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Activation of Cell-Specific Expression of Rat 
Growth Hormone Ad ~rolaGtin Genes bv a 

Common Transcription Factor 

In the anterior pituitary gland, there are five phenotypi- 
cally distinct cell types, including cells that produce either 
prolactin (lactotrophs) or growth hormone (somato- 
trophs). Multiple, related cis-active elements that exhibit 
synergistic interactions appear to be the critical determi- 
nants of the transcriptional activation of the rat prolactin 
and growth hormone genes. A common positive tissue- 
specific transcription factor, referred to as Pit-1, appears 
to bind to all the cell-specific elements in each gene and to 
be required for the activation of both the prolactin and 
growth hormone genes. The data suggest that, in the 
course of development, a single tissue-specific factor 
activates sets of genes that ultimately exhibit restricted 
cell-specific expression and define cellular phenotype. 

E UKARYOTIC GENES ARE TRANSCRIPTIONALLY REGULATED 

by protein factors that bind cis-acting promoter and en- 
hancer elements ( I ) ,  some of which exert their actions in a 

tissue-specific manner (2). During the developmental program of 
organogenesis, there is a serial appearance of phenotypically distinct 
cell types that exhibit selective patterns of gene expression. Under- 
standing the mechanisms determining the sequential activation of 
these differentiated states requires the elucidation of factors govern- 

ing the cell type-specific expression of genes. The expression of two 
evolutionarily related genes, prolactin and growth hormone (GH), 
in two phenotypically dstinct cell types (lactotrophs and somato- 
trophs, respectively) of the anterior pituitary gland (3)  provides a 
model system for the analysis of cell type-specific gene expression 
within an organ. During pituitary development the appearance of 
somatotrophs temporally precedes that of lactotrophs (4 ) .  The 
transient coexpression of growth hormone in more than 95 percent 
of prolactin-producing cells before the appearance of mature lacto- 
trophs (4) raises the possibility that these two genes may share a 
common developmental signal for activation. We now provide 
evidence that a common tissue-specific transcription factor is re- 
quired for activation of these two genes expressed in phenotypically 
distinct cell types. 

A common cell-specific factor binds to the prolactin and 
growth hormone enhancer elements. Tissue-specific enhancers in 
the 5' flanking regions of both the prolactin and growth hormone 
genes appear to dictate their pituitary-specific expression (5). We 
have used deletion mapping and protection from digestion by 
deoxyribonuclease I (DNase 1) by binding of nuclear proteins 
(DNase I footprinting analysis) to identi@ prolactin enhancer 

The authors are in the Eilkaryotic Regulatory Biology Program, Center for Molecular 
Genetics, Universiw of California, San Diego, School of Medicine, San Diego, CA 
92093. In addition,'H. P. Elsholtz and M. G. Rosenfeld are in the Howard Hughes 
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Nelson is a graduate student in the Department of Biology, University of California, 
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elements critical for cell-specific expression. Prolactin 5' flanking 
deletions l i e d  to the luciferase reporter gene were assayed for 
expression in a rat pituitary cell line (GC); this line expresses both 
prolactin and growth hormone. Accurate transcriptional initiation 
from these promoters has been documented (5). On the basis of 
deletional analyses (Fig. lA), we suggest that cell-specific transcrip- 
tion of the rat prolactin gene depends on a distal enhancer segment 
(-1830 to -1530), accounting for 99 percent of activity, and a 
proximal region (-422 to -36), accounting for 1 to 2 percent of 
maximal activity. This proximal region contains several regulatory 
sequences (6) ,  consistent with evidence that has suggested a tran- 
scriptional role for the prolactin p r o d  region (5, 7). Neither of 
the prolactin enhancer regions were active in HeLa or rat fibroblast 
cell lines (Fig. 1C) or in a series of other cell lines (5), confirming 
tissue-specific transcriptional function for both elements. 

The DNase I footprint analysis of the prolactin enhancer regions 
with crude or fractionated GC nuclear extracts revealed four protect- 
ed regions in both the distal enhancer (sites 1D to 4D) and in the 
proximal region (1P to 4P), none of which were observed with 
extracts prepared from HeLa or 208F fibroblast cell lines (Fig. 1B). 
The HeLa and 208F nuclear extracts exhibited the expected pattern 
of DNase I protection of the SV40 early promotor (1). Analysis of 
the proximal region with concentrated extract suggested an addi- 
tional protected region having the boundaries - 110 to -82, while 
no further clear footprints were obse~ed  in the region extending 
from -200 to -350 (Fig. 1B). The transcriptional effects of the 
distal enhancer binding proteins identified by footprint analysis 
were examined by deletion of each binding site (Fig. ID). Deletion 
of site lD, 2D, or 4D resulted in loss of most of the distal enhancer 
transcriptional activity, an indication of the importance of interac- 

Fig. 1. Identification of cell-specific cis-active 
transcriptional regulatory elements in the 5' flank- 
ing region of the rat prolactin (Prl) gene. (A) 
Mapping of enhancer elements. Fragments of the 
5' flanking region of the Prl gene were fused to a 
luciferase gene and transfected into GC cells (18). 
Results are the average of duplicate determina- 
tions differing by less than 10 percent minus 
modr-transfected values. Similar results were ob- 
tained in three separate experiments; pSVOA 
luciferase is identical to the test fusions but lacks a 
promoter or enhancer 5' of the luciferase gene 
(18). (B) Footprint analysis of the rPRL distal 
and proximal regulatory domains (19). (Left) 
Analysis of the rPRL distal enhancer showing 
specific biding activity present in nuclear ex- 
tracts. (Lanes 1 to 5) Approximately 1 ng of 5' 
end-labeled antisense strand probe (19) was incu- 
bated with (lane 1) 0 pg; (lane 2) 5 pg; (lane 3) 
10 pg; (lane 4) 20 pg; or (lane 5) 40 pg of 
phosphocellulose-fractionated GC extract (0.1 to 
0.3M KC1 fraction) at two different concentra- 
tions (a and b) of DNase I. (Lanes 6 to 10) End- 
labeled antise~lse strand probe (1 ng) was incubat- 
ed with nuclear extract prepared from: (lane 7) 
GC cells (100 pg); (lane 8) HeLa cells (150 pg); 
or (lane 10) 208F cells (150 pg) and DNase I 
footprinted. Lanes 6 and 9 contain no protein. 
(Right) Analysis of the rPRL proximal regulatory 
region with GC nuclear extracts. (Lanes 1 to 4) 5' 
End-labeled antisense strand probe (1 ng) cover- 
ing the region -248 to +34 bp was incubated 
with (lanes 1 and 5) 0 pg; (lane 2) 20 pg; (lane 3) 
50 pg; or (lanes 4 and 6) 100 pg of phosphocel- 
lulose fractionated extract at two different concen- 
trations (a and b) of DNase I; (lanes 7 and 8) 1 ng 
of 5' end-labeled sense strand probe covering the 
region -422 to -173 bp (19) incubated in the 
absence (lane 7) or presence (lane 8) of 100 pg of 
GC phosphocellulose-fractionated extract. (C) 
Fusion genes transfeed into the GC, H e 4  and 
208F cell lines. A plasmid containing the RSV 
promoter and enhancer 5' of the luciferase report- 
er molecule was included to venfy transfection of 
all cell Lines (18). Results shown are the average of 
duplicate determinaaons differing by less than 10 
percent. Similar results were obtained in two 
additional experiments. (D) Transcriptional ef- 
fects of distal enhancer element site deletions, 
created by "loop out" M13 mutagenesis (20), and 
examined for changes in transcriptional enhance- 
ment of a 422-bp 5' flanking Prl DNA luciferase 
reporter fusion. Values shown are the average of 
duplicate determinations differing by less than 10 
percent, minus mock-transfeed values. Similar 
results were obtained in three separate experi- 
ments. 
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tions between elements. The failure of site 3D to demonstrate any 
change in transcriptional function (Fig. 1D) may be due to helical 
position, redundancy of function, or alteration of spacing. 

The relation between the multivle elements critical for the cell- 
specific expression of the rat prolactin gene was investigated by 
DNase I footprint competition. Double-stranded oligonucleotides 
including elements in &e prolactin distal enhancer i d  proximal 
enhancer were tested for their ability to compete for binding to each 
prolactin enhancer element in a DNase I protection assay (Fig. 2, A 
and B). All prolactin sites specifically and successfdly competed for 
biding to prolactin enhancer elements, but with different allhities, 
suggesting that all sites bound a common factor. Although the two 
distal elements (2D and 4D) did not compete for binding at the 
concentrations used in this experiment, specific competition was 
observed at higher oligonucleotide concentrations (8). The failure of 
site 2D to compete efficiently by itself although its footprint appears 
coincident with that of 1D is consistent with the possibility that 
cooperative binding of protein at site 2D is dependent on binding of 
factor to site 1D. 

Expression of the rat growth hormone gene depends on a tissue- 
spec& enhancer locatedwithin 235 base S r s  (bp) of the transcrip 
Gon start (S), containing two tissue-specific transcriptional elements 
designated GH1 (-99 to -69) and GH2 (-140 to -110), with 
simiiar sites present in the human growth hormone gene (9). These 
enhancer elements were tested for their possible relation to prolactin 
transcriptional elements by DNase I protection competition and 
were found to be highly effective competitors (Fig. 2, A and B). 
Thus, two of the sites in the prolactin gene (1P and 3D) and both 
growth hormone sites 1 and 2 were strong competitors. 

A comparison of the sequences of the individual rat prolactin and 
growth hormone elements (Fig. 2C) and their relative binding 

Fig. 2. Evidence of common factor binding sites in 
the rPRL and rGH enhancers by DNase I competi- 
tion. (A) Competition analysis of the rPRL distal 
enhancer with oligonucleotides comprising individ- 
ual factor binding sites (21). DNax I protection 
analysis was performed with 20 pg of a 0.1 to 0.3M 
KC1 phosphoceUulose fraction of GC nuclear extract. 
Approximately 1 ng of 5' end-labeled antisense probe 
(19) was incubated in 20 pg of extract with (a) 50- 
fold, (b) 250-fold, or (c) 750-fold molar excess of the 
indicated oligonudeotides, then subjected to DNax I 
digestion. (8) Competition analysis of the rPRL 
proximal enhancer. Reaction conditions are identical 
to (A). (Lanes 1 and 9) no protein; (lane 2) 20 pg of 
protein without competitor; and (lanes 3 to 11) 20 
pg of protein with the indicated competitor. (C) 
Comparison of footprinted sites and sequences tested 
in competition analysis showing the consensus bind- 
ing sequence. Sequences are listed in order of decreas- 
ing a%inity. 

&ties suggested a consensus sequence with a core of A ($)($) 
TATNCAT. To examine the specificity of this sequence, we con- 
structed a mutation that altered 6 bp of the prolactin site 1P 
element, resulting in a change of four bases of core consensus 
sequence (Fig. 2C). This oligonucleotide (1P MUT), which re- 
tained most of the extensive AT-rich sequence of site lP, failed to 
compete with any of the distal site footprint sequences for binding 
(Fig. 2A). Because the consensus sequence is potentially related to 
the TATAA sequence, oligonucleotides encompassing the prolactin, 
growth hormone, and other TATAA regions, as well as the thyroid 
hormone (T3) response region of the rat growth hormone gene, 
were tested. These all failed to compete for binding. 

A common cell-spdc factor tramcriptional~ activates pro- 
lactin and growth hormone elements in vitro. The above data 
suggested that the same protein or family of related proteins binds 
to the critical regulatory elements of both the prolactin and growth 
hormone genes. To W e r  confirm the transcriptional function of 
this binding factor, we performed in vitro transcription analyses. 
Initial experiments established tissue-specific expression of prolactin 
and growth hormone chimeric genes (Fig. 3A). Prolactin and 
growth hormone fusion genes demonstrated dcient  transcription 
in GC (but not in HeLa) extracts (Fig. 3A). Deletion of the 
prolactin and growth hormone cell-specific enhancers abolished this 
tissue-specific transcription. In contrast, a Rous sarcoma virus 
(RSV) construct, used as a control, was actually more efficientlv 
expressed in the HeLa than in the GC extracts. Complementation df 
HeLa extracts established that the cell-specific expression was 
dependent on a positive, GC transcription factor (10). Each tran- 
s&iption unit generated a-amanit&nsitive transcripts of the 
correct size, indicating accurate initiation in a polymerase II- 
catalyzed reaction (Fig. 3A). 
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Further analyses suggested that individual cell-specific prolactin 
and growth hormone elements were functional in vitro. Thus, serial 
deletions of both the prolactin proximal (-172, -78, -36) and 
growth hormone enhancer regions (-235, -180, -110, -39) 
resulted in a progressive decrease in transcription (Fig. 3B), consist- 
ent with removal of cell-specific elements defined by DNase I 
protection. The distal prolactin enhancer was more effective when 
placed immediately proximal to the transcription initiation site (at 
-36 bp) than at - 172 bp (Fig. 3B). The distance-dependent 
activity of the prolactin enhancer is consistent with the attenuation 
effects seen in vitro when enhancers are placed at increasing distance 
from the transcription start site (11). 

We used competition experiments to M e r  test the possibility 
that a common factor is responsible for the transcriptional activation 
of both the prolactin and growth hormone genes. For specificity of 
competition, we evaluated the effects of a single cell-specific element 
(1P) on the transcription of prolactin and RSV h i o n  genes. 
Competition of the 1P oligonucleotide inhibited transcription of a 
prolactin proximal enhancer-luciferase h i o n  gene at a tenfold 
molar excess (Fig. 3C). Transcription from the RSV promoter was 
unaffected at 100-fold molar excess of the oligonucleotide. 

Competition experiments with various prolactin and growth 
hormone transcription units and oligonucleotides representing the 
cis-active growth hormone and prolactin elements are shown in Fig. 
3D. Transcriptional dciency of the site 1P containing prolactin 
promoter was compromised to various extents in the presence of 
each individual prolactin and growth hormone cell-specific site, with 
the exception of the low aflhity prolactin distal site 2D (Fig. 3D). 
When the transcriptional effects of distal prolactin enhancer se- 
quences were examined, an identical pattem of competition was 
observed. When a growth hormone promoter containing a single 
cell-specific element was used as a template, the oligonucleotides 
again exhibited e5ciencies of transcriptional competition similar to 
those observed with the prolactin transcription unit (Fig. 3D). The 

ability of the various sequences to compete in the in vitro transcrip- 
tion assay correlates well with the assignments of relative binding 
&ity determined by footprint competition analyses and their 
impokance in transfe&ional -analysis (Sg. 4 4 .  

The prolactin and growth hormone TATAA box sequences and 
the T3 regulatory region of the growth hormone gene failed to 
compete in transcription (Fig. 3D). Thus competition is sequence- 
specific and does not appear to be due to interference with TATAA 
box binding factors. Most significantly, the cell-specific element 
mutated in the consensus sequence (1P MUT) failed to compete 
enhancer-dependent transcription (Fig. 3D). 

From these in vitro transcription analyses, we conclude that the 
protein that binds to the consensus sequence of all tissue-specific 
elements of the prolactin and growth hormone genes subserves a 
transcriptional function. To M e r  test this hypothesis, we used 
sequence-specific affinity chromatography and effected the purifica- 
tion of the protein binding to the high affinity prolactin element 1P 
by a factor of 10,000 (12). Complementation of HeLa extract with 
&ity-purified material (< 1 ng) stimulated transcription specifical- 
ly from both prolactin and growth hormone h i o n  genes, whereas 
no stimulation of the RSV transcription unit was observed (Fig. 
4B). 

The identity of the protein or proteins specifically binding to the 
prolactin and growth hormone tissue-specific elements was investi- 
gated with ultraviolet cross-linking to a labeled, bromodeoxyuri- 
dine-containing oligonucleotide encompassing the high a h i t y  
prolactin element 1P. A protein doublet (43.5 and 43 kD) was 
specifically cross-linked to-the consensus region, and binding was 
effectively competed for by either prolactin or growth hormone cell- 
specific elements (1P and GHl),  but not by an oligonucleotide 
mutated in the consensus sequence (1P MUT, Fig. 4C). Identical 
results with protein cross-linking and competition were obtained 
with the GH1 element. The appearance of the protein as a doublet is 
likely to result from the cross-linking technique (13), but altemative- 
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ly could represent two forms of a single gene product, or even 
different proteins. A far less prominent doublet (approximately 55 
kD) was observed with the prolactin 1P element, but was competed 
for by the oligonucleotide (1P MUT) mutated in the core consensus 
sequence, suggesting that this protein or proteins bound to another 
portion of the sequence. This doublet is unlikely to have critical 
transcriptional function because the mutated 1P element (1P MUT) 
binds this doublet but fails to compete in transcription in vim. 

Expression of Pit-1 and pituitary phenotypic development. 
The ontogeny of the anterior pituitary presents a developmental 
model system in which to understand the pathway of commitment 
to tissue and cellular phenotype. On the basis of our analyses, we 
propose that the prolactin and growth hormone genes require a 
common pituitary transcriptional activator, which we term pituitary 
transcriptional activator-1 (Pit-1) (14). The ability of individual 
growth hormone and prolactin cell-specific elements to compete 
equivalently for in vitro transcription of either gene implies that, 
even if Pit-1 were to represent two related transcription factors, this 
would not account for differential cell-specific activation of both 
genes. 

Inclusion of rat growth hormone or prolactin distal enhancers in 
chimeric transcription units targets expression of these fusion genes 
to somatotrophs and lactotrophs, respectively, in transgenic mice 
(15). However, these chimeras also display ectopic expression in 
thyrotrophs that express thyroid-stimulating hormone (TSH), sug- 
gesting the possible action of Pit-1 in thyrotrophs (15, 16). Tran- 
scription enhancement of the rat prolactin gene by Pit-1 appears to 
be positively modulated by plasma membrane-mediated peptide 
regulators including thyrotropin releasing hormone (TRH) and 
growth factors such as epidermal growth factor (EGF) (1 7). There- 
fore, the proposed developmental transcriptional activator Pit- 1 may 
also serve as a homeostatic regulator in the mature lactotroph. 
Potential positive or negative regulation of Pit-1 activity by these or 
other factors during ontogeny may have profound developmental 
consequences. 

The synergistic actions of multiple Pit-1 binding sites dispersed 
over a 2-kb region of the rat prolactin gene may be a required aspect 
of the developmental code dictating prolactin gene expression. If the 
prolactin, growth hormone, and possibly TSH genes require the 
same factor, Pit-1, for their activation, then restrictive mechanisms, 
whether repression or a requirement for additional interactive 
factors augmenting transcription, must account for their differential 
expression in mature lactotrophs, somatotrophs, and thyrotrophs. 
The expression of a cloned gene encoding Pit-1 will be necessary to 

permit direct assessment of positive and negative developmental 
regulation of the rat prolactin and growth hormone genes. 
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