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Neural Model of Adaptive Hand-Eye 
Coordination for Single Postures 

A neural network model has been developed that achieves adaptive visual-motor 
coordination of a multijoint arm, without a teacher. The model learns to position an 
arm so that it reaches a cylinder arbitrarily positioned in space. The model uses a new 
neural architecture and a new algorithm for modifying neural-connection strengths. 
Computer simulations show that the model performs with an average position error of 
4% of the arm's length and with an average orientation error of 4". The model is 
designed to be generalized for coordinating any number of topographic sensory inputs 
with limbs of any number of joints. 

T HE HUMAN BRAIN DEVELOPS ACCU- 

rate sensorimotor coordination de- 
spite many unforeseen changes in the 

dimensions of the body, strength of the 
muscles, and placements of the sensory or- 
gans. This is accomplished for the most part 
without a teacher. How is this done? I 
present some new hypotheses and computer 
simulations of distributive neural represen- 
tations and computations that suggest how 
at least one type of adaptive sensorimotor 
coordination might be developed and main- 
tained. The hypotheses rely on the self- 
consistency between sensory and motor sig- 
nals to achieve unsupervised learning.  hey 
also rely on the topography of units in a 
network. (Topography is the ordered con- 
tiguous representation of inputs or outputs 
across a surface with possible overlap of 
neighboring representations.) Topographic 
mappings have been found in most sensory 
and motor brain structures ( I ) ,  and their 
computational properties are just beginning 
to be studied (2).  

\ r 

This study combines the constraints of 
self-consistency and topography toward the 
problem of adaptively coordinating a multi- 
joint arm to reach a cylinder arbitrarily 
positioned in space, as viewed by two eyes. 

Biology Depamnent, Wellesley College, Wellesley, MA 
02181. 

The first hypothesis is that representations 
of postures emerge out of the correlation 
between posture sensation and target sensa- 
tion. Such a correlation allows sensation and 
manipulation to become self-consistent. The 
self-consistency hypothesis is an extension of 
results from developmental studies in coor- 
dination behavior. Studies in the kitten (3) 
show that visually guided behavior devel- 
ops only when changes in visual stimulation 
are systematically related to self-produced 
movement. The hypothesis is also consistent 
with the motor theory of speech perception 
(4). 

The second hypothesis explores one of the 
ways a correlation between sensation and 
manipulation can be developed, called the 
circular reaction, which is an extension of 
one of Piaget's developmental stages (5). 
This reaction comes in two phases (Fig. 1). 
Self-produced motor signals are first gener- 
ated to explore a large range of arm pos- 
tures. During each posture, with object in 
hand, topographic sensory information 
about the object is projected to a target map 
through modifiable gating factors, called 
weights, which produce computed motor 
signals. Differences between the actual (self- 
produced) motor signals generated for each 
posture and the computed motor signals are 
used to change the weights so that these 

differences are minimized. These weight 
changes, for all possible motor postures, 
constitute the sensorimotor correlation and 
allow the system to become self-consistent. 
This is not simply feedback error correction. 
The weight changes must be structured in a 
way to allow global consistency for similar 
targets in all possible positions. 

The second phase of the circular reaction 
takes effect after the correlation has been 
developed. In this phase, the self-consistency 
developed in the first phase is used to grasp 
objects found free in space. Sensory infor- 
mation about the object projects to a target 
map through the correlated weights and 
thereby evokes the appropriate motor sig- 
nals to grasp that object. 

The neural model of the circular reaction 
was implemented by means of discrete arith- 
metic and difference equations operating on 
matrices of numbers. The mechanical system 
that the model controls was rendered on a 
graphics workstation (Fig. 2). 

Arm-muscle signals a,, activate antago- 
nistic muscle pairs (p  = 1,2) in five degrees 
of freedom (q = 1, . . . , 5) for the upper 
and lower limbs: shoulder roll (q = l), 

Input '-I 
Eye motor 

slgnals ( fxat~o 
Feedback 

Random 
actlvity 

Fig. 1 .  The circular reaction. Self-produced motor 
signals that manipulate an object target are corre- 
lated with target sensation signals. The sequence 
for training is a, b, c, d, (ef f ) ,  g. Correlated 
learning is done in step g. After the correlation is 
achieved, target sensation signals alone can evoke 
the associated motor signals to accurately manipu- 
late the target. The sequence for performance is c, 
d, e, b. 
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shoulder pitch (q = 2), shoulder yaw 
(q = 3), elbow roll (q = 4), and elbow yaw 
(q = 5). The neural model has no a priori 
knowledge of spatial relations of the me- 
chanical system. The two-fingered hand is 
neither sensed nor controlled in the present 
neural model, although it could be. 

The eye-mu& signals e, activate three 

Fig. 2 Rendering ofthc mechanical system uscd 
for seeing and grasping as simulated on a graphics 
workstation. Each of two eyes moves in a pitch 
and yaw direction controlled by six musdes that 
puU in directions spaccd 60" apart. Each eye 
senses a 50 by 50 matrix of b i i  visual imcasity. 
Thc am moves in five degrrcs of fkcdom con- 
m ~ b y f i v c p a i r s o f a n ~ c d c s . T h c  
shoulder joint mows in pitch, yaw, and roll and 
the clbow joint moves in yaw and roll. 

Fig. 3. The neunl modd in a typical karmng 
trial. The relative values of neural signals are 
shown as colors across the surfices of the neunl 
networks, accodng to the scale at the bottom. 
During learning, the random generator 6cst pro- 
ducts s@ that position the arm in some pos- 
turc, while the hand holds a cylinder. Then the 
two eyes orient to the cylinder. The eye-muscle 
signals are transformed into a gaze map that 
contains infbrrnation about the directions of gaze 
of the eyes and their disparities. Each leg of the 
gaze map represents the pulling direction on 
either cye. The amplitudes of the three eye-mu& 
distributions (left-eye, disparity, and right-) 
are shown by the colors along the map's radii 
( 1 0  units in cach of 18 distributions). The gaze 
we~ghts (18,000 values) contain gating signals 
from each gaze map unit to each arm-mu& unit. 
A similar scries of transformations occur for visual 
signals. F i  stem views of the grasped cylinder 
are cc@crcd in the retinas (50 by 50 units cach). 
In cach trial, these images are p d  for 
contrast orientation and binoculv disparity. The 
visual map shows intedcaved oriuuation and 
disparity responses from both eyes. The visual 
weights contain gating signals from each visual 
map unit to cach arm-mu& unit. (Only 6.7% of 
the 300,000 visual weights are shown for clarity.) 
Arm-mu& signals are produced by normalizing 
the sum of the products of both the gaze map and 
visual map with their respective we@t maps. 
Thcse signals are compared against arm-mu& sign 
so that on future trials the differences will be minh 

pairs of antagonistic musdes Cp = 1,2) fbr 
each eye that pull the eye in directions 
spaced 60" apart (q = 1,2,3). Each eye also 
registers a visual field matrix composed of 
light intensity vij, where i = 1,. . . , I, 
j = 1, . . . , J.  The network operates over N 
-learning aials. Figure 3 sh6m the neural 
networks fbr one typical mal. 

On mal n, the signals for the arm musdes 
are first randomly generated (6) and normal- 
ized. In the simplest casc, the joint angle of 
the limbs is computed to be linearly propor- 
tional to mu& activation (7). However, 
any one of many monotonic functions of 
arm-mu& signals can be chosen with simi- 
lar d t s .  Activation of the arm musdes 
leads to an arm posturc with the two- 
fingered hand initially holding a cylinder. 
The model is then told where to orient the 
twoeyessothatthey pointtowardthevisual 
con&t center of ;h;: cylinder target. This 
infonnation can also be obtained by another 
adaptive neural modcl used to control eye 
fbveation (8) without changing the p m t  
results. Thc eye tbvcation modd uscs the 
same neural architecture and was designed 
to work in parallel with the present modd. 

The eye-mde signals e,, that corn- 
spond to the eye orientations arc drcn used 
as input to the network. These signals are 
transformed into unimodal distributions of 
activity ELi, (left) and ki) (right) across 
networksofunits ( i =  1,. . .,I). Eachdis- 
mbution represents a topography for cach 
eye-musde signal. Any one of a large family 

of transfbnnations can be chosen without 
affecdng the results. The main uitcrion fbr 
thcsc transfbnnations is that the positions of 
unimodal distribution peaks vary monotoni- 
cally with eye-mu& signal. 

For drc present model a transfbnnation 
was chosen that mimics realistic neural re- 
sponses in the oculomotor nuclei of the 
brain (9). It is called drc "recruitment" 
function because it recruits increasingly 
more ncural elements with increasing mus- 
cle signal amplitude (10). In this case 

E d 0  = = {o,f(q[e, - B ( ~ I )  (1) 
whereflq = a i /&~(q  = pit& i = 1,. . . ,& 
and a, p arc constants. 

To make use of binocular infonnation, 
drc modcl combines the left and right eye- 
musde distributions ELi) and E h 4  to fbnn 
a topographic disparity dismbution Go. 
This dismbution has the fbllowing proper- 
ties: (i) it describes a measure of disparity 
between eye orientations; (ii) it has a topog- 
raphy across orientation space; (iii) the com- 
putation does not depend on which of the 
two eye orientations is larger (symmetry); 
and (iv) both eyes must be active for the 
disparity to be computed (binocularity). 
One simple function, ofmany, that satisifies 
thcsc constraints fbr the disparity dismbu- 
tion is 

where A is a constant and i=  1,. . ,I  (na- 
work population). The dismbutions ELn, 

als produced by the random generator. The difcrcnca 
nized. 

- - - - - - - - 

; are uscd to change values in the two weight maps 
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Fig. 4. Convergence of (A) the average position 
errors and (B) the orientation errors for grasping 
a cylinder that is positioned randomly in space. 

E;,(i), and E,d,(;) together comprise the gaze 
map. 

Each eve also receives a two-dimensional 
visual projection of the cylinder target in 
space, called a retinal map, V. Stereo maps, 
each of which is composed of binary light 
intensity distributions, are processed for 
graded contrast orientation in four direc- 
tions, x :  0°, 45", 90°, and 135". The result- 
ing transformations comprise the orienta- 
tion maps V& (left) and Vita (right). Then 
corresponding pairs of orientation maps are 
combined into binocular-disparity maps, 
v:(lj>. 

The orientation maps are achieved by 
convolving each retina map vi with 
orientation kernel k, 

where k, are kernel matrices that have the 
same nonpositive coefficients everywhere ex- 
cept along one string in one of the four 
orientations, x. The coefficients in that 
string are all the same positive number. 

The responses of the orientation maps 
mimic the orientation responses of visual 
cortex neurons to visual contrast (1 1 ) . Other 
orientation-response functions can be used 
with similar results. 

By means of a disparity computation simi- 
lar to one for eye-muscle disparity, the visual 
disparity distributions V$i,l, are formed by 
combining pairs of corresponding orienta- 
tion distributions in the function 

where 6 is a constant. This response is 

similar to the disparity response of binocular 
neurons in the visual cortex (12). When all 
the V dstributions are interleaved (Fig. 3) 
they form the visual map, which mimics the 
retinotopic layout of some of the neural 
responses observed in the visual cortex (13). 

Next, the gaze map and the visual map are 
combined to produce arm-muscle signals 
through their respective weight maps. The 
modifiable weights (Fig. 3) in these maps 
act as gates between sensation and posture. 
The weights are changed by a learning rule 
during each trial, which develops the corre- 
lation between topographic sensory signals 
and topographic motor signals across all 
trials. 

The architecture of the weight maps is 
crucial to the performance of the neural 
model. It is composed of distributed, inter- 
leaved combinations of topographic sensory 
inputs that are transformed into a distribut- 
ed, interleaved combination of motor out- 
puts. The interleaving arrangement is noted 
by the expression ijpy), which means map 
position i,j composed of a distribution of 
limb-muscle elements p,q. The product of 
the input maps and their respective weight 
maps are disentangled and converged to 
separate arm-muscle outputs and constitute 
the computed motor signals MI,, 

where Si is every input element from both 
the gaze map and the visual map and the 
Wvoq, are the modifiable weights. In es- 
sence, each input element is connected to 
each limb-muscle representation through a 
modifiable weight element. Note that 
weight values Wiw,, can be negative. All 
weights are initialized to 0. 

These computed motor signals are then 
normalized across antagonistic muscle pair 
representations along with the actual motor 
signals (random values), M,, to produce 
arm-muscle signals (14) : 

The model develops self-consistency and 
improves its performance by modifying the 
target weights Wliwq,. The learning rule min- 
imizes the difference between the computed 
and actual motor signals. Thus, the differ- 
ences or errors &,, are 

&P, = MP4 - M1P4 (7)  

Minimizing these differences while allowing 
global convergence requires changing all 
active weights by a small amount 

W(n+l)iiPq) = W(nIwq) + ~ S i j ~ p q  (8) 

where n is the trial number and a is the 
learning rate. The learning rule states that 

the target weights (corresponding to those 
sensory inputs that are active) are changed 
by an increment that depends on the com- 
ponent of an error in the respective muscle 
direction (15). This component-specific 
learning occurs back in the weight maps. 
With this incremental learning rule, the 
computed motor signals for all targets con- 
verge towards the actual motor signals (&,, 
is minimized) in successive trials. 

When learning converges, the model can 
accurately control the reaching postures to 
cylinders found free in space. In this phase, 
the eyes first orient toward the cylinder 
target. The target is sensed by the sensory 
maps, which in turn produce computed 
motor signals through the accumulated 
weights. In this condition the random signal 
generator is off (M,, = 0 in Eq. 6 ) .  When 
these values are used to control arm posture, 
the end of the arm reaches the cylinder 
target because the weight maps have devel- 
oped a correlation between the sensory 
maps and the arm-muscle signals. 

The objective accuracy of the model's 
performance (not known to the model) is 
determined by averaging the differences be- 
tween the actual target positions and the 
computed arm positions in Cartesian coor- 
dinates for all trials. Computer simulations 
show that, throughout the continuous vol- 
ume of the available grasping space, the 
model performs with an average position 
error of 4% of the arm's length and an 
average orientation error of 4". Learning 
converges in about 3000 to 5000 trials (Fig. 
4). Learning rates a (in Eq. 8) are in the 
range of to 

The model is designed to maintain adap- 
tation when unforeseen changes are made in 
the mechanical system or with partial dam- 
age to the model, as was shown for the first 
prototype of the neural architecture used in 
this model (16). This study shows that the 
same neural architecture can be used for 
multiple topographic inputs from different 
modalities to achieve self-consistency. I sug- 
gest that, in general, adaptive topographic 
mapping constrained by self-consistency al- 
lows representations of objects by means of 
signals derived only from sensory receptors 
and motor feedback. No a priori knowledge 
of objective features is required. 

- - - 

REFERENCES AND NOTES 

1. E. R. Kandel and J. H. Schwam, Principles qfNeural 
Science (Elsevier, New York, 1985). 

2. S. Grossberg and M. Kuperstein, NeuralDynamh of 
Adaptive Sensoty-motor Control: Ballistic Eye Move- 
ments (Elsevier, Amsterdam, 1986); E. I. Knudsen 
et al. Annu. Rev. Neurosci. 10, 41 (1987); E. 
Schwm,  in Proceedings of the First Incernatwnal 
Confirence on Neural Nets, San Diego, June 1987 
(Computer Society Press, Washington, DC, 1987), 
p. 1545. 

3. R. Held and A. Hine, J. Comp. Plyshl. Psychol. 56, 
872 (1963). 

SCIENCE, VOL. 239 



4. H. Williams, and F. Nottebohrn, Science 229, 279 
(1985); A. M. Liberman e t d . ,  Psychol. Rev. 74,431 
(1967). 

5. J. Piaget, The Origins of Intell&ence in Children, 
translated by M. Cook (International University 
Press, New York, 1952) 

6. The degree offlatness of the random function has no 
bearing on the results. The range is 0 to 1. 

7. This is formally shown in Eq. 6 and discussed there. 
8. See M. Kuperstein [Behav. Neurosci. 102, 148 

(1988)l for adaptive neural architecture for eye 
foveation and first reference in (2) for eye movement 
generator. 

9. E. S. Luschei and A. F. Fuchs, J. Neuropbyswl. 35, 
445 (1972); D. A. Robinson, ibid. 33,393 (1972); 

P. H. Schiller, Ejcp. Brain Res. 10, 347 (1970). 
10. The recruitment function is the same as the position- 

threshold-slope function from the first reference in 
(2). 

11. D. H. Hubel and T. N. Wiesel J. Pbyswl. (London) 
195.215 (1968). 

12. G. F. PO&O &d B. Fischer, J. Neuropbysiol. 40, 
1369 11977). 

13. D. RO& and V. G. Dobson, Eds., Models of Visual 
Curtm (Wiley, Chichester, U.K., 1985). 

14. Normalized networks that have this property are 
similar to those used in S. Grossberg, Studies ofMind 
and Brain (Reidel, Dordrecht, 1982). 

15. The present learning rule contrasts with a learning 
rule based on sensory errors [such as those used in 

(8)]. Unlike the former rule, the latter requires error 
directions to be calibrated a priori. Unlike the latter 
rule, the former requires exploratory motor signals 
to be generated. The use of each type of rule 
depends on the cost-benefit of their properties. They 
could also be used in parallel. 

16. M. Kuperstein, in Proc. IEEE Int. Cony Automat. 
Robotia, Raleigh, NC, 31 March to 3 April 1987 
(Computer Society Press, Washington, DC, 1987), 
p. 1595. 

17. i thank the National Science Foundation and the Air 
Force Office of Scientific Research for their financial 
support of this research (grant DMC-8521535). 

2 November 1987; accepted 20 January 1988 

Gene Encoding the P Subunit of SlOO Protein Is on 
Chromosome 21: Implications for Down Syndrome 

R. ALLORE, D. O)HANLON, R. PRICE, K. NEILSON, H. F. WILLARD, 
D. R. Cox, A. WIW, R. J. DUNN 

SlOO protein is a calcium-binding protein found predominantly in the vertebrate 
nervous system. Genomic and complementary DNA probes were used in conjunction 
with a panel of rodent-human somatic cell hybrids to assign the gene for the P subunit 
of SlOO protein to the distal half of the long arm of human chromosome 21. This gene 
was identified as a candidate sequence which, when expressed in the trisomic state, may 
underlie the neurologic disturbances in Down syndrome. 

D OWN SYNDROME (DS) IS THE 
most common genetic cause of hu- 
man mental retardation, occurring 

with the frequency of about 1 per 800 live 
births (1). Individuals with this disorder 
have abnormalities in a number of different 
organ systems including the nervous system. 
Neuropathological changes consisting of 
neurofibrillary tangles, senile plaques, and 
neuronal loss are found in the brains of most 
DS individuds dying after the age of 35 
years. These changes, which are qualitatively 
and quantitatively indistinguishable from 
those seen in Alzheimer's disease (AD), are 
often associated with the clinical features of 
presenile dementia (2). Cytogenetic studies 
have shown that a chromosome abnormali- 
ty, trisomy of chromosome 21, is the pri- 
mary cause of DS. This finding suggests that 
the neurologic abnormalities in DS are due 
to imbalance of one or more genes on 
chromosome 21. In order to understand the 
biochemical basis of the neurologic defects 
in DS it is necessary to identify these genes. 

Two genes that may play a role in the 
neurologic abnormalities that characterize 

DS have recently been assigned to human 
chromosome 21  (3, 4). The first of these is 
the locus coding for amyloid P protein 
(APP), an important component of both 
cerebral vascular amyloid and amyloid 
plaques of AD and DS. The second gene, 
mutations of which result in early onset 
familial AD (which is autosomal-dominant), 
has been shown to be tightly llnked to the 
chromosome 21  DNA marker, D21S16. 
Although both D21S16 and APP have been 
physically assigned to the proximal portion 
of the long arm of chromosome 21, cross- 
overs between APP and the familial AD 
gene indicate that these are two separate loci 
(5, 6). We now report that a third gene, 
expressed primarily in the nervous system 
and encoding the P subunit of the SlOO 
protein, maps to the distal half of the long 
arm of human chromosome 21  and is a 
candidate for the primary defect underlying 
the neurologic disturbances found in DS. 

SlOO protein is a calcium-binding protein 
widely distributed in the nervous system of 
vertebrates (7). It is structurally similar in 
the calcium-binding domains to calrnodulin, 
an important transducer of calcium-mediat- 

R. More, K. Neilson, H. F. Willard, R. J. Dunn, 
ed signals (8). SlOO protein is composed of 

Department of Medical Genetics, University of Toronto, subunits, a and P, which associate into 
Toronto, Ontario, Canada M5S 1A8. aa, pp, or dimers (9). The highest levels 
D. O'Hanlon and A. Marks, Banting and Best Depart- 
ment of Medical Research, University of Toronto, 112 S1OO protein are found in the brain. In 
College Street, Toronto, Ontario, Canada M5G 1L6. particular, the P subunit of SlOO protein is 
R. Price and D. R. Cox, Department of Pediatrics, 
Biochemisuy and Biophysics, M650, University of Cali- expressed in glial at levels at least 
fornia, San Francisco, CA 94143. tenfold higher than in most other cell types. 

The brain also contains small amounts of the 
a subunit at levels approximately one-tenth 
that of the p subunit (10). SlOO protein 
accumulates during the maturation of the 
mammalian brain (11) and participates in 
several calcium-dependent interactions with 
neuroleptic drugs and brain proteins (12). 
Thus disturbances of SlOO protein gene 
expression may play a fundamental role in 
the generation of neurologic defects associ- 
ated with DS. 

The human genomic and complementary 
DNA (cDNA) probes used to identify the 
chromosomal location of the SlOO protein P 
subunit gene are shown in Fig. 1. The 742- 

Fig. 1. Schematic representation of the genomic 
clone (pHSlOO.A), the genomic probe subclone 
(pHS22.4), and the cDNA clone probe (pKN3) 
used for Southern blot analysis. Protein coding 
region sequences are indicated by dark boxes. The 
heavy line indicates intron sequence in the geno- 
mic clone and the open box indicates the 5' 
untranslated region sequence within the cDNA 
clone. Lines joining regions of cDNA and geno- 
mic clones bracket areas of identical sequence. 
The location of the ATG initiation codon is 
indicated. The DNA fragment used as a genomic 
hybridization probe (pHS22.4) is indicated above 
the genomic clone (pHS100.A) diagram. The 
cDNA clone was isolated by means of a previously 
characterized cDNA clone of the rat SlOO protein 
p subunit (17), which was used as a hybridization 
probe. The Eco FU fragments from positive 
cDNA clones were subcloned into the Bluescript 
plasmid (Stratagene Cloning Systems, San Diego, 
CA). The genomic clone AHS1OO.l was isolated 
by screening 3.6 x 10' recombinants from a A 
Charon 4A human genomic library using the rat 
SlOO protein cDNA probe (18). The 5.0-kb 
pHS100.A subclone of AHS1OO.l contains the 
entire protein coding region from the SlOO pro- 
tein p subunit gene. The 0.746-kb genomic clone 
(pHS22.4) represents a 5'-coding region sub- 
clone from pHS1OO.A. Restriction enzyme sites: 
E, Eco FU; H, Hind 111, and S, Sst I. 
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