
The Motion of Untwisted Untorted Scroll Waves in 
Belousov-Zhabotinsky Reagent 

Rotating waves of activity are seen in various biological phenomena and in chemical 
mixtures. In thin layers of these media, the waves often appear as spirals spinning 
around a pivot point, but actually they are scroll-shaped waves rotating around a 
curved filament in three-space. The filament about which the scroll rotates is not 
stationary, but rather moves through space until it achieves a stable configuration or 
disappears altogether. Some features of the temporal evolution of a planar scroll wave 
filament can be understood in terms of the simple equation N = DK, where N is the 
velocity of the filament in the direction of its principal normal, K is the curvature of the 
filament, and D is the diffusion coefficient of the active chemical species. This equation 
of motion implies that a scroll ring shrinks in size and collapses in finite time, that an 
elongated spiral evolves into a symmetric spiral, and that an elongated target pattern 
becomes more symmetrical and vanishes in finite time. Characteristic times for these 
processes are estimated. In each case, good quantitative agreement is found between 
implications of the model and observations of scroll-wave evolution in shallow layers 
of the Belousov-Zhabotinsky reagent. 

R OTATING WAVES OP ACTIVITY ARE 
observed in chemical systems, such 
as Belousov-Zhabotinsky (BZ) re- 

action (I) ,  and in biological systems, such as 
slime mold aggregation (2), heart muscle 
contraction (3), and cerebral cortex activity 
(4). Because of experimental difficulties in- 
volved in studying rotating waves in cellular 
tissues, the BZ reaction has proved extreme- 
ly useful. Under appropriate conditions, the 
BZ reaction supports rotating scroll waves 
of oxidation (5-7). The scroll rotates around 
a central filament that topologically is a one- 
dimensional locus of phase singularity (8). 
The filament threads through the three- 
dimensional medium until it joins to itself, 
or terminates at a boundary. Depending 
upon the shape of the filament, the scroll 
wave manifests itself in one of several forms: 
symmetric spiral, elongated spiral, elongated 
target pattern, scroll ring, and (possibly) 
scroll knot (5, 8, 9). 

A shallow layer of BZ reagent, like heart 
wall or cerebral cortex. is extensive in two 
spatial directions and limited, but not negli- 
gible, in thickness. In such contexts, the 
upper and lower boundaries of the excitable 
domain play significant roles in the evolu- 
tion of scroll waves. T o  show this, we derive 
heuristically an equation of motion for the 
filament of a scroll wave. solve the equation 
in some simple cases with and without 
boundary effects, and compare our solutions 
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with experimental observations of evolving 
scroll waves in BZ reagent. 

The topology of a scroll wave can be 
described by three parameters along the 
scroll wave filament in three-space: the cur- 
vature (K) and torsion (7) of the filament 
and the twist (&) of the wave around the 
filament (10). In this report we consider 
only the effects of filament curvature on the 
temporal evolution of untwisted (+, = O), 
untorted (7 = 0) scroll waves. In Fig. 1 a 
small segment of an untwisted untorted 
scroll wave is shown in the tangent plane of 
the filament. The filament, with curvature K, 

sheds activitv waves first to one side and 
then to the other as the scroll wave rotates. 
According to the eikonal equation for wave 
propagation in excitable media (11, 12), the 
activity waves propagate to one side with 
speed N = c + D K  and to the other side (in 
the opposite direction) with speed 
N = c - DK. (Here, c is the speed of propa- 
gation of plane waves in the excitable medi- 
um.) It seems natural to propose that the 
filament moves normal to itself at speed 
N = DK, the average of the speeds of the 
waves propagating to each side. 

More formal derivations of N = D K  have 
been given in other contexts (13, 14). In a 
general treatment of scroll wave evolution 
(14), N = D K  is shown to be the correct 
equation of motion for a planar curve as 
long as all state variables have the sm:: 
diffision coefficients, but not correct for 
scrolls with torsion, twist, or unequal diffi- 
sion coefficients. We propose to examine the 
equation N = D K  in some detail to see how 

it accounts in simple fashion for some fea- 
tures of the evolution of untwisted untorted 
scroll waves. 

The equation N = D K  is well known to 
differential geometers and has been studied 
extensively for curves in the plane and sur- 
faces in three-space (15). Any simple closed 
planar curve obeying N = D K  shrinks and 
asymptotically approaches a circle. Thus it is 
reasonable to assume that the filament of a 
scroll ring is a circle. For a circle (13, 16), 
the equation of motion simplifies to drl 
dt = -D/r, and the solution is easily seen to 
be 

The ring vanishes in finite time r i / ~ .  
Furthermore, the radius changes relatively 
slowly at first, but collapses dramatically at 
its death (see Fig. 2). An appropriate d i f i -  
sion coefficient for BZ reagent is D = 0.12 
mm2/min, so the lifetime of a modest scroll 
ring (yo = 3 mm, for example) should be 
about 40 minutes. Welsh, Gomatam, and 
Burgess (7) photographed a scroll ring with 
a radius of about 3 mm that shrank and 
disappeared after approximately 60 minutes. 

In a shallow layer of excitable medium, 
the filaments of scroll waves rarely form 
closed rings, but typically intersect the top 
or bottom surface of the medium. Scroll 
waves can be truncated in two ways that lead 
to two distinctly different behaviors. If the 
filament intersects both boundaries, one will 
observe from above an elongated spiral 
wave, whereas if the filament intersects the 
same boundary at both ends, one will ob- 
serve from above an elongated target pattern 
(5, 9). Both elongated spirals and target 
("hot dog") patterns are observed in BZ 
reaction (5, 6, 9) .  As time proceeds, hot dog 
sources shrink and disappear, whereas elon- 

Fig. 1. Motion of the scroll's filament. (A) Small 
section of a scroll wave. The filament of the scroll 
is the dark curved line at the center of the scroll. 
The filament is curved but has no torsion. The 
scroll is not twisted around the filament. The 
tangent plane to the filament is stippled. (B) 
Activity waves in the tangent plane. As the scroll 
rotates around its filament, activity waves propa- 
gate away from the filament. In the tangent plane, 
these waves propagate with speed N = c + DK to 
one side and with speedN = c - DK to the other. 
The figure suggests that the filament itself will 
move in its tangent plane at speed N = DK. 
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Flg. 2. Life history of scroll rings. The radius of a 
perfectly circular scroll ring decreases with time 
according to Eq. 1, with D = 0.12 mm2/min. 

gated spirals become symmetric and rotate 
stably. This difference in behavior can be 
explained in quantitative detail by examin- 
ing the equation of motion of the scroll 
wave filament. 

For a filament that intersects both bound- 
aries, we suppose that the filament is a plane 
curve and its position can be represented by 
x = x(z,t), where x is the horizontal dis- 
placement and z is the depth of a point on 
the filament. In terms of these variables, the 
equation of motion of the filament is 

with boundary conditions axlaz = 0 at 
z = 0, d. ("No-flux" boundary conditions at 
z = 0, d are used because in a closed chemi- 
cal medium there can be no flux of any 
chemical species across a boundary.) Solu- 
tions of Eq. 2 will asymptotically approach a 
constant that corresponds to a vertical fila- 
ment for the scroll wave. Thus a scroll wave 
that intersects both boundaries of the fluid 
will not collapse, as does a scroll ring, but 
will approach a stable symmetric shape. 

We cannot solve Eq. 2 exactly, but we can 
approximate its solution readily. If we sup- 
pose that the slope of the filament x, is not 
too large, and ignore 4 compared to one, 
then Eq. 2 can be replaced by the heat 
equation with diffusion coefficient D and 
no-flux boundary conditions z = 0, d. This 
approximation has the effect of making the 
diffusion coefficient bigger than it should 
be, so the resulting estimates of the motion 
of the filament are too fast. It should, how- 
ever, be a good approximation in the later 
stages of the symmetrization of an elongated 
spiral, when x,l < < 1. Alternately, one 
could replace the term x, by its maximal 
value at time t = 0 and obtain an approxi- 
mate heat equation with diffusion coefficient 
that is too small, giving estimates of the 
motion of the filament that are too slow. 

Suppose the initial position of the fila- 
ment is described by the straight line 
x(z) = Az, with A = Lid, d = depth of the 
medium, and L = length of the elongated 
spiral source projected onto the surface of 
the medium. The solution of the heat equa- 
tion with no-flux boundary conditions is 
given by 

where Dm is the modified diffusion coeffi- 
cient Dl(1 + A') < D m  < D. An excellent 
approximation for Eq. 3 is to keep only the 
first trigonometric term. 

The tilt of the scroll filament is visualized 
in a shallow layer of BZ reagent as elonga- 
tion of the spiral wave fronts. From Eq. 3 
we estimate the elongation of a tilted scroll 
as 

The tilt of the s iral decays with half-life ! T = (d2 In 2)/(n Dm). For a layer of BZ 
reagent with depth 1 mm and D = 0.12 
mm2/min, an elongated spiral of small tilt 
(A < 0.5, for example) straightens up with a 
half-life of approximately 112 minute. For 
elongated spirals of greater tilt (A > l ) ,  we 
expect that the half-life of straightening is 
not much greater than this, because accord- 
ing to Eq. 2 changes in x are greatest where 
a2x/az2 is largest, and these are just the 
places where axlaz is relatively small. 

In Fig. 3A we show a plot of L(t)/2, the 
half-length of the spiral filament, deter- 
mined by numerical integration of Eq. 2. As 
can be seen from these curves, the half-life of 
shortening is on the order of 1 minute. In 
Fig. 3B, we plot the same solutions as the 
In[(L(t)l2] versus time. As can be seen from 
these curves, the solution is sublinear and 
asymptotically linear. From the slope of the 
asymptotic linear portion of the curve (- 1.2 
min-'), we estimated an asymptotic half-life 
of shortening of 0.6 minute. Using time- 
lapse photographs of oxidation waves in BZ 
reagent (17), we measured the rate of decay 
of elongation offour spiral patterns. Because 
the time-lapse interval was 30 seconds, the 
accuracy of the measurements was limited, 
but spirals of length 2 mm or so decayed to 
perfect symmetry with a half-life of approxi- 
mately 1 minute. In Fig. 3B the length as a 
h c t i o n  of time for two of these spirals is 
recorded. 

If the filament of the scroll intersects the 
same boundary, the scroll wave will disap- 
pear in finite time. To see this we suppose 

that the filament is planar, and solve the 
equation of motion subject to the require- 
ment that the filament be perpendicular to 
the boundary at its ends. As a first approxi- 
mation we could suppose that the filament is 
semicircular, and apply the estimate for the 
collapse offull spiral rings found above. This 
estimate is too generous. To do better, we 
use a comparison theorem (a noncrossing 
theorem) for the equation of motion, which 
states that any two solutions of the equation 
that are in the same plane and do not cross at 
time t = 0 do not cross for all subsequent 
times. Furthermore, any planar curve mov- 
ing with normal velocity that is nowhere 
larger than D times its curvature cannot 
cross a solution of the equation of motion if 
the true solution curve lies inside the com- 
parison curve initially. 

Suppose that at time t = 0 the filament 
lies below some straight line with quarter- 
circular ends (Fig. 4). The radius ro of each 
quarter-circular end is the same as the height 
of the straight line above z = 0, say ro = zo. 
If we allow the quarter-circular ends to 
move toward each other at speed Dlro, and 
the height of the straight line to remain 
unchanged, then any solution lying under 
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Flg. 3. Life history of an elongated spiral. (A) 
Numerical solution of Eq. 2, with D = 0.12 
mm2/min and d = 1 mm. (B) Same as (A), plot- 
ted semilogarithmically. The circles record the 
approximate length of two spirals in a series of 
photographs of scroll waves in BZ reagent. 
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Fig. 4. Filament of an elongated target pattern. 
Both ends of the filament (solid line) terminate at 
the same boundary. If the filament obeys 
N = DK, it will collapse in finite time. The life- 
time of such an elongated target pattern is bound- 
ed above by the lifetime of the comparison curve 
(dashed line) consisting of a straight line with 
quarter-circular ends. 

T ~ m e  (minutes) 

Fig. 5. Half-length of an elongated target pattern 
as a function of time. The equation of motion was 
solved numerically, starting with a semielliptical 
initial filament with maximal height 0.5 mm and 
initial half-lengths of 1.5 and 3 mm, with 
D = 0.12 mm2/min. 

this curve initially will do so for all time. 
This is because the only point where the 
comparison curve moves with velocity equal 
to D times its curvature is at the end points 
and along the straight line. Everywhere else 
its normal velocity is less than D times its 
curvature. Thus if the end points are initially 
a distance xo apart, the time until collapse of 
the structure is T, < xozd2D. 

This treatment suggests that elongated 
target patterns (hot dog sources) should 
shrink at a rate no slower than the constant 
rate Wlzo .  Numerical simulations confirm 
this estimate and show further that the 
collapse is nearly linear in time. Figure 5 
shows the half-length as a function of time 
starting from a semielliptical filament with 
height 0.5 rnrn. For this filament the rate of 
collapse of the length was 0.81 n d m i n  
compared with the estimate of 0.48 nd 
min. From Winfree's time-lapse records of 
BZ waves, we measured the shortening of 
11 hot dog sources and found that they did 
indeed shrink at a roughly constant rate 
(seven at 1 mm/min, three at 2 mm/min, and 
one at 0.5 ndmin ) .  

Both hot dog sources and scroll rings 
have finite lifetimes, but hot dog sources 
disappear much more quickly than compara- 
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A Cesium-Selective Ion Sieve Made by Topotactic 
Leaching of Phlogopite Mica 

A hydrated, sodium phlogopite mica with a c-axis spacing [d(001)] of 12.23 A made by 
careful low-temperature leaching, showed extremely high selectivity for cesium. This 
newly discovered cesium ion sieve is u se l l  in the decontamination as well as 
immobilization of cesium at room temperatwe through chemical bonding and may 
find applications in nuclear waste disposal and in decontamination of the environment 
after accidental releases of nuclear materials. 

T HE PRINCIPAL LONG-TERM PROB- 

lem caused by nuclear reactor acci- 
dents is the contamination of the 

environment with radioactive '37Cs, as was 
evidenced by the Chernobyl nuclear reactor 
accident (1). This is because cesium is very 
volatile and can be carried long distances. 
Decontamination of the environment, hu- 
mans, and animals is possible with the use of 

a highly selective cesium ion sieve either by 
dispersion, for example, in water or soil, or 
by ingestion by humans and animals. 

Zeolites and clav minerals are naturallv 
occurring cation exchangers that have been 
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