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channels. Type n and 1 K+ channels In 
peripheral murine T cells have been de- 
scribed (5, 6), n' channels, not previously 
characterized, resemble n channels in several 
respects. Most notably, both n and n' ,  but 
not 1 channels, are blocked completely by 5 
nM charybdotoxln (CTX), a peptide neuro- 
toxin isolated from Lezurus guznguestrzatus 
scorpion venom (12). We named the third 
channel type n' because the high affinity 
block by CTX may indlcate structural ho- 
mology between this channel and n channels 
(13). Additional properties that distinguish 
the three channel classes include the voltage 

dependence of activation, the degree to 
which channels are inactivated during repet- 
ltive depolarizations (Fig. lA), the channel 
closing rate (Fig. lB), and the sensitivity to 
blockade by tetraethylammonium ion 
(TEA) (Fig. 1C). Consistent with results 
from mature peripheral T cells (1-3, 5), type 
n K+ channels In thymocytes open at poten- 
tials more positive than -40 mV, are cumu- 
latively inactivated during repetitwe depo- 
larizations, close relatively slowly at subacti- 
vating voltages, and are half-blocked by 10 
mM TEA. Type 1 channels in thymocytes, 
like their counterparts in mature T cells (5), 

open only at potentials above - 10 mV, 
display very little cumulative inactivation, 
close rapidly, and are highly sensitive to 
TEA blockade [half-blocking dose (ICllz), 
0.1 mM)]  Although type n' channels re- 
semble n channels in their voltage depen- 
dence of activation, closlng kinetics, and 
sensitivity to CTX, they display little or no 
cumulative inactivation and are less sensitive 
to TEA block (KIl2, 0.1 flll?;i). On the basis of 
their voltage dependence of activation, curnu- 
lative inactivation, and TEA sensitivity, we 
have identified single K+ channels in excised 
membrane patches that correspond to the 

n n' 1 
Repetitive pulses 

100 pAI  

50 msec 

Tail currents 

B1 

-400 
25 msec 

20 PA/ 

50 msec 

TEA (mM) block 

~PAI 
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100 PAL 
50 msec 

20 PA / 
50 msec 

Fig. 1. Characterization of three types of thymocyte K+ currents. In (A) to 
(C), columns 1 to 3 represent type n, n', and 1 K+ currents, respectively, and 
column 4 summarizes the results. Data were obtained from a PNA+ cell 
(column 1) and two CD4-CD8+ cells (columns 2 and 3). Type n' currents 
were recorded in the presence of 1 mM TEA to block any contribution from 
type 1 channels. (A) Cumulative inactivation of potassium current ( I K )  
during repetitive depolarizations. Voltage stimuli (200-msec pulses from 
-80 to +30 mV) were delivered at a rate of one per second from a holding 
potential of -80 mV. Seven responses are superimposed. Peak K' current 
during each pulse is plotted in (A4). (B) Voltage dependence of K'-channel 
closing rates. Ten- to 20-msec activating pulses from the holdlng potential 
(-80 mV) to +30 mV (currents not shown) were followed by pulses of 
-100 to -40 mV. Exponential curves were fitted to the decay of tail 
currents at the latter voltages, and the decay time constants are plotted on a 
log scale against membrane potential in (B4). (C) K+-channel blockade by 

50 PA( 
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~ O P A ~  
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-7 

Pulse number 

,: 0.1- 
- 100  -80 -MI -40 
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TEA. K+ currents were elicited by pulses from -80 to +30 mV in the 
presence of 0.1 mM to 100 mM TEA. In (Cl) ,  TEA slows the apparent 
inactivation rate of the K+ current, not by unmasking a TEA-resistant 
current component, but through a direct effect on the lunetics of type n 
channels (26). The fraction of peak current remaining is plotted against TEA 
concentration on a log scale. Binding curves (1: 1) have been fitted to the 
data points by eye, corresponding to dissociation constants of 0.1 mM (type 
l), 12 mM (type n), and 100 mM (type n'). All experiments were conducted 
at 20" to 24°C by standard recording methods (7). Voltage-clamp data were 
filtered at 2 kHz with an eight-pole Bessel filter and were corrected for linear 
capacitive and leakage currents. Cells were bathed with Ringer solution: 160 
mM NaCI, 4.5 mM KCI, 2 mM MgC12, 1 mM CaC12, and 5 mM Na-Hepes 
(pH 7.4). Pipette (internal) solution contained 134 mM KF, 11 mM K2- 
EGTA, 1.1 mM CaCl*, 2 mM MgC12, and 10 mM K-Hepes (pH 7.2), with 
less than 2 ruM free Ca2+ (1). 
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three classes of whole-cell currents. The K+ 
channels differ in their unitary conductance; 
values are 18 pS for type n, 17  pS for type n', 
and 27 pS for type 1 channels (Fig. 2). 

Both the number and types of K+ chan- 
nels present were closely linked to the sur- 
face phenotype of each thymocyte subset 
(Fig. 3). Channel density was estimated 
from measurements of the maximum K+ 
conductance bK) and the membrane capaci- 
tance of individual cells, quantities propor- 
tional to the number of channels and the 
membrane area, respectively. The types of 
channels expressed in each cell were identi- 
fied by the properties described above. Of 
the four thymocyte subsets we examined, 
immature thymocytes (that is, double-nega- 
tive and double-positive cells) displayed a 
comparatively high surface density of type n 
K+ channels (Fig. 3A). In the double-nega- 
tives, which include the most primitive cells 
in the thymus (8-lo), n channels were ex- 
pressed at 1.90 & 0.41 nS1pF (mean +. 
SEM, n = 18). Assuming a specific mem- 
brane capacitance of 1 p,F1cm2 and a unitary 
channel conductance of 18 pS, this corre- 
sponds to a surface density of - 1 n channel 
per square micrometer of membrane area, or 
-100 n channels per cell. K+-channel den- 
sity was highest in the double-positives. 
Large cells of this class probably represent 

cortical blasts, whereas small cells are pre- 
sumably the blasts' offspring, commonl~ re- 
ferred to as small cortical thymocytes (8- 
10). Overall, the mean K+-channel density 
of double-positives was 4.77 r 0.63 nSIpF 
(n = 35), equivalent to -3 n channels per 
square micrometer of membrane area, or 
-300 n channels per cell. In our sampling of 
immature thvmocvtes we found no defini- , , 
tive evidence for either type n' or 1 channels, 
suggesting that if these channel types are 
expressed, they occur either in a small pro- 
portion of immature cells, or at a leveltoo 
low to be detected by our methods (14). 

In thymocytes with mature phenotypes, 
the NpeS of K+ channels expressed were 
high&. correlated with cell-sukace pheno- 
type, and hence with immunological func- 
tion. CD4+CD8- thymocytes, primarily 
precursors to helper T cells that recognize 
class I1 antigens of the major histocompati- 
bility complex (MHC) (15, 16), displayed 
type n channels at densities one-tenth to 
one-fifth those of either of the immature 
thymocyte populations (Fig. 3B). Excluding 
the few cells in this class with unusually high 
numbers of channels (BK > 3 nS), the aver- 
age normalized conductance was 0.40 & 

0.07 nSlpF (n = 20), corresponding to  
-0.2 n channels per square micrometer of 
membrane area, or -20 n channels per cell. 

10 mM TEA 

.......-......w - - 
I00 msec 100 msec 

- 
200 msec 

82 
100 mM TEA 

- 
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C2 
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............. - - 
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t : : : : : : ,  I : : : : ! : ,  
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Fig. 2. Unitary conductances of three types of K+ channels. (A) to (C) show multiple openings of 
single K+ channels in three excised, outside-out patches, stimulated by voltage ramps from -60 to +80 
mV in the absence or presence of bath-applied TEA. Pipette solutlon as in Fig. 1. Unitary conductance 
was determined from least-squares fits to the current through open channels. (A) An n-type KC channel 
with a slope conductance of 18 pS (Al);  10 M T E A  reduces the apparent single-channel conductance 
by 56% (A2). (9) An n'-type K+ channel with conductance of 17 pS. A subconductance state of 10 pS 
is also evident (Bl) (CD4-CD8+ cell); 100 M T E A  blocks the channel by 58% (B2). (C) An I-type 
K+ channel with a conductance of 27 pS (Cl )  (CD4-CD8+ cell). The 1 channel is blocked 50% by 0.1 
mM TEA (C2). The increased noise in the presence of TEA represents rapid blocking and unblocking 
events. Data were low-pass filtered at 800 Hz (A and C) or 400 Hz (B). 
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In CD4-CD8' thymocytes, principally pre- 
cursors of cytotoxic or suppressor T cells 
recognizing M H C  class I antigens (16, 1 3 ,  
the average normalized conductance was 
1.70 r 0.22 nSlpF (n = 59). Unlike the 
immature and CD4+CD8- thymocyte pop- 
ulations, channel expression in the 
CD4-CD8+ cells was heterogeneous. In 
only 5 of 59 cells did type n channels 
predominate. The majority of CD4-CD8+ 
cells exhibited n' and 1 channels in various 
proportions, with 1 channels predominating 
in some and n' channels predominating in 
others (Fin. 3C). These results are surnma- .. 
rized in the tentative lineage diagram in Fig. 
3D. 

Our finding that immature thymocytes 
abundantly express type n K+ channels 
agrees well with previous results from patch- 
clamp studies of thymocytes from humans 
(18) and mice (19). These reports demon- 
strate that n channels appear in the T lym- 
phocyte lineage before the onset of immu- 
nological competence (Fig. 3D). Type n' 
and 1 channels were not reported in an 
earlier study of CD4-CD8+ thymocytes 
(19), probably because the particular experi- 
mental protocols that distinguish among the 
several classes of K+ channels were not used 
(see Fig. 1). 

The preponderance of type n channels 
in double-negative, double-positive, and 
CD4+CD8- cells and of type n' and 1 
channels in CD4-CD8+ cells raises the pos- 
sibility that the channels have functions re- 
lated to immunological activity or T cell 
development. Thus far, the functions of n' 
and 1 channels in T lymphocytes are un- 
known. However, previous evidence sug- 
gests that expression of n-type K+ channels 
in amounts of hundreds per cell is required 
for T cells to proliferate in response to 
mitogens (1, 6,20,21). These channels may 
play a similar role in thymocyte prolifera- 
tion, because large double-positive and dou- 
ble-negative thymocytes, which account for 
the bulk of actively cycling cells in the 
thymus (8), have on average significantly 
greater numbers of n channels than do the 
largely quiescent CD4+CD8- cells. An 
abundance of type n channels is not a suffi- 
cient mitogenic stimulus, however, as the 
channels are present at high density in post- 
mitotic, small cortical thymocytes (small 
double-positive cells in Fig. 3A) and in 
resting human T cells (1, 2, 21). It has been 
suggested that small cortical thymocytes in- 
herit their K+ channels from the cortical 
blasts (19), by analogy to their "passive" 
acquisition of blast-cell TL antigen (22). 

The expression of type n' and 1 K+ chan- 
nels by CD4-CD8+ cells suggests that they 
may also be useful as cell-surface markers to 
identify possible precursors to the cytotoxic 
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Fig. 3. Pattern of  K+-channel expression is linked t o  the cell-surface phenotype of thymocyte subsets. In  
(A) to  (C), maximum K +  conductance CgK) is plotted against total membrane capacitance, a measure of 
membrane surface area (1 pF corresponds to  -100 pm2). For  each cell, flK was determined from a 
Boltzmann curve fitted t o  the K +  conductance-voltage relation o r  from the current elicited at +30 mV, 
assuming a reversal potential of -80 mV. Capacitance was calculated from the average current transient 
evoked by a pulse from -80 to  -70 mV, with correction for pipette capacitance. Open  symbols 
represent cells with primarily type n channels, and closed symbols are those with type n' o r  1 channels. 
(A) Double-negative and double-positive thymocytes. (B) CD4+CD8-  thymocytes. (C) CD4-CD8' 
thymocytes. Cells in this class with large K +  conductance (gK > 2 nS) had either predominantly type n 
or 1 channels; the remainder enerally expressed a combination of  n' and 1 channels. (D) A simplified B summary diagram relating K -channel expression t o  cell-surface phenotype and lineage in the thymus. 
The tentative lineage scheme is modified from (8). The  dashed line reflects the Uncertainty over the 
origins of mature T cells. Only the majority phenotype of  CD4-CD8' cells is indicated; a minority of 
CD4-CD8+ cells displayed large numbers of type n or 1 channels. 

suppressor T cell lineage. Although much 
evidence suggests that mature T cells are 
ultimately derived from a double-negative 
thymic stem cell (8-1 0,23), thymocytes may 
pass through an obligatory double-positive 
stage during maturation (8, 9, 24) (Fig. 
3D). If precursor cells acquire n' or 1 chan- 
nels prior to the mature CD4-CD8' phe- 
notype, then these channels should be de- 
tectable in a small fraction of double-nega- 
tive or double-positive cells. In this regard it 
is interesting that type 1 K+ channels are 
abundant in functionally defective 
CD4-CD8- peripheral T cells from mice 
homozygous for the lpr gene mutation (5, 
6). These cells are hypothesized to represent 
the aberrant expansion of a set of immature 
T cell precursors (25) and thus support the 
notion that a small population of normal 
immature thymocytes may express type 1 
channels. 

This report demonstrates that K+-channel 
diversity is linked to the developmental fate 
of thymocyte subclasses. Cells destined to 
become MHC class 11-restricted helper T 
cells (CD4+CD8-) have type n channels, 
whereas most of the cells that will become 
MHC class I-restricted cytotoxic or sup- 
pressor T cells (CD4-CD8+) express type 
n' and 1 K+ channels. The stereotyped pat- 
tern of Kt-channel expression among sub- 
sets of normal thymocytes may offer impor- 
tant clues for future studies of the roles of 
K+ channels in T cell development and 
function. 
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Expression of a Distinctive BCR-ABL Oncogene in 
Phl-Positive Acute Lymphocytic Leukemia (ALL) 

The Philadelphia chromosome (Phl) is a translocation between chromosomes 9 and 22 
that is found in chronic myelogenous leukemia (CML) and a subset of acute 
lymphocytic leukemia patients (ALL). In CML, this results in the expression of a 
chimeric 8.5-kilobase BCR-ABL transcript that encodes the P210BCR-ABL tyrosine 
kinase. The Phl chromosome in ALL expresses a distinct ABL-derived 7-kilobase 
messenger RNA that encodes the ~ 1 8 5 ~ ~ ~ ~  protein. Since the expression of 
different oncogene products may play a role in the distinctive presentation of Phl- 
positive ALL versus CML, it is necessary to understand the molecular basis for the 
expression of ~ 1 8 5 ~ ~ ~ ~ ~ ~ .  Both ~ 2 1 0 ~ ~ ~ - ~ ~  and P185ALL-ABL are recognized by an 
antiserum directed to BCR determinants in the amino-terminal region of both 
proteins. Antisera to BCR determinants proximal to the BCR-ABL junction in CML 
immunoprecipitated P210BCR-ABL but not ~ 1 8 5 ~ ~ ~ ~ .  Nucleotide sequence analysis 
of complementary DNA clones made from RNA from the Phl-positive ALL SUP-B15 
cell line, and S1 nuclease protection analysis confirmed the presence of BCR-ABL 
chimeric transcripts in Phl-positive ALL cells. In Phl-positive ALL, ABL sequences 
were joined to BCR sequences approximately 1.5 kilobases 5' of the CML junction. 
~ l 8 5 ~ ~ - ~ ~ ~  represents the product of a BCR-ABL fusion gene in Phl-positive ALL that 
is distinct from the BCR-ABL fusion gene of CML. 

T HE LEUKEMIC CELLS OF MORE 
than 95% of CML patients (1) and 
of 5 to 20% of ALL patients (2, 3) 

carry the t(9;22) (q34;q 11) translocation 
known as the Philadelphia chromosome 
(Ph') (4). In CML, the C-ABL gene on 
chromosome 9 is translocated into the mid- 
dle of the BCR gene on chromosome 22 (5). 
Although the breakpoint on chromosome 
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22 is variable, it occurs within a defined 5.8- 
kb region of the BCR gene known as the 
breakpoint cluster region, or bcr (6). RNA 
splicing generates an 8.5-kb BCR-ABL chi- 
meric transcript that is larger than the 
normal 6- and 7-kb C-ABL transcripts 
(7, 8). This results in the expression of the 
P210BCR-ABL protein (9) in which NH2- 
terminal C-ABL sequences are replaced by 
sequences from the BCR gene (1 0). 

Des~ite the fact that the Ph' chromo- 
somes-of CML and ALL are indistinguish- 
able by cytogenetic analysis, cells from most 
Phl-positive ALL patients express ABL-de- 
rived protein and RNA species that are 
distinct from the BCR-ABL products of 
CML (11, 12). Phl-positive ALL cells dis- 
play a high level of ABL-related tyrosine 
kinase activity in proteins of 180 and 185 
kD, referred to collectively as P185ALL-ABL 
(11). Comparison of cryptic phos~hopep- 
tide maps between P210BCR-A and 
P185ALL-ABL revealedsimilar, but not identi- 

cal, phosphorylation patterns suggesting 
some structural similarities (11, 13). The 
appearance of correlates with 
the expression of a 6.5- to 7.0-kb ABL 
messenger RNA (mRNA) (11-13) in con- 
trast to the 8.5-kb BCR-ABL transcript in 
CML cells. Genomic DNA analysis (11-15) 
and in situ hybridization studies (15) of the 
Ph' chromosome from ALL cells suggested 
that the breakpoint on chromosome 22 may 
not be in the bcr region as in the Ph' 
chromosome of CML. It is possible that a 
breakpoint elsewhere in the BCR gene, or 
within another gene on chromosome 22, 
could generate the altered ABL products in 
Phl-positive ALL. Alternatively, unusual 
RNA splicing within the ABL fusion partner 
may also account for the expression of 
pl85ALL-ABL 

To determine whether P185ALL-ABL con- 
tains BCR sequences, we com ared the im- I: - munoreactivity of P185A ABL and 
P210BCR-ABL with a panel of site-directed 
BCR antisera. Normal rabbit sera (NRS) 
did not recognize either protein (Fig. l), 
while antisera directed against NH2-termi- 
nal BCR sequences (antisera A) irnrnunopre- 

NRS A B C 
1 2  1 2  1 2  1 2  

Fig. 1. P185ALL-ABL displays BCR homology 
limited to the NH2-terminal re ion of BCR. + . .  K562 cells (23) (lanes 1) or the Ph -posiuve ALL 
cell line, ALL-I (lanes 2) (15,24) were immuno- 
precipitated with either normal rabbit serum 
(NRS) or with a panel of rabbit antisera raised 
against specific BCR determinants as illustrated in 
Fig. 2. Antiserum A was raised by immunizing 
rabbits with a crpE-BCR fusion protein expressed 
in the PATH-11 expression vector as described 
(26). Antigenic BCR sequences'were encoded by 
a 1.4-kb Bam HI fragment (8). Antiserum B 
corresponds to the BCR 558 antiserum as report- 
ed (10). Rabbit antiserum C (27) was raised 
against a peptide sequence, IKSDIQREKRAN- 
KGSY, beginning 134 amino acids and 403 base 
pairs upstream of the BCR-ABL junction of K562 
cells. The COOH-terminal tyrosine is not found 
in this position in the BCR sequence. Cell lysates 
were immunoprecipitated with the indicated anti- 
sera and prepared for the autokinase labeling 
reaction as described (1 1). The proteins were then 
reprecipitated with the s h e  &sera used for the 
first cvcle imrnunoorecioitation. se~arated bv 8% 
~ D ~ p o l ~ a c r ~ l a m i h e  e~ectro~hbresis, and de- 
tected by autoradiography. 
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