
Parallel Supercomputers for Lattice 
Gauge Theory 

During the past 10 years, particle physicists have increas- 
ingly employed numerical simulation to answer funda- 
mental theoretical questions about the properties of 
quarks and gluons. The enormous computer resources 
required by quantum chromodynamic calculations have 
inspired the design and construction of very powerfid, 
highly parallel, dedicated computers optimized for this 
work. This article gives a brief description of the numeri- 
cal structure and current status of these large-scale lattice 
gauge theory calculations, with emphasis on the computa- 
tional demands they make. The architecture, present 
state, and potential of these special-purpose supercom- 
puters is described. It is argued that a numerical solution 
of low energy quantum chromodynamics may well be 
achieved by these machines. 

D URING THE PAST DECADE, NUMERICAL METHODS HAVE 

come to be recognized as an essential tool for research in 
even the most fundamental aspects of elementary particle 

physics. The quantum chromodynamic (QCD) (1-3) theory of the 
strongly interacting particles has upset the notion that, on the 
deepest level, the laws of nature must be sufficiently simple and 
symmetrical as to permit analytical treatment. This theory describes 
the forces that bind together the quarks making up the neutron, 
proton, and other subnuclear particles as arising from the exchange 
of fbrther unseen particles called "gluons." The theory has an 
extremely elegant geometrical foundation (4) but contains strong 
nonlinearities that have frustrated all analytical approaches tried to 
date. 

However, numerical simulation of QCD with the lattice approxi- 
mation introduced by Wilson (5) has begun to provide important 
information about the properties of the theory. Unfortunately, vast 
computer resources are required for this work. Certainly a signifi- 
cant fraction of the supercomputer time now available for academic 
research is being devoted to these studies. In fact, the computer 
requirements are so large, and the scientific potential so great, that a 
number of groups (6-8) have begun the construction of special- 
purpose computers, optimized for these calculations. By exploiting 
the parallelism inherent in this physics problem, these machines have 
already achieved a computation rate of 1 gigaflop (Gflop; lo9 
floating point operations per second) and a ratio of cost to 
performance that is two orders of magnitude better than that of 
commercial supercomputers. The smallest versions of these devices 
have been yielding interesting physics results for the past 2 years (9, 
10). 
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Quantum Chromodynamics-Formulation 
The Yang-Mills theory of the strong interactions is an appealing 

generalization of the very successll field theory of the quantum 
mechanical interaction of light and electrons: quantum electrody- 
namics (QED). In QED structureless fundamental particles (elec- 
trons) experience electromagnetic forces by absorbing and emitting 
intermediate particles (photons) which themselves constitute the 
electromagnetic field. In QCD (by analogy to QED) the electron is 
replaced by a multiplet of three equal-mass quarks and the single 
photon by a family of eight spin-one gluons. The familiar invariance 
of electromagnetism under a change of gauge is generalized to an 
"SU(3)" gauge invariance that fixes the form of the quark-gluon 
interactions. [Here SU(3) refers to a three-dimensional unitary 
rotation symmetry among the triplet of quarks.] Just as there are 
many species of electrically charged particles, there are also many 
such triplets of quarks distinguished by their masses and other 
additive quantum numbers conserved by the QCD couplings. In 
this way one distinguishes the various "flavors" of quarks: up, down, 
strange, charm, bottom, and presumably top. QCD provides a 
fundamental theoretical basis for the phenomenologically deduced 
quark model (11, 12). 

A serious difficulty facing all relativistic quantum field theories is 
the problem of divergences--certain of the integrals that need to be 
calculated go .to infinity. Like QED, QCD requires that these 
infinities be removed by some method of "regularization." This can 
be done by introducing a regulator into the calculations, which 
might be, for example, a minimum distance for interaction. Let a 
denote the length scale at which this regularization is performed. If 
one is to obtain well-behaved physical quantities when the regulator 
is removed from the theory, that is as the regulator length, a, is taken 
to zero, then just as in QED, the coupling strength between quarks 
and gluons,go(a), must be varied as an appropriate fbnction of a as 
a -+ 0. For QED the appropriate a -+ 0 variation of the bare charge, 
eo(a) (the QED analog ofgo), is not known, and may not even exist. 
However for QCD one can show that&(a) .= lllog(a-') as a -+ 0 
(2, 13, 14). Note thatgo(a) vanishes in the continuum limit, making 
a selective use of perturbation theory-a smallgo approximation- 
possible. 

This weakening of the effective coupling at short distances, 
"asymptotic freedom," allows analytical predictions to be made for a 
number of high-energy phenomena (15); in particular the very 
successikl calculation of the ratio R of hadron to muon production 
in high-energy electron-positron annihilation (16). The correct 
prediction of this ratio as simply the sum of the charges squared of 
all those quarks with mass lying below the production threshold 
gives important evidence for the validity of the whole picture, down 
to the fractional assignment of charges and the triplet character of 
the quarks' SU(3) representation. 

This property of asymptotic freedom has an important implica- 
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Fia. 1. Our two-dimensional inter- TO HOST FROM HOST 

cohection scheme shown for an 
array of 16 processors. For the 16- 
node machine the communication 
paths are joined from left to right 
and top to bottom to realize the 
topology of a toms and to imple- 
ment the desired periodic boundary 
condition. The squares represent 
memory elements and the circles 
represent processors. The double or 
darkened paths indicate the data 
path followed during cornmunica- 
tion with the host computer. 

SECONDARY 

Fig. 2. The elements of the archi- 
tecture that provide limited central 

tion for lattice gauge theory, a nonperturbative formulation of QCD 
introduced by Wilson (5) ,  which is amenable to numerical study. 
Here the short distance regularization is provided by a regular, 
hypercubic lattice in space-time. The short-distance cut off length, a, 
is now the distance between adjacent lattice sites. As argued by 
Wilson, the continuum limit is obtained at a second-order critical 
point of the lattice theory, where physical correlation lengths 
diverge when measured in lattice units. Asymptotic freedom guaran- 
tees that thego -+ 0 limit is precisely such a critical point. That is, as 
the lattice coupling constantgo is taken to zero, the lattice spacing a 
also goes to zero when measured in physical units of length. This is, 
of course, exactly the limit required for the effects of a grid of lattice 
points, introduced to allow numerical analysis, to become unimpor- 
tant. 

Achieving a sufficiently small lattice spacing is the central compu- 
tational challenge in lattice QCD. The predictions of perturbation 
theory for the scaling behavior of physical quantities asgo += 0 offer 
an important consistency check that finite lattice spacing errors are 
under control. The deviation of a calculation from the expected 
continuum scaling measures the effects of finite lattice spacing. 

How is such a theory formulated? The quark wave functions, +(x) 
(or better, second-quantized field operators), are simply interpreted 
as taking values on the discrete set of sites x, making up the space- 
time lattice. In order to construct gauge covariant differences 
between quark wave functions on neighboring sites-in analogy 
with the gauge covariant derivatives of the continuum theory--one 
introduces the gluonic degrees of freedom as SU(3) matrices UI 
associated with each link 1 in the lattice joining neighboring sites. 
Thus each UI is a 3 x 3 unitary matrix with unit determinant. 
Finally the theory is made quantum mechanical by writing it as a 
Feynman sum over histories (17). 

Because of the intended numerical application, it is important to 
formulate the theory in thermodynamic terms, that is, as quantum 
mechanics with Euclidean or imaginary time. For example, the 

CENTRAL TO H O S T  

average value of a quantum mechanical observable 0 at a tempera- 
ture T is given by the high-dimensional integral 

The left-hand side of this equation represents the usual quantum 
mechanical Boltzmann average where H is the quantum Hamilto- 
nian for the system and k is Boltzmann's constant. The right-hand 
side is a discrete Feynman path integral, an integral over all space- 
time configurations of the gluon degrees of freedom {U,}. The gluon 
self-interactions are described by the classical gluonic action dG, a 
local function of the link variables Ul that depends on a single 
parameter p = 612 specifying the strength of the nonlinearities. The 
effect of the quark degrees of freedom is represented by the 
determinant of the lattice Dirac operator, det(9). This determinant 
depends on the quark masses and is a highly nonlocal function of the 
link variables. The lattice of sites x, and links 1 on which these 
variables are defined has a spatial volume that corresponds to that of 
the quantum system and a temporal extent T given by T = llkT. By 
choosing to work with the thermodynamic quantity exp(-HlkT) we 
ensure the absolute convergence of the integration in Eq. 1 but lose 
the ability to directly discuss evolution in physical time. However, 
approximate knowledge of the Boltzmann operator exp( -H/kT) can 
tell us much about the low-energy eigenstates of the quantum 
mechanical Hamiltonian H. In particular, the properties of the QCD 
vacuum and single-particle excitations can be directly deduced from 
the path integral in Eq. 1. 

The numerical problem of evaluating the integral Eq. 1 is well 
defined but truly demanding. It has been approached in two stages. 
First the so-called "quenched" approximation (18) is made in which 
the quark determinant det(9) is replaced by unity-the gluon 
degrees of freedom are treated as static or quenched while the 
statistical quark average is performed. The Boltzmann ensemble of 
gluon configurations is not affected by the quark dynamics. Even 
with this ad hoc approximation the problem is still quite hard. For 
example recent calculations (19) have used space-time lattices as 
large as 243 x 48. With four links per site and eight degrees of 
freedom in each SU(3) matrix, this implies a gauge integral involv- 
ing over 10 million variables. 

There are well-developed Monte Carlo techniques for numerically 
performing large-dimensional averages over a positive weight that 
are commonly used in statistical physics and chemistry (20). In these 
methods the integral is replaced by an average over a finite ensemble 
of integration points (or configurations) that are distributed accord- 
ing to the weight e-& where s& is the action. When the gluon action 
is local (as is the case when the quark determinant is neglected), a 
new configuration is usually generated from the previous one by 
sequentially updating each link variable until all link variables have 
been modified. A variety of updating procedures are effective. For 
example, in the heat-bath method the update simply thermalizes the 
link with respect to its environment (the neighborin links with 
which it interacts are temporarily held tixed) with e-'as a Boltz- 
mann weight. 

Each such update may take approximately 4,000 floating point 
additions and multiplications. A useful statistical ensemble of 
50,000 configurations then requires 2 x lo i5  floating point opera- 
tions for its generation. This is 6 weeks of continuous computation 
on a 1-Gflop supercomputer (a Cray X-MPi48, for example) 
running at 50% efficiency for each set of parameters studied. If one 
wishes to compute the properties of hadrons additional inverse 
matrices 9-' must be evaluated, typically for one gluon configura- 
tion out of 100. Although these matrix inversions can be carried out 
using efficient techniques appropriate for sparse matrices, an equiva- 
lent amount of computer time is required. 

control of the array of processors. 
In the 64-node machine the central 
controller drives eight secondary 
controllers each of which in turn 
drive eight boards. The individual 
processor boards are shown as 
squares and the separate Multibus 
joined to each board is represented 
as a hexagon. Again the darkened 
lines also function to transmit data 
to and from the host. 
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Fig. 3. The configuration of a 
single node. The data bus is a 
pair of 16-bit busses for the 
16- and 64-node machines, 
whereas for the 256-node ma- 
chine it is a single 32-bit bus. 
The connection of the second- 
ary controller to the Multibus 
shown here is actually used 1 
only by the first and last nodes 
in the linear chain for data 
transfer to and from the host computer. 

Fig. 4. The architecture of the iz 
vector processor for the 256- 
node machine. The band- 
width between the memory 
and registers is 32 Mbyteisec, WTL333P WTL 3 3 3 2  

FLOATING POINT 
UNIT 

FLOATING POINT 

while the three busses joining UNIT 

one pair of registers with the 
WTL 3332 floating point unit have a bandwidth of 192 Mbyteisec. Except 
for data transfers between the four registers and memory, all other opera- 
tions of the two paired vector processors must be identical. 

The second stage of this program attempts to include the effects of 
the quark dynamics on the gluon degrees of freedom; the quark 
determinant det(9) is not neglected. Of course, exact evaluation of 
this determinant is hopelessly impractical. However, a number of 
approximate methods have been developed. Among these are the 
pseudofermion (21), the Langevin (22), and the hybrid (23) 
methods. All of these approaches introduce finite step size errors 
that must be studied numerically and controlled. These calculations 
are probably two orders of magnitude harder than those in which 
the quark determinant is neglected. 

After stressing the enormous computer requirements of these 
calculations, we emphasize what makes this problem so attractive: 
fimdamental questions about elementary particle physics are being 
addressed and all the approximations involved can be well con- 
trolled. The relatively simple physical system being studied contains 
explicitly Nf independent triplets of quark species and eight gluons 
where typically Nf = 2 or 3. There are, however, other particles and 
interactions that are being neglected. 

The omitted electro-weak interactions are suppressed by a factor 
of the fine-structure constant a = 11137; its omission gives 1% 
errors. The presence of heavier quarks omitted from the simulation 
should introduce errors =(M~~,~,IM~,,,,)~. This correction may be 
as large as 10% for the case of MSt,,,,, = 0.5 GeV and 
Mchamed = 1.5 GeV. However, the effect of heavier quarks can be 
systematically studied by adding them to the calculation. The 
remaining systematic errors in these calculations all derive from the 
numerical lattice gauge theory approach: limited Monte Carlo 
statistics, coarse grid spacing, small physical volume, and finite step 
size when, for example, performing Langevin integration (22). 
Although these are very serious sources of error for which theoreti- 
cal bounds are difficult to obtain, they are subject to direct numerical 
study, and in each case can be made arbitrarily small-at the cost of 
additional computer time. Thus one hopes to predict within a few 
percent the properties of the low-energy hadrons in terms of only 
three parameters: the average of the up and down quark masses, the 
strange quark mass, and the size of the lattice unit a, which should 
vary with the  coupling^^ in a known way. 

There are, of course, a number of important physical systems for 
which lattice gauge theory techniques are not well suited. Although 
Monte Carlo techniques can in principle be applied to systems with 
a complex action, no practical algorithms exist for cases where the 
imaginary part of the action is in any sense significant. Such a 

situation occurs both when QCD is given a nonzero vacuum angle 
(also called the 0 parameter-nearly zero in the real world) and in 
the presence of a finite chemical potential. The latter situation is 
unfortunate because finite baryon number density is expected to 
play an important role in the thermodynamics of heavy-ion colli- 
sions. The so-called fermion doubling problem (24), the fact that 
lattice equations describe a system with 16 species of quark, rather 
than only one, is also a serious difficulty. This problem can be 
surmounted in cases such as QCD where the ferrnions occur in 
matched right-handed-left-handed pairs. However, no solution is 
known (25) for the weak interactions, which involve explicitly left- 
handed neutrinos, even though it is a very interesting physical 
system that one would like to study numerically. 

Specialized Computers 
Given the great demands for computer resources created by these 

lattice gauge theory simulations, it is natural that the construction of 
s~ecidized. dedicated machines has become the subject of serious 
investigation. By exploiting special features of the calculations one 
expects to gain significant savings. The most important possibility is 
the incorporation of parallelism. The locality and homogeneity of 
this physical problem allow the calculation to be easily divided 
among a large number of processors with relatively simple intercom- 
munication. The size of the comDuter ca~able of this work is 
essentially set by the -100-Mbyte size of the memory required to 
hold the 10 million variables referred to above. With parallel 
construction one has the opportunity to vary the speed and number 
of individual processors joined to this memory while keeping the 
computational speed of the entire machine constant. 

The ability to optimize by varying the computational power per 
elementary processor is quite significant. For example a $10-million 
Cray X-MPl48 with a speed of 1 Gflop gives a performance of 0.1 
Mop per dollar, whereas a S500, 16-MHz Weitek WTL 3332 chip 
with a speed of 32 Mflops yields 64 Mops per dollar. Of course 
comparing a computer with an isolated component is not very 
meaningful-more reasonable comparisons are given below. 

The utility of constructing special-purpose machines for physics 
calculations has been amply demonstrated by the three machines 
built to perform Ising model calculations in the past 5 years (26-28). 
The Ising machine built at AT&T Bell Laboratories by J. Condon 
and A. Ogielski (28) has been especially effective. Lattice gauge 
theory calculations were first carried out with highly parallel ma- 
chines by a group at Edinburgh using the Distributed Array 
Processor (29), a 4096-node machine, and by G. Fox, C. Seitz and 
collaborators on the 64-node Caltech cosmic Cube (30). These , , 
calculations demonstrated the ease with which parallelism could be 
implemented in this work. [A significantly enhanced version of 
Caltech hypercube machine is now manufactured commercially by 
Intel as the iSBC-VX (31).]  

At present there are three groups (6-8) constructing parallel 
machines for these lattice gauge theory calculations: 

1) The group at Columbia University (6) has constructed a 16- 
node, 0.25-Gflop machine (operating since 1985) and a 64-node, 1- 
Gflop machine (completed in February 1987). We are currently 
testing the first five boards for a 256-node, 16-Gflop machine. 

2) A Rome, CERN, Piza, Bologna, Padova collaboration (8) 
completed a 4-node, 0.25-Gflop machine in the fall of 1986 and is 
currently constructing a 1-Gflop, 16-node machine. 

3) A group at IBM Research, Yorktown Heights (7 )  is assem- 
bling and testing an 11-Gflop, 576-node machine. 

The final version of each of these machines will have on the order 
of 1 Gbyte of memory. 
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Probablv the most significant feature of our machines at Colum- 
bia is theiglobal archi&-; each is an N x N mesh of processors 
with the simple nearest-neighbor coupling shown in Fig. 1. At 
present, the two operating machines have N = 4 and 8, whereas the 
256-node machine will have N =, 16 as well as the option to be 
configured with more nodes as a 12 x 24 mesh. A physical problem 
posed on an N, x Ny x N, x Nt array of grid points can be easily 
mapped onto such a two-dimensional mesh provided, for example, 
that N, and Ny are each multiples of N. Each processor stores the 
variables and does the computations related to the mesh points in 
( N m  x ( N m  planes that extend in the z and t directions. We 
chose two as the smallest number of dimensions that would contain 
a suliicient number of processors and yet have a linear size no larger 
than that of the numerical grids we intend to employ. Note that 
with a large number of processors, the constraints imposed by a 
particular linear size can be sigdicant. For example, our 16 x 16, 
256-node machine will be naturally suited to simulations on 
1 6 ~  x N, and 323 x Nt lattices. It may well be that 163 x N, is too 
small for definitive results, whereas 323 x Nt is too numerically 
demanding. We have therefore made a point of retaining the 
12 x 24 processor grid as an option, which would permit conve- 
nient simulation of 243 x N, lattices. 

Figure 1 also shows the distinction between processor and 
memory elements. These are interconnected so that for any pair of 

Fig. 5. Photograph of the 64-node Columbia machine. Each wire-wrap 
board is one of 64 identical processors. The wide ribbon cables provide data 
paths between neighboring nodes, while the narrow ribbon cables carry 
control signals between the nodes and the secondary controllers. This 
machine has the power of roughly six Cray-1 supercomputers and costs 
about $400,000. 

nearest-neighbor memories (shown as boxes) both can be accessed 
by a single processor (shown as circles). Each processor views the 
three memories to which it is connected as lying in a continuous 
address space and it can read from or write to each in the normal 
way. Thus any computation requiring neighboring operands can be 
carried out by a single processor without any additional data transfer 
steps. 

The darkened connections shown in Fig. 1 indicate the subset of 
interprocessor links that are used for communication with the host 
computer. The first processor in this linear chain reads data written 
to a central controller by the host computer while the final node in 
the chain writes data to that same controller which can then be read 
by the host. 

The special association between each processor and one of the 
memories indicated in Fig. 1 by the dotted boxes has two aspects. 
First, each paired memory and processor are physically placed on the 
same printed circuit board. Second, each processor's address lines 
are routed only to the adjoining memory unit. Thus access to 
memory of a neighboring node must rely on the processor on the 
neighboring node to properly address the desired location. This 
cooperation is easily achieved by having all the processors operating 
in lockstep, performing symmetrical memory references when off- 
board data are used. For instance, each processor might simulta- 
neously read data from its norchern neighbor while addressing the 
data in its own memory to be read by the processor to its south. This 
strategy reflects, of course, the homogeneity inherent in lattice 
gauge theory calculations. 

The second aspect of our global architecture is shown in Fig. 2. 
Here we show our central controller driving a number of secondary 
controllers that finally drive the individual nodes. In addition to 
performing the obvious functions of dismbuting synchronous dock, 
reset, and interrupt signals and watching for finish and error signals, 
this element of central control also pennits the resynchronization of 
the nodes necessarv for the svnchronous data transfer. After execu- 
tion of asynchrondus data- o; node-dependent code, each processor 
sends a request for resynchronization signal to the central controller 
that, after-all nodes have responded, &synchronizes the machine. 
Thus our parallelism is achieved through a collection of independent 
processors that are capable of synchronizing themselves before lock- 
step synchronous calculation or internode communication. 

This very simple intercommunication scheme is the major benefit 
that comes from focusing on our specialized application. ALI of the 
algorithms currently in use in lattice gauge theory calculations can 
be very efficiently implemented on this architecture. There is 
essentially no overhead associated with off-board communication, 
and the 32 Mbytdsec bandwidth simultaneously sustainable on two 
of the four cables joined to each node is achieved by inexpensive 
components representing 5% of the space and 1% of the cost of each 
board. Although this global architecture is far more restrictive than 
that implemented on a commercial multiprocessor supercomputer 
or hypercube-style parallel computer, it is applicable for many 
physical problems where the nearest-neighbor communication 
matches the local interactions that underlie all physical processes. 

Next, let us turn to the configuration of a single node. As can be 
seen from Fig. 3, each node is very much like a personal computer or 
workstation. Controlled by an Intel 80286 microprocessor, aug- 
mented by a high-precision 80287 floating point coprocessor, and 
provided with an industry standard Multibus port, each node can be 
programmed and enhanced with peripheral memory, hard disk 
controllers, and so forth, just as is possible for a personal computer. 
The code memory shown in Fig. 3 varies from 32 kbytes per node 
on the 16-node machine up to 5 12 kbytes per node on the 256-node 
machine. Of course an array of 256 personal computers would miss 
our computational requirements by three orders of magnitude; the 
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Fig. 6. A 163 X 10 pure 
gauge deconfinement calcula- 
tion performed on the 16- 0 8  
node Columbia machine. The 
sharp crossover in the fraction $ 
confined and 8 (a quantity 3 
related to the internal energy) 
demonstrates the presence of 
a first-order phase transition. 'L 

The jump in 8 across the 
phase transition gives the la- 
tent heat of the transition. o 

vector processor shown in Fig. 3 is the essential element in achieving 
the necessary performance for floating point calculations. 

The vector processor incorporated in our 256-node design is 
shown in Fig. 4. It is composed of a pair of units each of which is 
made up of a very high bandwidth register file (two Weitek WTL 
1066 chips) holding 64 32-bit words and a floating point chip (a 
Weitek WTL 3332). This latter component contains an adder, 
multiplier, and an additional 32-word register file, as well as lookup 
tables to assist in division. Each of the units in Fig. 4 is composed of 
many stages and run in a standard pipelined mode. In each 62.5- 
nsec clock cycle, each stage completes a portion of a different 
calculation taking as its input the output of a different stage 
generated in the previous cycle. As is common in such designs, the 
specification of the operation to be performed by each stage and the 
source and destination for the operands of each stage are determined 
by a microcode instruction word supplied anew each cycle from a 
microcode memory. 

In typical operation the vector processor and microprocessor 
operate concurrently. The microprocessor determines the next vec- 
tor processor routine to be executed and calculates the addresses of 
the operands that will be required while the vector processor finishes 
the current routine. Efficient operation is obtained if the micropro- 
cessor finishes its preparation for the next vector processor routine 
and waits for the vector processor to finish its present work. Since 
the actual restarting of the vector processor takes a fraction of a 
microsecond, much less than the normal 20-psec vector processor 
routine, the vector processor can be made to operate essentially 
continuously. 

The programming of such a special-purpose machine poses a 
number of different challenges. On the lowest level, we must 
provide operating software to load data and programs and examine 
and unload the results of a calculation. This code appears in 
programmable read-only memory (PROM) on each node and on 
the host computer, a VAX 111780. On startup, the PROM code 
exchanges test data between nodes to verify all cabling, determines 
the size of the array of processors, and computes the particular 
inputloutput path though the array indicated by the darkened 
connections in Fig. 1. Next, the VAX-resident program sends a 

series of packets to the machine that are passed from neighbor to 
neighbor along the indicated linear chain, each processor either 
copying from, filling, or simply transmitting the passing packet. 

This transfer procedure can be invoked by a user at a VAX 
terminal attempting either to load or extract data or to load and tun 
a program. It can also be used by a program running on the parallel 
machine that wishes to transfer data to the VAX. Although at first 
quite simple, this "operating system" has become increasingly 
sophisticated, absorbing at least one man-year of effort. 

The Intel 80286180287 microprocessor is the most easily pro- 
grammed part of the machine. Well-documented and robust devel- 
opment software is available that runs on the VAX and produces 
machine instructions that we load into our array. The majority of 
these programs are now written in C, although the less convenient 
language PL/M is used to implement some lower level operating 
system functions. These C programs make up the higher level parts 
of our applications programs as well as programs to test both the 
hardware and the physics programs. 

As befits an application that is inherently parallel, the multinode 
nature of our application programs causes essentially no difficulties. 
In fact, we typically program our machines in a style that does not 
depend on the number of nodes. The program currently running on 
our 64-node machine (32), if viewed as a program for a single node, 
is written for a 3 x 3 x N, x N, lattice. The parameters N, and N, 
are set at run time with N, required to be a multiple of six because of 
vectorization. When run on a single node (with its communication 
ports connected back on themselves), this is exactly the size of the 
lattice that is computed. However, if run on the full 8 x 8 64-node 
machine with different random number seeds loaded into each node, 
this same program performs a calculation on a 24 x 24 x N, x N, 
lattice. 

Some applications deviate from this extremely regular parallelism 
in a trivial way. A conjugate gradient matrix inversion, for example, 
requires code to pass around the accumuland for a few nonlocal dot 
products. Such a routine must consult a data structure set up by the 
startup PROM program to determine the size of the array. In other 
cases local communication is a more significant restriction. Fourier 
transforms, for example, figure prominently in a class of algorithms 
now under investigation (33), and would require careful program- 
ming to keep the inevitable loss of efficiency associated with the 
required nonlocal communication to an acceptable minimum. 

By far the greatest programming difficulty lies in programming 
the vector processor, and especially the vector processor-micropro- 
cessor interface. Although the pipelined architecture is similar to 
that of the floating point units found in commercial supercom- 
puters, we have not developed the analog of the optimizing Fortran 
compilers available on such machines, which permit applications to 
be written in a single high-level language. At present the most 
numerically demanding components of our physics calculations are 
programmed as follows: First, the calculation must be divided into 
subroutines. Those that are best done by floating point arithmetic 
are assigned to the vector processor, whereas tasks that are best done 
with tables or comparisons are coded in assembly language for the 
80286. Second, the routines to be executed by the vector processor 
are written in a specially developed microcode assembly language 
and require a companion piece of assembly code used by 80286 to 
start the vector processor. These 80286 assembly language routines 
are designed to read the addresses of arguments and inter-subrou- 
tine linkage information from a tabulated list of instructions that 
specify a sequence of microcode subroutines to be executed. The 
general format and conventions used in this table are reasonably 
standardized but still must be adjusted somewhat for the application 
at hand. The third and final step is the actual construction of the 
table. For a relatively short and straightforward sequence of opera- 
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Fig. 7. Data from (52) show- 7.2 
ing a finite-temperature phase 
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tions, such as performing a three-subgroup pseudo-heatbath update 
(34) on a vetor of SU(3) links, the series of random number 
generations, sine, cosine, square root evaluations, and table lookups 
can be simply listed by hand. A more complex sequence such as 
stepping though the links 1 in memory and identifying the links that 
make up the six groups needed to update each link 1 is normally 
created by a C program run once on the VAX. This multi-layered 
programming strategy is rather complicated and time-consuming. 
Nonetheless, each element is quite straightforward, so that with 
careful planning we routinely design programs that make efficient 
use of our hardware. 

The actual configuration of the 64-node machine can be seen in 
the photograph in Fig. 5. Fans mounted at the bottom force cooling 
air upward through the processor boards. Each board measures 12 
by 18 inches and consumes 75 W. The entire machine dissipates 
10,000 W. The processor boards of our 16- and 64-node machines 
are constructed with wire-wrap interconnection and cost under 
$3,000 each. The 256-node boards are eight-layer printed circuit 
boards costing $4,000 apiece. The total construction costs of the 16-, 
64-, and 256-node machines are $150,000, $400,000, and $1.4 
million, respectively. (These costs do not include the salaries of the 
physicists involved in the design, testing, and programming of these 
machines. ) 

Present Lattice Gauge Theory Results 
Much work remains to be done before the Monte Carlo study of 

QCD outlined in the first section can be expected to yield physically 
realistic results. Nonetheless, a number of encouraging successes 
have been achieved. Our discussion is necessarily incomplete, em- 
phasizing the work with which we have been most involved. 
Exploratory calculations-some quite ambitious-have been carried 
out for a large number of physical quantities; noteworthy are 
hadron mass spectrum studies, both quenched (18, 19, 35) and 
unquenched (36), and weak matrix element calculations (37). 
Summaries of current results, as well as many further references, can 
be found in two recent reviews (38, 39). 

One of the most striking features of the quark model is the fact 
that the basic constituents of the model, the quarks and gluons, are 
not directly observed. This is the phenomenon called confinement. 
Just as QCD interactions weaken at short distances, they might 
strengthen at large distances, perhaps sufficiently so that infinite 
energy would be required to separate a nucleon or meson into the 
quarks of which it is made. Such behavior can be investigated in the 
quenched approximation by studying the potential between static 
quarks. 

An early success of numerical lattice gauge theory, originating 
with Creutz's pioneering SU(2) studies (40), was the demonstration 
of confinement in QCD without quarks ("pure" gauge theory), a 
result that has become increasingly compelling as larger and larger 
calculations have been carried out. Confinement can be shown to 
hold analytically in the strong coupling (large lattice spacing) limit 
of lattice gauge theory. Numerical calculations provide strong 
evidence that no phase transition separates the strong coupling limit 
from the small lattice spacing regime that approximates the continu- 
um limit, and hence that the continuum limit has the same confining 
behavior seen at strong coupling. 

One physically important aspect of QCD-its behavior at finite 
temperature (41)-has been investigated numerically by many 
groups. The QCD vacuum is expected to undergo a phase transition 
at finite temperature, above which a new state of matter, the quark- 
gluon plasma, is produced. This area of study is attractive for two 
reasons. Euclidean Monte Carlo techniques are inherently well 
suited to the study of finite temperature quantum field theories, and 

the quark-gluon plasma may be experimentally accessible in ultrarel- 
ativistic heavy ion collisions (42). Finite temperature is easily 
achieved numerically; a simulation performed on a lattice that is 
periodic in the (Euclidean) time direction with temporal extent 
T = N,a yields results for the system at a temperature of T = l l k ~ .  
The finite size of the lattice (in the temporal direction), which is 
normally regarded as a drawback, is thereby put to good use. A 
variety of arguments (41) suggest that pure gauge QCD will 
undergo a phase transition at some critical temperature, T,, above 
which the theory no longer confines. I t  is largely to the study of this 
deconfining phase transition that the first generation (16-node) 
Columbia machine has been devoted (9). 

Figure 6 shows results (9, 44, 45) typical of recent large-scale 
confinement calculations. Calculations were performed on a 
1 6 ~  x 10 lattice for several values of the interaction strength P. By 
varying P we vary the lattice spacing a measured in physical units 
and hence the temperature T = l/ka(P)N,. The sharp crossover in 
the fraction confined (9) yields a critical coupling for the phase 
transition of p, = 6.160(7). The quantity %, which probes the 
latent heat of the transition (46), also jumps abruptly as P is varied. 
Because this calculation favored a small lattice spacing over a large 
physical volume, the transition is not as sharp as those in (43). Not 
only is the transition broadened by finite volume effects, also the 
internal energy jumps at a slightly larger value of P than the fraction 
confined. Such effects must be controlled by comparing calculations 
performed for different spatial volumes. 

By repeating such large-scale calculations for different values ofN, 
one is able to demonstrate that the lattice spacings used are small 
enough to well approximate the continuum. Combining the results 
of many calculations (9, 44, 45, 47-50), we can compare the 
computed dependence of the critical value of beta PC on N, with the 
theoretical prediction of the continuum theory. Satisfactory agree- 
ment is seen for values of N, between 10 and 16, the largest value 
studied so far, suggesting that finite lattice spacing errors are 
reasonably well controlled. 

Given that months of 16-node computer time were used by the 
163 x N, calculations, it is worth discussing the feasibility of 
243 x N, calculations now under way on our 64-node machine. 
Making the reasonable guess that the cost of such calculations scales 
like the sixth power of the linear extent of the lattice, we expect 
the 243 x N, calculations to be an order of magnitude more costly 
[(24116)~ = 111. On the other hand, the 64-node machine offers a 
factor of 4 increase in power, more efficient programming practices 
yield an additional twofold increase in the sustained throughput of 
the machine, while an improved pure gauge Monte Carlo algorithm 
(51) is expected to increase the efficiency of the calculation by at least 
another factor of 2. Taken together, these improvements in hard- 
ware, programming, and algorithms represent a 16-fold increase in 
performance, leading to the conclusion that the 64-node 243 x N, 
calculations will be less demanding than were the 163 x N, calcula- 
tions performed on the 16-node machine. 

In the physically realistic situation where light dynamical quarks 
are coupled to the gluon field the issue of confinement becomes 
significantly more difficult. First, when separating two colored 
sources in an attempt to probe the linearly rising, confining 
potential, at some point it becomes energetically favorable to pair- 
produce a dynamical quark and antiquark from the vacuum, which 
then serve to cancel the original color charges, permitting the now 
colorless composite objects to be separated at no further cost in 
energy. 

Second, the phase transition observed in the absence of quarks 
need not persist for all values of the quark mass. There is evidence in 
the literature for the existence of a path in the temperature versus 
quark mass plane that connects the zero temperature, infinite quark 
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mass (that is, pure gauge) confined phase with the high-tempera- 
ture, infinite mass deconfined phase, and yet never passes through a 
phase transition. Furthermore, for zero quark mass, the theory 
possesses a so-called "chiral symmetry" (implying the conservation 
of the quark helicity) that is broken at zero temperature and restored 
at high temperature. Should a single-phase transition be found in 
the presence of massless or light quarks, it is best thought of as a 
chiral symmetry phase transition, and its relation to deconfinement 
is not a priori clear. Of course the rich structure displayed by the 
theory in the presence of dynamical quarks makes hll-fledged QCD 
a fertile ground for numerical study. 

Finally, as emphasized above, calculations that correctly incorpo- 
rate the effects of light quarks place vastly greater demands on 
computational resources than do their pure gauge counterparts. The 
lighter the quark, the greater its influence on low energy physics, 
and, not surprisingly, the more costly it makes reliable calculations. 
Thus early calculations yielded results for relatively heavy quarks, 
whereas current efforts are directed at pushing the quark mass down 
low enough to be relevant to the real world in which at least two 
flavors are to first approximation massless. 

Two recent finite temperature studies (52, 53) exemplify the 
current state of dynamical fermion calculations, and serve to illus- 
trate what can be achieved with the commercial supercomputers 
currently available. Kovacs et al. (52) and Fukugita e t  al. (53) 
present evidence suggesting the existence of a first-order phase 
transition for sufficiently small quark mass, and support the same 
qualitative picture, although different systems were studied. Kovacs 
e t  al. (52) treat four flavors of quark with a mass (in lattice units) of 
m = 0.025 on a lo3 x 6 lattice using the hybrid method, whereas 
the calculations in (53) are for two flavors with mass down to 
m = 0.05 on an g3 x 4 lattice with the Langevin method. 

In Fig. 7, the dynamical fermion analog of Fig. 6, we reproduce 
data presented in (52) for an order parameter 9 related to the 
confined fraction plotted in Fig. 6 and ($+), the natural order 
parameter for chiral symmetry breaking. Both change abruptly, 
indicating the presence of a phase transition, quite possibly first 
order. Furthermore, they change together, so that one may picture 
this phase transition as a single transition at which deconfinement 
and the restoration of chiral symmetry occur simultaneously. 

The work of Kovacs e t  al. (52) represents the most ambitious 
dynamical fermion calculation reported to date. Experience with 
pure gauge calculations suggests that the lo3 x 6 lattice on which it 
was performed is sufficiently large to provide a qualitatively reason- 
able picture of QCD. The same reasoning implies, however, that 
significantly larger lattices will be necessary to obtain quantitatively 
accurate predictions for full-fledged QCD. Kovacs e t  al. report that 
this calculation consumed 5000 hours of CPU time on an ST-100 
array processor running with a sustained performance of 50 Mflops. 
That is, such a calculation would take 3 months on the 16-node and 
3 weeks on the 64-node Columbia machine. To duplicate such a 
calculation on a 163 x 10 lattice would require (assuming the cost 
goes like the sixth power of the linear extent of the lattice, and 
making the pessimistic assumption that significant improvements in 
algorithms will not be forthcoming) about a year of running on the 
64-node Columbia machine, or between 1 and 2 months on a 
machine with a sustained performance of 5 Gflops, such as may well 
be achieved by the IBM project (7) or the third-generation Colum- 
bia machine. 

Bearing in mind that such bulk thermodynamic studies are only a 
relatively easy subset of the calculations one would like to perform, 
and that larger lattices will be necessary at least for occasional 
consistency checks, it is apparent that the numerical solution of 
QCD will easily saturate the powerful parallel supercomputers 
currently being constructed for this purpose for years to come. 

Future Prospects 

In the preceding we have described what we expect will become a 
significant new direction in theoretical physics: the incorporation of 
advanced computer technology into specially designed machines 
capable of making real progress on important questions in relativis- 
tic quantum field theory. We have emphasized a particular applica- 
tion, the computation from the known QCD action of the low- 
energy properties of the strongly interacting particles (and the 
quarks and gluons out of which they are made). Such an endeavor 
will provide an important quantitative test of QCD, and should 
serve to establish the utility of lattice gauge theory and the large- 
scale computation strategy presented here. 

Perhaps even more important will be the study of theoretical 
models whose properties, even qualitatively, are not well under- 
stood. For example, the spontaneous symmetry breaking that is 
believed to distinguish the electromagnetic and weak interactions 
giving the intermediate W' and ZO bosons their mass may well 
occur as a result of a new strongly coupled non-Abelian gauge 
theory (54). Similarly, attempts to understand the increasingly rich 
spectrum of "hndamental" quarks and leptons often postulate a 
new, high energy strong interaction whose bound states (55) form 
the known families of quarks and leptons. Both of these speculations 
posit new non-~belian-gauge coupfings that possess the same strong 
nonlinearities that have plagued all analytic approaches to QCD. 
These attempts to gain insight into aspects of elementary particle 
physics that are not understood are just two examples of important 
but nearly intractable models whose properties are best studied with 
the techniques discussed here. Thus it appears that even more 
interesting and difficult problems await the techniques now being 
developed to study QCD . 
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Activation of Cell-Specific Expression of Rat 
Growth Hormone Ad prolaitin Genes bv a - 

Common Transcription Factor 

In the anterior pituitary gland, there are five phenotypi- 
cally distinct cell types, including cells that produce either 
prolactin (lactotrophs) or growth hormone (somato- 
trophs). Multiple, related cis-active elements that exhibit 
synergistic interactions appear to be the critical determi- 
nants of the transcriptional activation of the rat prolactin 
and growth hormone genes. A common positive tissue- 
specific transcription factor, referred to as Pit-1, appears 
to bind to all the cell-specific elements in each gene and to 
be required for the activation of both the prolactin and 
growth hormone genes. The data suggest that, in the 
course of development, a single tissue-specific factor 
activates sets of genes that ultimately exhibit restricted 
cell-specific expression and d e h e  cellular phenotype. 

E UKARYOTIC GENES ARE TRANSCRIPTIONALLY REGULATED 

by protein factors that bind cis-acting promoter and en- 
hancer elements ( I ) ,  some of which exert their actions in a 

tissue-specific manner (2). During the developmental program of 
organogenesis, there is a serial appearance of phenotypically distinct 
cell types that exhibit selective patterns of gene expression. Under- 
standing the mechanisms determining the sequential activation of 
these differentiated states requires the elucidation of factors govern- 

ing the cell type-specific expression of genes. The expression of two 
evolutionarily related genes, prolactin and growth hormone (GH), 
in two phenotypically distinct cell types (lactotrophs and somato- 
trophs, respectively) of the anterior pituitary gland (3) provides a 
model system for the analysis of cell typespecific gene expression 
within an organ. During pituitary development the appearance of 
somatotrophs temporally precedes that of lactotrophs (4). The 
transient coexpression of growth hormone in more than 95 percent 
of prolactin-producing cells before the appearance of mature lacto- 
trophs (4) raises the possibility that these two genes may share a 
common developmental signal for activation. We now provide 
evidence that a common tissue-specific transcription factor is re- 
quired for activation of these two genes expressed in phenotypically 
distinct cell types. 

A common cell-specific factor binds to the prolactin and 
growth hormone enhancer elements. Tissue-specific enhancers in 
the 5' flanking regions of both the prolactin and growth hormone 
genes appear to dictate their pituitary-specific expression (5). We 
have used deletion mapping and protection from digestion by 
deoxyribonuclease I (DNase 1) by binding of nuclear proteins 
(DNase I footprinting analysis) to identif) prolactin enhancer 
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