of infrared light-emitting diodes attached to the finger tips. Electromyo- 
graphic (EMG) activity of the right and left first dorsal interosseus (FDI) and first 
volar interosseus (FVI) is obtained by inserting platinum line-wire electrodes. (B) 
EMG record from the FDI of the left and right index lingers. Initially the muscle 
bursts are anti-phase. At a critical frequency of oscillation, a spontaneous switch 
(TRAN) to an in-phase firing pattern occurs. (C) Representative time series showing 
position over time (upper trace) of the two index fingers as the control parameter, 
frequency, is increased in time and corresponding point estimate of relative phase 
(lower trace) based on the phase of one finger's oscillatory peak relative to the other. 
ABD, abduction; ADD, adduction. 
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solutions may change qualitatively or discontinuously. Such discon- 
tinuous changes are called nonequilibrium phase transitions and are 
frequently associated with the spontaneous formation or change of 
spatial or temporal patterns. For example, a system may have only 
homogeneous solutions for a range of parameters. Now, as environ- 
mental conditions are changed, spatially patterned solutions [for 
example, hexagons as in Benard convection ( l l ) ]  may suddenly 
appear. It is important to stress that relevant environmental changes 
can be completely unspecific to the pattern that emerges [in the 
above example, for instance, the control parameter (12) that crosses 
a critical point is just a change in temperature, which contains no 
information about the emerging spatial structure, its form, size, and 
so forth]. These patterns arise solely as a result of the dynamics of 
the system (that is, the function N in Eq. l), with no specific 
ordering influence from the outside and no homunculus inside. 
Hence, the patterns are referred to as self-organized. Since dissipa- 
tion is crucial to their existence and self-sustaining character, these 
patterns are also referred to as dissipative structures (8). Well-known 
examples include the formation of convection patterns in fluid 
dynamics, the emergence of the coherent light field of the laser, and 
the formation of concentration patterns in certain chemical reactions 
(11). 

How is the self-organization of patterns to be understood? In the 
theory of nonequilibrium phase transitions it is possible to show 
that close to critical points the system given by Eq. 1 may be 
completely described by much lower dimensional dynamics, speci- 
fied in terms of only a few collective variables, the so-called order 
parameters (13), that characterize the emerging pattern. The conse- 
quent reduction in degrees of freedom, referred to as the slaving 
principle, has been given exact mathematical form for a large class of 
systems (7, 14). In this theory (known generally as synergetics), it 
becomes clear that the pattern formation is entirely due to the 
dynamic interaction of the many degrees of freedom in the system. 
In the absence of a thermodynamic interpretation of an equation of 
motion such as Eq. 1, it may be better to call these patterns dynamic 
patterns. 

Is it possible to understand biological coordination and function 
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as dynamic patterns (15)? Obviously the path from microscopic to 
macroscopic is not as easily accessible in biological as it is in physical 
systems. To give meaning to an equation such as Eq. 1 is quite 
impossible. Therefore we begin with a disclaimer: understanding 
biological order will not be a simple "application" of the theories of 
nonequilibrium phase transitions (16). Nevertheless, we show here 
how it is possible to (i) establish quantitative and reproducible 
relations among obsemables in the form of laws, and (ii) make novel 
predictions that can be checked experimentally. We organize our 
results in the form of theoretical propositions that aim at a more 
general understanding of pattern formation, stability, and change in 
biological systems (1 6). 

Proposition 1.  Behavioral patterns (for example, neuronal, electro- 
myographic, kinematic) can be characterized by collective variables 
(or order parameters), whose nature and dynamics are specific to 
biological functions and tasks. 

Assume, for the moment, that we have found a set of collective 
variables characteristic of a biological pattern, that can be expressed 
by a low-dimensional vector x. Underlying the dynamic pattern 
view is the assumption that x = x(t), where t is time, obeys a 
dynamical law (similar to Eq. 1, but now on a macroscopic level): 

x t  = f(x,, parameters, noise) (2) 

For a large class of functions f special solutions of Eq. 2--called 
attractors-xist (1 7). By definition an attractor is (asymptotically) 
stable, that is, all neighboring solutions converge in time to the 
attractor solution. The simplest attractor type is a stable fixed point, 
that is, a constant solution of Eq. 2, to which all neighboring 
trajectories converge (18). Another attractor type, important in the 
present context and perhaps for biology in general, is the limit cycle, 
a stable periodic solution of Eq. 2. Many more complicated attractor 
types exist, giving rise to very complex behavior of the solutions of 
Eq. 2 (19). Moreover, several attractors with different basins of 
attraction may coexist, a feature called multistability. The total set of 
solutions of Eq. 2 for given parameters is called a phase portrait, 
whereas the total number of possible phase portraits as parameters 
are varied is called a phase diagram (20). 
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Fig. 2. A phase diagram of b' 

Eq. 3 in the parameter plane 
(a, b ) .  The transition line 
(a = 4b) separates the mono- 
stable regime with an attractor 
at + = 0, and the bistable re- 
gime with attractors at + = 0 
and + .= *T .  The insets illus- 0 . 5 .  

trare the form of the potential 
in the mono- and bistable re- 2.0 a 
gimes. The control curve 
shows how the system approaches the transition line as the experimental 
parameter (frequency) is increased. [Reprinted from (27) with permission, 
copyright 1986, Springer-Verlag] 

Proposition 2. Experimentally well-defined behavioral patterns 
correspond to stable collective states (or attractors) of the order 
parameter dynamics. 

Several features of an observable pattern are described as follows: 
reproducibility, as revealed by independence from the detailed initial 
conditions; and stationarity (in a stochastic sense), as indexed 
through stability measures (see discussion of time scales below). At 
this point we can provide a quite general argument as to why the 
pattern dynamics of Eq. 2 should, in general, be nonlinear. The 
reason is that under given boundary conditions biological systems 
often exhibit multiple behaviors. In neural networks, for instance, 
this property is known as multifunctionality. In the language of 
dynamic patterns, such situations correspond to the existence of 
multiple stable states. Because of the dissipative character of Eq. 2, 
necessary to capture (asymptotic) stability, no linear dynamical 
system can account for the required multistability (21). 

Let us now illustrate propositions 1 and 2 through an example 
from rhythmic movement patterns, which have been shown to 
represent a wide variety of coordinated behaviors in a very large 
number of biological systems (22) at different levels of observation 
(23). As a particular case consider the movement of two hands, 
operating at a common frequency. In such situations only a few 
modes of coordination-corresponding to phase-locked patterns- 
are stably performed. One is an in-phase pattern, where the relative 
phase, 4,  is zero; the other is an anti-phase pattern (relative phase is 
*.rr rad) (24, 25) (see Fig. 1). One can conceive of this case as a 
simplified experimental model for the locomotory gaits of trotting 
and galloping. A candidate collective variable that succinctly cap- 
tures rhe dynamics of these coordinative patterns is the relative 
phase between the two rhythmically moving components. The 
observed in-phase and anti-phase patterns may be mapped onto 
point :Ittractors at 4 = 0 and 4 = T. Taking into account syrnrne- 
tries, the simplest dynamical system that accounts for the observed 
phase diagram may be given explicitly (26, 27): 

4 = -- *'(') + noise 
4 

Thus a potential V(4) = - a cos(+) - b cos(24) exists, which af- 
fords a visualization (7 )  of the solutions as the (overdamped) 
movement of a mass in an energy "landscape" defined by V. The 
attractors are thus the minima of V, whereas maxima of V are 
unstable fixed points that separate different basins of attraction. In 
Fig. 2 a phase diagram of Eq. 3 is shown. The insets illustrate the 
form of the potential: on the upper left two minima at 0 and ?.rr 
exist (note that .rr -7); in the lower right only one h e d  point 
( 4  = 0) is stable. In this simple experimental system, the relevant 
control parameter is the frequency of oscillation, which can be paced 
by the subject or paced externally by a metronome signal that the 
subject follows. Inertial or viscous loadngs may also act as parame- 
ters (25). To account for the observed phase diagram, these 

parameters must be mapped onto the theoretical parameters a, 6, 
and the noise strength in Eq. 3 (28). 

It is possible to analyze this same behavior at another level of 
observation, the neuromuscular activities themselves. Fine-wire 
recordings from the agonist and antagonist muscles involved in the 
rhythmic movements of both limbs may be used to derive a measure 
of relative timing [the q-measure in (29)l. Such a measure directly 
reflects the relative phasing of the movements at the kinematic level. 
Point attractors (at q = 1 and q = 0) are shown to account for the 
observed patterns. A third level of observation (the kinematics of the 
individual limbs) will be discussed below. 

Proposition 3. Loss of stability leads to change of behavioral 
pattern and is accompanied by a growth in relaxation time and 
enhanced fluctuations of the order parameter. 

The real power of our approach lies in the central concept of 
stability. Stability can be measured in several ways: If a small 
perturbation drives the system away from its attractor, the time for 
the system to return to its attractor is independent of the size of the 
perturbation (as long as the latter is sufficiently small). This "local 
relaxation time," T,~ (local with respect to the attractor), is therefore 
an observable system property that indexes the stability of the 
attractor state. The smaller T,,I is, the more stable is the attractor. 
The case T,,I + 00 corresponds to a loss of stability. A second 
measure of stability is related to the noise sources indicated in Eq. 2. 
Any real system described by low dimensional dynamics will be 
composed of, and be coupled to, many subsystems. These act as 
stochastic forces on the collective variables, causing them to fluctu- 
ate. In the present context, the noise sources act as continuously 
applied perturbations and therefore produce deviations away from 
the attractor state. The amount of fluctuations as measured, for 
example, by the variance or standard deviation (SD) of x around the 
attractor state, is a measure of the stability of this state. The more 
stable the attractor, the smaller the mean deviation from the 
attractor state for a given strength of stochastic force. Without 
elaborating the details, a third measure of relaxation time may also 
be determined from fluctuation measures by determining the line 
width of the spectral density function (30). 

All these stability meas;res have been used in studies of physical, 
chemical, and biochemical systems. Once an order parameter for 
behavioral and neuronal patterns is found, these observables also 
become accessible in biological experiments. For example, all three 
methods have been used to assess the stability of coordinated 
movement patterns. Perturbations have been introduced by apply- 
ing a mechanical torque to one of the oscillating hands. Using 
interactive computer displays, we obtained an estimate of the 
relaxation time from the time of torque pulse offset until the relative 
phase time series stabilized at its pre-perturbation mean value. In 
this fashion, it was possible to discriminate patterns of different 
stability (31). Fluctuations in the patterns were measured by the SD 
of the relative phase time series (32), and again differences in 
stability were noted. An estimate of T,,, from spectral line widths, 
technically more difficult, nevertheless showed results convergent 
with those obtained from directly perturbing the system (33). 

One reason why stability is so important is that it can be lost. This 
is exactly what happens in nonequilibrium phase transitions. As a 
control parameter crosses a critical point the previously stable 
pattern becomes unstable, and the system switches to a different 
pattern that is stable beyond the critical point. The quite general 
predictions of nonequilibrium phase transition theory are a strong 
enhancement of fluctuations (critical fluctuations), and a strong 
increase in relaxation time (critical slowing down) as the transition is 
approached (7). 

In the hand-movement experiments such a nonequilibrium phase 
transition was discovered as oscillation frequency was increased 
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Fig. 3. (A) The average standard deviation (SD) of the relative phase as a 
function of the control parameter (frequency) for a set of ten experimental 
runs for a typical subject. Closed triangles refer to the in-phase pattern and 
open triangles to the anti-phase pattern. On a given run, the mean and SD 
are calculated for the last 3 sec (600 samples) at a given frequency. [See (32) 
for details. Reprinted with permission, copyright 1986, North-Holland] (8) 
The mean relaxation time as a function of the control parameter (frequency) 
for a typical subject. Again closed triangles refer to the in-phase pattern and 
open triangles to the anti-phase pattern. The mean transition frequency for 
this subject was 2.21 rt 0.17 Hz (N = 30). [See (31) for details. Reprinted 
with permission, copyright 1987, North-Holland] 

1.50 2.00 2.50 3.00 0.8 1.2 1.6 2.0 2.4 2.8 
Frequency (Hz) 

(Fig. 1). If the system was prepared initially in the anti-phase state, 
an involuntary, spontaneous switch to the in-phase mode occurred 
at a critical frequency (25). In the theoretical phase diagram (Fig. 2) 
this can be understood as a change in model parameters a and b 
along the line designated as the control curve, which crosses from 
the bistable regime (attractors at 4 = 0 and 4 = *T) into the 
monostable regime (attractor at 4 = 0). As the transition line is 
approached the anti-phase state loses its stability: that is, the 
minimum of the potential at 4 = ?IT flattens out and finally 
disappears (turns into a maximum). The theoretical predictions of 
critical fluctuations and critical slowing down (7, 27) have been 
confirmed in a series of experiments (25, 29, 31-33) (Fig. 3). 

Another experimentally accessible feature-the so-called switch- 
ing time-is contained in the stochastic order parameter dynamics. 
Switching time is the duration of the transient to the new state from 
the previous state that loses stability. The speed at which the system 
switches from the unstable to the new stable state depends on the 
level of noise in the system (34). As shown in Fig. 4, recent work has 
found excellent agreement between theoretical and experimentally 
determined measures of switching time, lending further support to 
the daim that the behavioral patterns-their stability and change- 
follow the stochastic order parameter dynamics Eq. 3 in some detail. 
There are other signatures of such qualitative changes of dynamics, 
such as hysteresis phenomena, addressed elsewhere (26, 29). 

Proposition 4. Fluctuations in the dynamics of the order parameters 
reconcile the stability of behavioral patterns with the ability to 
change behavioral patterns by establishing time-scale relations that 
govern the switching dynamics among collective states. 

Our claim is not that all behavioral changes are phase transitions. 
Phase transitions reveal, however, how the balance of fluctuations 
and stability determines a pattern's stability and flexibility. To 
explain this point in more detail, we have to overcome a conceptual 
difficulty related to the role of noise, the presence of which renders 
the interpretation of observed patterns as attractor states of a 
dynarnical system nontrivial. This is particularly clear in multistable 
situations (in our example for the upper left part of the phase 
diagram of Fig. 2). If the system is initially prepared in one specific 
attractor it may, in finite time with finite probability, switch into the 
basin of attraction of another attractor as a result of the influence of 
stochastic perturbations (see Eq. 2). Indeed, the stationary probabil- 
ity distribution of the collective variable (which describes the system 
after a sufficiently long transient time) is, in general, a multimodal 
distribution that possesses some probability mass at the different 
coexisting attractors. How, then, is it possible to map observed 
patterns onto attractors of the order parameter dynamics (Eq. 2) )  
The key to this difficulty lies in the system's different time scales. 
Earlier we had introduced local relaxation times ~ , , 1  as a measure of 
the time it takes the system to relax to an attractor, once it is nearby. 
A second time scale-the so-called time scale of observation 7,bs- 

indicates the time frame over which statistical averages are per- 

formed. A third time scale is the equilibration or global relaxation 
time, T~,,, namely the time it takes the system to achieve the 
stationary probability distribution from a typical initial distribution. 
In a multistable situation, T,,, is determined mostly by the typical 
time it takes to traverse from one basin of attraction into another (in 
the example of Fig. 2: to cross the potential hill between 4 = 0 and + = f T). If the foregoing time scales fulfill the following relation 

the interpretation of observed states as (local) attractor states is a 
consistent one. That is, the system has relaxed to a stationary state 
on the observed time scale, but is not yet distributed over all 
coexisting attractors according to the stationary probability distribu- 
tion. When we refer to stationary states in an experiment, we mean 
that relation 4 is fulfilled. In other experimental situations, 7,bs may 
be much greater than T,,,, as when a system is sampled over a long 
time and frequently changes state during the sampling period. In 
this case the underlying dynamics of multiple attractors will be 
evident from the form of the (stationary) probability distribution of 
the order parameter. In a bistable case with fixed-point attractors, 
for instance, the distribution will have two peaks at the two 
attractors and the width of these peaks will reflect the local stability 
of the attractors. For example, in studies of horse locomotion the 
frequency distribution of running speeds has three peaks that reveal 
the underlying gait structure (walk, trot, and gallop) (35). The limit 
7,bs >> T,,, may be generally relevant to neurobiology (for exam- 
ple, when behaviors occur spontaneously). 

As a state loses stability, its local relaxation time increases until 
eventually at the phase transition, the relation 4 is violated and 
switching takes place. The nature of the transition (for example, 
whether critical fluctuations will be observed) depends on a fourth 
time scale, the time scale for parameter change, 7,. For T, >> T,,,, 
the typical situation in physical systems, critical phenomena (for 
example, critical fluctuations or critical slowing down) can be 
observed only in special cases, that is, when a symmetry is broken 
(5). In contrast, in biological systems, T, may often be smaller than 
T,,, In such cases critical phenomena are expected irrespective of 
symmetry (33, 34). Importantly, however, all the different time 
scales are measurable. In some cases, ~ , b ,  and T,, this is quite 
obvious. In others, such as T,,,, several measurement techniques 
exist (as in the case of ~~~l discussed above). One direct measure is 
the so-called mean first-passage time (MFlT) among different 
attractors, that is, the average length of time before the system first 
changes state (30). The mean switching time also contains informa- 
tion about T,," (27). In our experiments (31) the MFPT was 
determined indirectly from parameter fits of fluctuation and relax- 
ation time data, enabling a direct test of the relation 4 and its 
breakdown at the phase transition. Switching indeed occurred as the 
time scales relation 4 was violated. 

Proposition 5. In a number of specific cases, collective states (for 
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example, multiple phase and frequency-lockings) arise from a cou- 
pling of self-excited nonlinear (limit cycle) oscillatory processes. 

We return, finally, to the question of levels of description in the 
context of our experimental example. It is possible to study the 
system on yet another level of description, namely that of the 
individual limb's dynamical behavior. Thus we may choose each 
limb's position xi and velocity xi, (i = 1, 2) as collective variables 
(collective now with respect to the next lower level of description, 
for example, the coordinated activity of agonist and antagonist 
muscles). The observed behavioral pattern [rhythmic movement 
with reproducible amplitude-frequency, frequency-velocity relation- 
ships (.36)] is mapped onto an attractor of (xi, xi), in this case a limit 
cycle. Again, with a small set of specific assumptions, an explicit 
nonlinear oscillator model captures a number of experimental 
features (36). The stability of this attractor was measured by means 
of perturbation techniques (37) similar to those described for the 
coordinated case. Through a detailed phase resetting analysis of 
these perturbation experiments, the system's dynamics were demon- 
strated to be autonomous, that is, not explicitly time-dependent 
(37). Once again then, a potentially complex behavior, observable in 
many ways, can be mapped onto a simpler dynamical description 
whose consistency can be checked experimentally. An understanding 
of the component dynamics, in the sense of dynamic patterns, can 
thus be reached. 

The two levels of description that are understood dynamically 
(component oscillators and relative phase dynamics) can be related 
by introducing coupling functions among the individual compo- 
nents. In this case, it was possible to derive mathematically (with 
certain approximations) the relative phase dynamics Eq. 3 from the 
coupled component oscillators (26). A significant feature of the 
Haken, Kelso, and Bunz model (26) is that the experimentally 
observed phase transition arises-as a result of the nonlinear cou- 
pling structure-through a simple change of the oscillation frequen- 
cy. It is important to note that the coupling functions are quite 
unspecific to the patterns of coordination that emerge. Several 
functional forms give rise to the same pattern of phase-locking (26). 
Also, changes in coordinative pattern can be brought about by 
keeping the coupling function constant and changing only the 
eigenfrequencies of the component oscillators (26). Thus the pre- 
sent theory provides a conceptual framework for understanding how 
very similar patterns may arise from a variety of mechanisms. 

Pattern Generation in Neurobiological Systems 
Let us step through the dynamic pattern approach-from collec- 

tive variables and parameters, to pattern stability and change, and 
finally to relations among levels of description-pointing out the 
relations between these concepts and existing neurobiological work, 
suggesting in some cases a different viewpoint, and posing some 
new questions that arise from "embedding" neuronal data into this 
strategy. We limit discussion to neuronal behavior studied electro- 
physiologically both at the network level and the biophysical level of 
the individual neuron, during rhythmic and discrete animal actions. 
Of course, given the size of the literature, it is impossible to be 
inclusive. 

Collective variables. Many patterns of activity in well-defined 
(mostly invertebrate) neural networks have been characterized suffi- 
ciently well to be given a name, often associating them with a 
behavior (38). Terms such as "swimming" central pattern generator 
(CPG), "flight" CPG, and "locomotor" CPG-though not agreed 
upon by everyone-reflect the fact that a given pattern is reproduc- 
ible, is stationary over a certain amount of time, and can be 
characterized well enough to differentiate it from other neural 

U) 

A Fig. 4. (A) The empirically obtained 
distribution of switching times 
(time from last change of control 
parameter, frequency, to the com- 
pletion of switching) from all sub- 
jects and all trials in (31). [Reprinted 
with permission, copyright 1987, 

Switching time (sec) 
8 

North-Holland] (B) The probabili- 
ty density of switching time as calcu- 
lated theoretically from the stochas- 
tic dynamic theory (Eq. 3) by nu- 
merically integrating the corre- 
sponding Fokker-Planck equation. 
We note that no parameters were 
adjusted for this measure as all pa- 

(set) 
rameters could be determined from 
the mean, variability, and relaxation 

time measures. [See (27) for details. Reprinted with permission, copyright 
1986, Springer-Verlag] 

patterns generated by the same network. The relation of a neural 
pattern to an associated behavior is often established through a 
series of experiments with increasingly more isolated preparations. 
The behavior itself can be characterized quantitatively (39). A 
dynamic pattern analysis of the behavioral pattern that includes 
information about biological function can serve as an excellent guide 
in the quest for collective variables on the neural pattern level. An 
example in this direction is work (39) on Plez~robrancbaea, in which 
temporal relationships among neurons are studied in relation to 
different feeding behaviors whose temporal characteristics have 
functional significance. 

Obviously, rhythmic behaviors and associated neural patterns 
come closest to the dynamical theory we have developed above. 
Indeed, our main experimental example in human motor behavior 
will look familiar to many neurobiologists, in particular if described 
using electromyographic measures (29). In fact, typical phenomena 
of temporal ordering are abundant in the neuronal pattern generator 
literature, for example, synchronization and desynchronization, 
frequency-locking, phase-locking, fixed relation of lengths of firing 
bursts, and so forth (40). An important point is that these oscillatory 
and ordered phenomena are expressly collective. For example, a 
network of identified neurons in the buccal ganglion of Helisoma 
(the so-called cyberchrons) shows cyclically patterned activity when 
any one of the cells is stimulated, but fails to do so when the 
coupling among the cells is reduced experimentally (41). For such 
rhythrmc activity, "discriminators" on the neural level typically refer 
to the temporal order found in the neural pattern, quantitatively 
evaluated through measures of relative phase and latency among 
components, neuronal burst frequency and frequency differences 
among neurons, and so forth (42). Such findings hint strongly that 
collective variables for temporal order in behavior are quite adequate 
also on the neural level (33). In fact, it is astonishing that of all the 
possible neuronal patterns available, only a few kinds of temporal 
order appear to be used. This amounts to tremendous information 
compression, sometimes referred to as a "degeneracy in the code for 
any pattern" (43). Thus, relative timing measures among neuronal 
bursts characterize different behavioral patterns: (i) within a species; 
(ii) across species; and (iii) within and across levels of develop- 
ment--even when changes in form [such as larval instars (441 are 
dramatic. Although somewhat outside the present context, it is 
worth mentioning that recent observations on macroscopic neural 
activity [such as EEG in humans (45) and multi-electrode studies in 
monkeys (46)] reveal the existence of low-dimensional collective 
variables. With new computational tools from nonlinear dynamics 
such as the correlation dimension (477, surprisingly small numbers 
of degrees of freedom were sometimes found (45, 46). Such results 
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suggest more qualitatively that the collective dynamics of underlying 
neural processes are low-dimensional. 

Control Parameters. Much is known about the Darameters and 
surrounding conditions that influence neural patterns (for example, 
the "triggering" capability of tonic excitation, the "switching" 
induced by sensory inputs, and so forth). In a dynamic pattern 
context the main concerns the relevant control 
that promote qualitative changes in neuronal patterns. The problem 
of identifying such control parameters is nontrivial. Often pattern 
change occurs spontaneous$ or is brought about by changing an 
elicitation procedure rather than by purely parametric manipulation. 
It is highly desirable, therefore, to describe the elicitation process 
itself in dynamic terms (for example, typical time for elicitation 
process, variables that measure the "intensity" of the pattern during 
elicitation). In some cases, parameters that influence the elicitability 
of a pattern seem to be known. For example, the presence or absenck 
of leg contact changes the function of "trigger" interneurons 
associated with cockroach flight initiation (49). The concentration 
of serotonin changes the elicitation threshold for rhythmic feeding 
patterns in ~ e l i r o k a  (50). Weak, short durational sensory inputs 
evoke reflex withdrawal in Tritonia (51). Intense, long durational 
input evokes swimming in the same creature-apparently because it 
de~olarizes a cerebral cell. C2 (51 ). , \ ,  

Stability. Where collective variables for neuronal patterns are 
known, relaxation times and fluctuation measures are well-defined 
and open to observation. The key step is to link such measures to the 
concept of stability. Qualitatively speaking, the reproducibility of 
neural patterns attests to their stability. The existence of an underly- 
ing relaxation process becomes obvious, however, if the relaxation 
t&e becomes Gery long. Mpitsos and Cohan (52) reported recently 
what they call "history" effects in the feeding patterns ofPleurobran- 
chaea. They showed that a motoneuron that initially fires in phase 
with a buccal ganglion nerve root (R3) in the primary (feeding) 
pattern switches to an anti-phase relation with the same neuron 
during a bout of vomiting. After the overall features (in terms of 
neural firing patterns) returned to the prirnary pattern, this same 
motoneuron retained its anti-phase relation for several minutes, then 
took on another burst pattern with doubled firing rate (an interme- 
diate metastable state) before relaxing to its originally prepared in- 
~ h a s e  relation with R3. A finite relaxation time after parameter 
change, or a finite time needed for eliciting a pattern reflects a 
relaxation process [see also figure 5 of Getting and Dekin (51) for a 
recent exam~lel. 

I A 

Fluctuation measures have been used in the past, though seeming- 
ly for more technical reasons. Although not interpreted as such, 
Wyman's (53) phase histograms of neural impulses during blowfly 
flight clearly show differing degrees of stability. But collective 
variables corresponding to the flight pattern were never identified. 
Relaxation time and fluctuation measures of stability could also 
serve as an important pattern discriminator, especially in cases where 
the mean state does not change. In studies of the development of the 
locust flight pattern (44), for example, the mean state as measured 
by relative phase does not seem to change much during develop- 
ment. However, stability-as observed through the variance of 
distributions of relative phase-does appear to distinguish develop- 
mental stages, although this feature, unfortunately, was not tested 
statisticall< 

- 

Pattern change. The phenomenon of multifunctionality-a multi- 
plicity of patterns generated by the same set of neuronal elements- 
has been a major conceptual challenge for a number of years (54). A 
recent example conies from observations by Mpitsos and Cohan 
(52) of different phase relationships among the same neurons in the 
buccal ganglion of Pleurobranchma during egestion and ingestion 
behavior. I t  is evident that function is not rigidly coded into the 

structure of the neural network involved. A similar view has been 
expressed recently in contexts such as neuronal development (55) 
and central nervous system plasticity following peripheral injury 
(56). 

Theoretical explanations of multifunctionality within the more 
orthodox, circuit-analysis-oriented strategy include the multipartite 
central pattern generator concept (57) and the polymorphic network 
concept (51). From a dynamic pattern perspective, however, such 
multifunctionality appears as a natural phenomenon, to be under- 
stood in terms of multistabilitv. The coexistence of different stable 
states in a complex system is to be recognized as a commonly 
occurring, if not universal event. Spontaneously occurring episodes 
of changing neural patterns are indicative of a time scales relation, in 
which switching among attractors is observable. In such cases, once 
the collective variables and the attractor state corresponding to 
different patterns are identified, a detailed test is possible. Assessing 
the stabilities of the different patterns, measuring switching times, as 
well as global time scales (MFPTs)-as we demonstrated earlier- 
can help establish theoretical understanding. 

A crucial test of the dynamic pattern theory involves a study of 
phase transitions among neural patterns. Thus, if a parameter can be 
found that controls the switching among patterns, then loss of 
stability can be directly measured. The aim of such an undertaking is 
neither to find the anatomical locus of a "switch" nor to find a new 
mechanism for switching, but rather to show that pattern stability 
and pattern change are a consequence of the balance between stable 
dynamic states and fluctuating influences. 

Relation f levels. In contrast to network behavior, the single 
neuron level appears to be understood in terms closer to the 
dynamic pattern spirit (58). On the experimental side, endogenously 
oscillating neurons have been studied with phase-plane techniques 
that have revealed the essential limit-cycle character of these neu- 
rons, if only over a few cycles of their oscillation (59). Perturbation 
techniques have also been employed in the phase resetting paradigm 
(59, 60). Such techniques could, however, be used to measure the 
stability of neuronal limit cycles. In addition, bifurcations from the 
rest state to limit-cycle behavior and onward to chaos have been 
experimentally observed in electrically stimulated giant squid axons 
(61). A model of a forced, nonlinear oscillator reproduces the squid 
axon data beautifully. If the dynamic pattern analysis outlined here 
were achieved on the network level, the linkage of levels of 
observation is possible in a way that parallels our studies of human 
interlimb coordination. Such theoretical attempts do exist (62), but 
a chief problem arises in defining the relevant network property to 
be derived. Similarly, the huge literature on biological oscillators 
(63) is more modeling oriented in the sense that a set of oscillator 
equations is explored in order to simulate certain biological proper- 
ties. In our opinion, a major benefit of the dynamic pattern 
approach is its primary emphasis on the identification of order 
parameters and their dynamics. 

One further challenge is worth noting. Recent findings in experi- 
mental neurobiology reveal that well-understood neural circuits 
show a surprising degree of plasticity (64). From this work, we see 
an important link between structure and function emerging. For 
example, a neurotransmitter (serotonin) may regulate growth dur- 
ing regeneration (65). Similarly, electrical activity can suppress 
neurite growth (66). Although a detailed mathematical understand- 
ing of the structure-function relation is a very amibitious goal, it 
nevertheless appears to be a possibility within the dynamic pattern 
view. For example, in the field of morphogenesis, spatial pattern 
formation owing to dynamic instabilities has been found in systems 
[such as the slime mold (631 for which reasonable models of the 
underlying biochemistry exist (68). More generally, the same pat- 
tern may be obtained from subsystem dynamics that have different 
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coupliigs, and multiple patterns may be produced by the same set of 
components and couplings. An invariance of h c t i o n  under change 
of material substrate (if by that we mean a reconfiguration of the 
connections or couplings among neural elements) is an intrinsic 
feature of the dynamic pattern approach. 

Concluding Remarks 
Using a strictly operational approach in which theory and experi- 

ment go hand in hand, we have shown that temporally coordinated 
behavioral patterns (their stability and change) may arise in a purely 
self-organized fashion. For such patterns, the predictions of non- 
equilibrium phase transition theory [synergetics (31 have been 
confirrried to a remarkable degree. Because temporal order is a 
common, if not universal characteristic of living things (5 ) ,  it may be 
the ideal paradigm to expose synergetic features at both macro and 
micro levels of description. Many of the features of observed 
behavioral patterns, including phase- and frequency-locking, multi- 
stability, loss of stability, and so forth, are common also to neuronal 
patterns generated by many species. By linking bctionally specific 
dynamics at different scales of observation, our approach offers a 
way to relate macroscopic behavioral levels to more microscopic 
physiological levels. Thus the central concepts and tools of dynamic 
patterns may provide a conceptual framework for understanding 
central pattern generators (57) and their frequently cited behavioral 
counterpart, the motor program (69). As a formal metaphor, the 
motor program might usefully consider dynamical aspects (stability, 
loss of stability, time scales relations, and so forth). 

Our approach also shares some common features with recent 
work on artificial neural networks that stresses the computational 
capabilities of collectives of "neurons" (70). Unlike the present 
operational attitude, however, the linkage between theory and 
experimental observables in neural network modeling is neither a 
prerequisite nor a necessary source of constraint. Most neural 
network modeling starts with model neurons and circuits and then 
attempts to produce various learning, memory, and pattern recogni- 
tion schemes. For instance, prescribed sets of states can be made 
stable states of such networks that correspond to patterns or 
content-addressable memories (70). I t  is not clear, however, how to 
define such prescriptions a priori. Dynamic pattern theory, on the 
other hand, places a high priority on the identification of order 
parameters for patterns. This proves to be crucial for extensions of 
the approach that consider the influence of perception, memory, and 
learning on behavioral patterns (16) and how these, too, may be 
synthesized. 

REFERENCES AND NOTES 

1. H. H. Pattee, in Topics in the Phihophy ofBwlo~, M. Grene and E. Mendelsohn, 
Eds., Boston Studies in Philosophy ofScienu (Reidel, Boston, 1976), vol. 27, pp. 
153-173. 

2. See the commentaries in (4). 
3. T. H.  Bullock, in Simple Network and Behaw, J. D. Fentress, Ed. (Sinauer, 

Sunderland, MA, 1976). pp. 52-60: K. G. Pearson, in Comparative Neurobiolu~v, 
M. J. Cohen and F. strk%asser. ~ d s .  (Wiev, ~ e w  York. i985). DD. 225-2G. 

, ,... 
4. A. I. Selverston, Behav. Brain Sci: 3, 535 (1980). 
5. P. W. Anderson, Science 177, 393 (1972). 
6. H .  Haken, Rev. Mod. Phys. 47, 67 (1975). 
7. --, Synevgetics-An Introduction (Springer-Verlag, New York, ed. 3, 1983). 
8. G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems (Wiey, 

New York, 1977). 
9. The word self-organization has earlier uses, of course, in theoretical studies 

stemming from cybernetics and abstract automata [see, for example, M. C. Yovits 
and S. Cameron, Eds., Selforganizing Systems (Pergamon, New York, 1960); H .  
von Forster and G. W. Zopf, Eds., Principles of Self-Organization (Pergamon, New 
York, 1961)]. 

10. H .  Haken, Ann. N.Y. Acad. Sci. 316, 357 (1979). 
11. For a discussion of these and many other examples see (7) and references therein. 

12. Parameters that lead the system through critical points are called control parame- 
ters. No connection with control theory is implied. 

13. A misnomer, perhaps, since they are variables, not parameters. The term stems 
from the phenomenological theory of equilibrium phase transitions by L. D. 
Landau, Phys. Z. Sowjet. 11, 545 (1937). 

14. H .  Haken, Advanced Synergetics (Springer-Verlag, New York, 1983). 
15. Neurobiologists may be aware of earlier attempts in this direction [see, for 

example, A. K. Katchalsky, W. Rowland, R. Blumenthal, Eds., Dynamic Patterns of 
Brain Cell Assemblies (MIT Press, Cambridge, 1974), with many references]. In 
contrast to some of these more modeling-oriented works we would like here to 
stress the operational aspect. 

16. J. A. S. Kelso and G. Schoner, SpritgerProc. Phys. 19,224 (1987); G. Schoner and 
J. A. S. Kelso. Bwl. Cvbern. 58, 71 (1988); G. Schoner and J. A. S. Kelso, in 
Dynamic Pattern in complex systems, J. A. S. Kelso, A. J. Mandell, M. F. 
Shlesinger, Eds. (World Scientific, Singapore, in press). 

17. This is the same notion as mentioned at the beginning of this section, but now 
relating to a much lower dimensional space. For tutorials on some mathematical 
concepts used here see, for example, chapters 5 and 6 of (7 )  or R. H.  Abraham and 
C. D. Shaw, Dynamh-The Geometty ofBehaw (Aerial Press, Santa Cruz, 1982). 
We give only a very brief summary of the notions most pertinent to our discussion. 

18. Point attractors have been used to represent computational operations performed 
by artificial neural networks [for example, content-addressable memory, see J. J. 
Hopfield, Proc. Natl. Acad. Sn'. USA. 79, 2554 (1982) for a recent example]. 

19. It is well known that such low-dimensional dynamical systems are capable of 
producing extremely complex and interesting behavior, including deterministic 
chaos. For an introduction, see, for example, H. G. Schuster, Deterministic Chaos- 
An Introdwtwn (Physik Verlag, Weinheim, West Germany, 1984). 

20. Note the two different meanings of the word phase. The phase portrait refers to the 
flow of a dynamical system as observed, for example, through phase plane 
trajectories. The word phase in "phase diagram" derives from thermodynamic 
phase. More generally, a phase diagram defines regions in parameter space that do 
not exhibit qualitative change of the dynamics as well as the boundaries across 
which such changes occur. Although these terms are sometimes used ambiguously 
in the literature, we shall retain the above definitions. 

21. V. I. Arnold, Ordina~D~~rentialEquatwns (MIT Press, Cambridge, MA, 1973). 
22. Studied, as such, in many species (invertebrate and vertebrate), involving different 

limbs and different biological functions by Erich von Holst in the 1930s. See E. 
von Holst, Collected Wwkc (Univ. of Miami Press, Coral Gables, 1973). 

23. G. Wendler, J. Comp. Physwl. 88, 173 (1974). 
24. J. A. S. Kelso, K. G. Holt, P. Rubin, P. N. Kugler, J.MotorBehav. 13,226 (1981). 
25. J. A. S. Kelso, Bull. Psychon. Soc. 18, 63 (1981); Am. J. Physiol. 246 (Regulatmy 

Intgrative Cmnp Physwl. 15), RlOOO (1984). Earlier, L. Cohen [Percept. Mot. 
Skills 32, 639 (1971)l observed transient behavior between the two coordinative 
modes, but did not manipulate frequency and hence did not establish the 
transition. 

26. H. Haken, J. A. S. Kelso, H.  Bunz, Biol. Cybern. 51, 347 (1985). 
27. G. Schoner, H. Haken, J. A. S. Kelso, ibid. 53, 247 (1986). 
28. Under standard assumptions the noise term in Eq. 3 is Gaussian white noise, whose 

variance, Q is the noise strength parameter. For details see (27). 
29. J. A. S. Kelso and J. P. Scholz, in Complm Systems--Operational Approaches, H .  

Haken, Ed. (Springer-Verlag, New York, 1985), pp. 124-149. 
30. See, for example, C. W. Gardiner, Handbook of StochastuMethodc (Springer-Verlag, 

New York, 1983). 
31. J. P. Scholz, J. A. S. Kelso, G. SchBner, Phys. Lett. 123A, 390 (1987). 
32. J. A. S. Kelso, J. P. Scholz, G. Schoner, ibid. 118A, 279 (1986). 
33. J. A. S. Kelso, G. Schoner, J. P. Scholz, H. Haken, Plys. Scr. 35, 79 (1987). 
34. R. Landauer, J. Appl. Phys. 33, 2209 (1962); for a more recent review see R. 

Landauer,Ann. N.T. Acad. Sci. 316,433 (1979). 
35. D. F. Hoyt and C. R. Taylor, Nature (London) 292, 239 (1981). 
36. B. A. Kay, J. A. S. Kelso, E. L. Saltzman, G. Schoner, J. Exp. Psychol.: Hum. Perc. 

Perf: 13, 178 (1987). 
37. B. A. Kay, thesis, University of Connecticut, Storrs, 1986. 
38. See F. Delcomyn, Science 210,492 (1980); S. Grillner, ibid. 228,143 (1985); and 

(4). 
39. Examples of quantitative analysis of behavior are L. I. Mottin, J. Keifer, P. S. G. 

Stein, J. Neur@hysd. 53, 1501 (1985) in the t d e  scratch reflex and R. P. Croll 
and W. J. Davis, J. Comp. Phyrwl. 145, 277 (1981) for feeding behavior of 
Pleurobramhaea. 

40. Some recent examples are the contributions of part I of A. I. Selverston, Ed., Model 
NeuralNehvork and Behavior (Plenum. New York. 1985): see also 123). 

41. S. B. Kater,Ameu. Zool. 14, 1017 (1974); C. R. 5. ~ d e k o ,  M. ~ e r i k e l ,  S. D. 
Kater, Brain Res. 146, 1, (1978). 

42. R. P. Croll, W. J. Davis, M. P. Kovac, J. Neurosci. 5, 48 (1985) is an excellent 
example, but there are many more than we can list. 

43. W. B. Kristan, Jr., in Infomzatwn Processing in the Nervow System, H. M. Pinsker 
and W. D. Willis, Jr., Eds. (Raven, New York, 1980), pp. 285-312. 

44. P. A. Stevenson and W. Kutsch, Natunvissenschajen 73, 741 (1986). 
45. See contributions of A. M. Albano et al., pp. 231-240; A. Babloyantz, pp. 241- 

245; and S. P. Layne, G. Mayer-Kress, J. Holzfuss, pp. 246-256, all in G. Mayer- 
Kress, Ed., Dimension andEncrqpies in Chaotic Systems (Springer-Verlag, New York, 
1986). 

46. P. F: Rapp, I. D. Zimmerman, A. M. Albano, G. C, de Guzman, N. M. 
Greenbaun, Phys. Lett. llOA, 335 (1985). 

47. P. Grassberger and I. Procaccia, Physica D9, 189 (1983). 
48. See G. Mayer-Kress, S. D. Layne, Ann. N.Y. Acad. Sd. 504, 62 (1987). 
49. R. E. Ritzmann, M. L. Tobias, C. R. Fourtner, Science 210, 443 (1980). 
50. S. B. Kater, private communication. 
51. P. A. Getting and M. S. Dekin, in (40), p. 3. 



52. G. J. M p i w  and C. S. Cohan, J. Nnrrobid. 17,517 (1986). 
53. R Wymul, Biopkls. J .  5,447 (1965); J. N c u m p w .  29,807 (1%6). 
54. Sec, for example, D. M. Wilson, J.  Ewp Bid. 39,669 (1962); J .  L. Aym and W. J. 

Davis, J.  Conrp. P W .  115,l  (1977). 
55. S. S. Easter, Jr., D. hwq P. Rakic, N. C. Spiaa, S&tz 230,507 (1985). 
56. M. M. Mazcnich and J. H. Kaas, T d  Newusti. 5,434 (1982). 
57. S. Grillnet, in (38). 
58. For review see, for example, A. C. Scott, Ncwu&m (Wiky-Interscience, New 

York, 1977); R J. MaEGrcgor and E. R Lewis, N d  Moddqq (Pknum, New 
York., 1977). 
H. M. Pinska and J. Bdl, Bid. C y h .  39,211 (1981). 
A. T. W& in 197,761 (1977). 
K. Aihara, T. Numajiri, G. Mamom, M. Kotani, Pb. Lm. 1164  313 (1986). 
H. R, W h n  and J. D. Cowan, Kyhmdk 13, 55 (1973); Y. Yamaguchi, K. 
K&, H. Shimizu, J. Theor. BBid. 82,231 (1980); A. H. Cohcn, P. J. H o h q  
R H. Rand, J.  Math. Bid. 13, 345 (1982); see also (58) for review. 
For a mcnt  annotated bibliography see N. KopeU, J. Stat. Pb. 4,1035 (1986). 
See S. B. Katm, in (a), pp. 191-209; and E. Frank, Tmvlr Ncumci. 10, 188 . . 
(1987) for review. 

65. P. G. Haydon, D. P. MECobb, S. B. Kam, S&tz 226,561 (1984). 

C. S. Cohan and S. B. Katcr, ibid. 232, 1638 (1986). 
G. Gaish and B. Hess, Proc. N d .  Acad. Sci, U.SA. 71,2118 (1974); A. Goldbeta 
and 0. Dcuoly,Am. J. Physid. 245, R478 (1983). 
A. G i a a  and H. Mcinhardt, KybmmC 12,30 (1972). 
Sec V. B. Brooks, in Pamcn ardMoPcmmt, R. E. Talbott and D. R Humphrey, 
Eds. (Raven, New York, 1979), pp. 13-49; R. A. Schmidt, Motor Cahd ard 
L+muig (Human Kinetics, Champaign, 1982); S. W. K d q  in H m d b d  of 
Pkvridonv. M e  tm, V. B. Brooks, Ed. (WPams & W i ,  Ballimorc, 
lb8l),-&I. 2, pp. 1391-1414. 
J. J. Hopfidd, in (18); a n d  D. W. Tank, Scicncc 233,625 (1986). See also 
rrchnical comments bv G. A. Camanw. M. A. Cohen, S. G m M ,  T. Kohonen -- -- - - - - . -- 
and E. q a ,  G. Palm,'in in &5,1226 (1987). 

- 

This research is s u p p o d  by a NIMH (Fundamental Ncumscienc~ Bmch) grant 
MH42900-01 and a joint contract N0001487-G-0156 h m  the U.S. 06- of 
Naval Research (Physics Divisiin and Integrated Biology Program) and the Air 
Force Wce of S c i d c  Research ( M a d  Neural Networks Program). G.S. was 
supported by a Forschungsstipcndium of the Dcutsche Forschungsgadddt. 
We thank S. B. Kata and C. S. Cohan for intensive Mi and cnco-t 
and G. Zimwrmann for fim bringing us togctha with these ncurobmk@ts. We 
appreciate comments on an earlier version from H. Crw,  J. Dean and B. Tulkr. 

I I 

1520 SCIENCE, VOL. 239 




